
Arithmetic Operators
CMSC 104, Spring 2014
Christopher S. Marron

(thanks to John Park for slides)

1

Sunday, February 23, 14

2

Arithmetic Operators

Topics

 Arithmetic Operators
 Assignment Operators
 Operator Precedence
 Evaluating Arithmetic Expressions
 Incremental Programming

Sunday, February 23, 14

3

Arithmetic Operators in C
 Binary Operators

 E.g.:
new_value = height + margin;
area = length * width;

 Unary Operators
 E.g.:
new_value = -old_value;
negation = !true_value;

Sunday, February 23, 14

4

Arithmetic Operators in C
 Name Operator Example

 Addition + num1 + num2
 Subtraction - initial - spent
 Multiplication * fathoms * 6
 Division / sum / count
 Modulus % m % n

Sunday, February 23, 14

Types and Promotion
 Can mix types in numerical expressions
 Hierarchy of types

 By precision: int < float
 By size: short < long

 Lower size/precision is promoted to greater
size/precision before operation is applied

 Result is also of promoted type

5

Sunday, February 23, 14

Types and Promotion
 E.g.:

 int num_sticks = 5;
double avg_stick_length = 4.5;
double total_length;

total_length = num_sticks * avg_stick_length;

num_sticks would be converted to double-precision,
then multiplied by avg_stick_length

6

Sunday, February 23, 14

7

Division

 If both operands of a division expression are
integers, you will get an integer answer. The
fractional portion is thrown away.

 Examples : 17 / 5 = 3
 4 / 3 = 1
 35 / 9 = 3

Sunday, February 23, 14

8

Division (con’t)
 Division where at least one operand is a

floating point number will produce a floating
point answer.

 Examples : 17.0 / 5 = 3.4
 4 / 3.2 = 1.25
 35.2 / 9.1 = 3.86813
 What happens? The integer operand is

temporarily converted to a floating point, then
the division is performed.

Sunday, February 23, 14

9

Division (con’t)
 Example1 :

 int my_integer = 5;
int my_product;

my_product = (my_integer / 2) * 2.0;
/* What will following print out? */
printf(“my_product is %d\n”, my_product);

 /* What about this? */
my_product = (my_integer / 2.0) * 2;
printf(“my_product is %d\n”, my_product);

Sunday, February 23, 14

10

Division By Zero
 Division by zero is mathematically undefined.
 If you attempt to divide by zero in a program,

it will cause a fatal error. Your program will
terminate execution and give an error
message.

 Non-fatal errors do not cause program
termination, just produce incorrect results.

Sunday, February 23, 14

11

Modulus
 The expression m % n yields the integer

remainder after m is divided by n.
 Modulus is an integer operation - both

operands MUST be integers.
 Examples : 17 % 5 = 2
 6 % 3 = 0
 9 % 2 = 1
 5 % 8 = 5

Sunday, February 23, 14

12

 Uses for Modulus
 Used to determine if an integer value is even

or odd
 5 % 2 = 1 odd 4 % 2 = 0 even
 If you take the modulus by 2 of an integer, a

result of 1 means the number is odd and a
result of 0 means the number is even.

 The Euclid’s GCD Algorithm (done earlier)

Sunday, February 23, 14

13

Arithmetic Operators
Rules of Operator Precedence

 Operator(s) Precedence & Associativity
 () Evaluated first. If nested

 (embedded), innermost first.
 Otherwise, left to right.

 * / % Evaluated second. If there
 are several, left to right.

 + - Evaluated third. If there are
 several, left to right.

 = Evaluated last, right to left.

Sunday, February 23, 14

14

Using Parentheses

 Use parentheses to change the order in which
an expression is evaluated. The expresion

 a + b * c
 multiplies b*c, then adds a to the result.

 If you really want the sum of a and b to be
multiplied by c, use parentheses:

 (a + b) * c
 Also use parentheses to clarify a complex

expression.

Sunday, February 23, 14

15

Practice With Evaluating
Expressions

 Given integer variables a, b, c, d, and e,
where a = 1, b = 2, c = 3, d = 4,
evaluate the following expressions:

 a + b - c + d
 a * b / c
 1 + a * b % c
 a + d % b - c
 e = b = d + c / b - a

Sunday, February 23, 14

16

Good Programming Practice

 It is best not to take the “big bang” approach to
coding.

 Use an incremental approach by writing your code in
incomplete, yet working, pieces.

 For example, for your projects,
 Don’t write the whole program at once.
 Just write enough to display the user prompt on the

screen.
 Get that part working first (compile and run).
 Next, write the part that gets the value from the

user, and then just print it out.
Sunday, February 23, 14

17

Good Programming Practice
(con’t)

 Get that working (compile and run).
 Next, change the code so that you use the value

in a calculation and print out the answer.
 Get that working (compile and run).
 Continue this process until you have the final

version.
 Get the final version working.

 Bottom line: Always have a working version
of your program!

Sunday, February 23, 14

