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Variables in C

Topics

¢ Naming Variables

® Declaring Variables

¢ Using Variables

® The Assignment Statement
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What Are Variables in C? e

¢ Variables in C have a similar meaning as
variables in algebra. That is, they represent
some unknown, or variable, value.

X=a+b
z+2=3(y-9)
e Variables in algebra are typically represented
by a single alphabetic character.
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Legal Identifiers in C e

e \ariables in C are also called identifiers.

e Variables in C may be given names containing
multiple characters.
® | egal variable names in C
May only consist of letters, digits, and underscores

May be as long as you like, but only the first 31
characters are significant

May not begin with a number
May not be a C reserved word (keyword)
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Reserved Words (Keywords) inC | ¢

e auto

® case
® const
e default
e double
® enum
e float

® goto

break
char
continue
do

else
extern
for

If

Int
register
short
sizeof
struct
typedef
unsigned
volatile

long
return
sighed
static
switch
union
void
while
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Naming Conventions .

e C programmers generally agree on the
following conventions for naming variables.
Use meaningful identifiers (names)

Separate “words” within identifiers with underscores
or mixed upper and lower case.

Examples: surfaceArea surface Area
surface area

Be consistent!
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Case Sensitivity e

e C is case sensitive

It matters whether an identifier, such as a variable
name, Is uppercase or lowercase.

Example:
area
Area
AREA
ArEa
are all seen as different variables by the compiler.
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Legal Identifiers vs. Naming .
Conventions

¢ |egal identifiers refer to the restrictions C
places on naming identifiers, i.e. variable
names cannot begin with a number.

e Naming conventions refer to the standards
typically followed by programmers, i.e.
separating words with mixed case or
underscores.
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Which Are Legal Identifiers?

AREA

lucky™**

Last-Chance

X_yt3

num9
area_under_the curve

3C
num45
#values
o]
%done
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Which follow the Naming -
Conventions?

Area

Last Chance

X_yt3

finaltotal
area_under_the curve

persont
values

o]
numChildren

10
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Declaring Variables °

e Before using a variable, you must give the
compiler some information about the
variable; i.e., you must declare it.

e The declaration statement includes the
data type of the variable.

e Examples of variable declarations:
int meatballs;

float area;

11
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Declaring Variables (con’t) e

¢ \\When we declare a variable

Space is set aside in memory to hold a value of the
specified data type

That space is associated with the variable name

That space is associated with a unique address
¢ Visualization of the declaration

int meatballs; meatballs

I I garbage
type name

FEO7 <e== address

12
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More About Variables ¢

C has three basic predefined data types:

¢ |ntegers (whole numbers)
int, long int, short int, unsigned int
¢ Floating point (real numbers)
float, double
e Characters
char

e At this point, you need only be concerned with
the data types that are bolded.

13
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Using Variables: Initialization

e Variables may be be given initial values, or
initialized, when declared. Examples:

int length = 7 ;

float diameter = 5.9 ;

char initial = ‘A’ ;

)

-
-

length

14

diameter

5.9

initial

‘A’

14
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Using Variables: Initialization
(con’t)

e Do not “hide” the initialization
Put initialized variables on a separate line
A comment is always a good idea

Example:

int height; /* rectangle height
int width = 6; /* rectangle width
int area; /* rectangle area

C will let you do the following:
int height, width=6, area;
but it's harder to read!

*/
*/
*/

15
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Using Variables: Assignment |:

Variables may have values assigned to them through the
use of an assignment statement.

Such a statement uses the assignment operator =

This operator does not denote equality. It assigns the
value of the righthand side of the statement (the
expression) to the variable on the lefthand side.

Examples: @
L2\ A

diameter = 5.9 ; area = Ierngth * widjch :

Note that only single variables may appear on the lefthand
side of the assignment operator. 6
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000
Example: Declarations and I3
Assignments
inches
1. #include <stdio.h> fiz[bage
2. Int main( )/\/ garbage
fathoms
3. 4 % garbage
4. iInt inches, feet, fathoms
fathoms
5. fathoms =7 ; — 7
6. feet = 6 * fathoms : : feet v
7. iInches = 12 * feet ; : inches
504

17
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Example: Declarations and oo
Assignments (cont’d)

11

printf (“lts depth at sea: \n") ;
prlntf “ %d fathoms \n” fathoms)

("
(
printf (* %d feet \n”, feet)
printf (* %d inches \n”, inches) ;

return O ;

18
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Enhancing Our Example e

¢ \What if the depth were really 5.75 fathoms?
Our program, as it is, couldn’t handle it.

e Floating point numbers can contain decimal
portions.

e \Ne can also ask the user to enter the number
of fathoms, rather than “hard-coding” it in.

19
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Enhanced Program

H

#include <stdio.h>
2. 1nt main ( )

3. |

4. float inches, feet, fathoms;

5 printf ("Enter the depth in fathoms:
6. scanf ("3f", &fathoms);

7. feet = 6 * fathoms;

8 inches = 12 * feet;

9. printf ("Its depth at sea:\n");

10. printf (" %f fathoms\n", fathoms);
11. printf (" %f feet\n", feet);

12. printf (" %f inches\n", inches);
13. return 0O;

") ;

20
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Final “Clean” Program :

#include <stdio.h>

1
2
3. 1nt main( )
4

{

5 float inches; /* number of inches deep */

6 float feet ; /* number of feet deep */
7. float fathoms ; /* number of fathoms deep */
8

9. /* Get the depth in fathoms from the user */

10. printf ("Enter the depth in fathoms: ");

11. scanf ("3f", &fathoms);

21

Tuesday, February 18, 14



Final “Clean” Program (con’t) |

12.
13.
14.
15.
l6.
17.
18.
19.
20.
21.
22.

23.

/* Convert the depth to inches */
feet = 6 * fathoms;
inches = 12 * feet;

/* Display the results */

printf ("Its depth at sea:\n");
printf (" $f fathoms\n", fathoms);
printf (" $f feet\n", feet);
printf (" $f inches\n", inches);

return 0;

22
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Good Programming Practices |

7

e Place a comment before each logical “chunk” of
code describing what it does.

® Do not place a comment on the same line as
code (with the exception of variable
declarations).

e Use spaces around all arithmetic and
assignment operators.

e Use blank lines to enhance readabillity.

23
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Good Programming Practices | e
(con’t)

e Place a blank line between the last variable
declaration and the first executable statement
of the program.

¢ |ndent the body of the program 3 to 4 spaces
- be consistent!

24
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