
Classes & Objects

CMSC 202

Programming & Abstraction
• All programming languages provide some form of

abstraction.
– Also called information hiding

– Separating how one uses a program and how the
program has been implemented

• Procedural Programming
– Data Abstraction – using data structures

– Control Abstraction – using functions

• Object Oriented Languages
– Data and Control Abstraction – uses classes

2

Procedural vs. Object Oriented

Procedural

• Calculate the area of a circle
given the specified radius

• Sort this class list given an
array of students

• Calculate the student’s GPA
given a list of courses

Object Oriented

• Circle, what’s your radius?

• Class list, sort your students

• Transcript, what’s the
student’s GPA?

3

What is a Class?

• From the Dictionary

– A kind or category

– A set, collection, group, or configuration
containing members regarded as having certain
attributes or traits in common

• From an Object Oriented Perspective

– A group of objects with similar properties,
common behavior, common relationships with
other objects, and common semantics

– We use classes for abstraction purposes.

4

Classes

• Classes are “blueprints” for creating a group of
objects.

– A bird class to create bird objects

– A car class to create car objects

– A shoe class to create shoe objects

• The blueprint defines

– The class’s state/attributes as variables

– The class’s behavior as methods

5

Class or Object?

• Variables of class types may be created just
like variables of built-in types.
– Using a set of blueprints you could create a

bakery.

• You can create as many instances of the class
type as you like.
– There is more than one bakery in Baltimore.

• The challenge is to define classes and create
objects that satisfy the problem.
– Do we need an Oven class?

6

Class Interface

• The requests you can make of an object are
determined by its interface.

• Do we need to know how bagels are made in order to
buy one?
– All we actually need to know is which bakery to go to and

what action we want to perform.

Bakery Class

Is the bakery open/closed?
Buy bread
Buy bagel
Buy muffin
Buy coffee
…

Type

Interface

7

Implementation

• Code and hidden data in the class that
satisfies requests make up the class's
implementation.
– What’s hidden in a bakery?

• Every request made of an object must have an
associated method that will be called.

• In OO-speak we say that you are sending a
message to the object, which responds to the
message by executing the appropriate code.

8

Class Definitions

• We’ve already seen...

– How to use classes and the objects created from
them...

– How to invoke their methods using the dot notation…

• Let us add to what we already know …

Scanner input = new Scanner(System.in);

int num = input.nextInt();

9

Class Definition

• A class definition defines the class blueprint.

– The behaviors/services/actions/operations of a class
are implemented methods.

• Also known as member functions

– The state of the class is stored in its data members.

• Also known as fields, attributes, or instance variables

• A challenging aspect of OOP is determining what
classes get modeled and at what level of detail.

– This answer will vary based on the problem at hand.

10

Objects
• Remember an object is a particular instance of an

a class.

• As such, all objects have…
– Data Members

• The variable types and names (same across all instances)

• The members of each object can hold different values
(unique to that instance).

• The state of an object is defined by these values.

– Methods
• The tasks that the object can perform (same across all

instances)

11

Anatomy of a Java Class

Access modifier
(more on this later) Name of the classKeyword class

public class Bakery

{

}

Class body: data members, methods

NO semi-colon

12

Data Members

• Objects store their individual states in “non-
static fields” known as data members.

• Primitive types or reference types

• Accessible by all methods of the class

– Thus the members are said to have class scope.

• Members are referenced using the dot
operator…

numItems = array.length;

13

Anatomy of Class Data Members

public class Bakery

{

}

+ Remaining class body (methods)

public boolean closed ;

int numBagels ;

Optional access modifier
(more on this later)

Data member
type

Data member
name

14

Car Example

• What characteristics (data members) are
necessary to store the state for a Car?

public class Car {

int horsepower;

int numDoors;

int year;

String vin;

String color;

String model;

String make;

// ...

}

15

Methods

• Objects are sent messages which in turn call
methods.

• Methods may be passed arguments and may
return something as well.

• Methods are available to all instances of the
class.

• Like data members, methods are also
referenced using the dot operator …

System.out.println(name.charAt(0));

16

Anatomy of a Method

Optional access modifier
(More on this later)

Name of
method

return type
(may be void)

public int getBagelCount

{

}

Method code: local variables and statements

()

Optional
parameters

17

Car Example

• What services/behaviors might be appropriate
for a Car?

public class Car {

// ...

void unlockDoors() { /* ... */ }

void changeColor(String color) { /* ... */ }

void changeGear(char gear) { /* ... */ }

boolean isParkingBrakeEngaged() { /* ... */ }

void engageParkingBrake() { /* ... */ }

void disengageParkingBrake() { /* ... */ }

void depressAccelerator(float percentage) { /* ... */ }

void depressBrake(float percentage) { /* ... */ }

// ...

}

18

Creating a Car
• The following defines a reference variable of type Car.

– However there is no Car object yet!

• The statement myCar = new Car() creates a “new” Car
object and associates it with the variable “myCar”.
– Now “myCar” refers to a Car object.

• For convenience, these statements can be (and are
typically) combined.

Car myCar;

myCar = new Car();

Car myCar = new Car();

19

Car Example

public static void main(String args[]) {

Car myCar = new Car();

myCar.vin = "123567890ABCDEF";

myCar.numLiters = 2;

myCar.horsepower = 195;

myCar.year = 2008;

myCar.changeColor("Black");

System.out.println("Car is colored: " + myCar.color);

System.out.println("Car is " + (2011 - myCar.year) +

" years old");

}

20

Painting the Car

• We can change the state of any Car through services
defined in the class definition.

• The compiler assumes that all uses of color refer to the
method parameter and hence this code has no effect.

public void changeColor(String color){

color = color;

}

// change car color

myCar.changeColor("Blue");

System.out.println(myCar.color);

Which color are we referring to?

21

The Calling Object

• Within a method, a variable is reconciled in a specific order.
1. The parameter list is checked for a variable with that name.
2. The class’s members are checked to see if there’s a match.

• What we’re really looking for is something to refer to the
calling object…

• In Java, the reserved word this represents the calling
object.
– It is sometimes necessary to identify the calling object.
– It is also a matter of style.

public void setColor(String color) {

"calling object".color = color;

}

public void setColor(String color) {

this.color = color;

}

22

Printing an Object

• If you print you class by passing it to System.out.println(),
you’ll get some cryptic looking output like so …

• The print methods will utilize a method called toString() to
format the output if you’ve implemented it.

• It’s usually a good idea to implement this method so you
can easily see the state of your objects.

Car@54fc9944

public String toString() {

String state = "";

state += "make: " + make;

state += " model: " + model;

// ...

return state;

}

23

Object Equality

• Reference variables cannot be tested for equality
using the == operator.

• Testing two reference types for equality will
resulting in comparing the underlying addresses.

public static void main(String[] args){

Car car1 = new Car();

Car car2 = new Car();

// customize both cars

if(car1 == car2){

System.out.println("Same Car");

} else{

System.out.println("Different Cars");

}

}

FF00

car1

FF20

car2

…

24

…

.equals()

• To actually compare the state of two objects we
must implement a .equals() method.

public boolean equals(Car otherCar){

if(horsepower != otherCar.horsepower){

return false;

}

if(!make.equals(otherCar.make)){

return false;

}

// ... compare necessary members ...

// otherwise, if all equal return true

return true;

}

Notes:
• Returns a boolean
• Compares only Cars as implemented
• Definition of what constitutes “equals” may vary class to class 25

Class & Method Documentation
• Class and method level documentation is intended for

the consumer of the class – it serves to help the user…
– Determine if the class is useful/applicable to their problem

– Find the appropriate method(s) and use them correctly

• Class comments
– High level documentation as to what the class represents

and does

• Method comments — important to explain…
– What the method does

– What the method takes as arguments

– What it returns

– Pre-conditions and Post-conditions

26

Pre-conditions & Post-conditions

Pre and post-conditions are important to document
in the method comments.

• Pre-conditions

– All assumptions made about functional parameters
and the state of the calling object.

– For example: The parameter mileage is non-negative.

• Post-conditions

– All assumptions a user can make after method
execution.

– For example: The car will have a new paint color.

27

Javadocs

• Java provides API documentation (known as
javadocs) for the built-in class library.

• The documentation for each class contains
class and method-level documentation.

• Found online (e.g. String, Math, Scanner)

• These documents are created using the
javadoc tool.

• Required for CMSC 202 project documentation

• Demonstrated in Lab 1

28

Javadoc Format

• Free-form text to describe method

• @param tag to identity and describe parameters
– You should have a @param tag for each argument.

• @return tag to detail what is returned when called

/**

* <description of what the method does>

*

* @param arg1 <description of arg1>

* @param arg2 <description of arg2>

* @return <description of what's returned>

*/

<return type> methodName(<type 1> arg1, <type 2> arg2) {

// method body

}

29

Example Javadoc
/**
* Changes the color of the calling object's color variable
*
* @param color - a color that is real to change the car's color to
* @return the old color of the car
*/

public String changeColor(String color){
String old = this.color;
this.color = color;
return old;

}

30

