Variables in C

CMSC 104, Spring 2014
Christopher S. Marron

(thanks to John Park for slides)

Tuesday, February 18, 14

Variables in C

Topics

¢ Naming Variables

® Declaring Variables

¢ Using Variables

® The Assignment Statement

Tuesday, February 18, 14

What Are Variables in C? e

¢ Variables in C have a similar meaning as
variables in algebra. That is, they represent
some unknown, or variable, value.

X=a+b
z+2=3(y-9)
e Variables in algebra are typically represented
by a single alphabetic character.

Tuesday, February 18, 14

Legal Identifiers in C e

e \ariables in C are also called identifiers.

e Variables in C may be given names containing
multiple characters.
® | egal variable names in C
May only consist of letters, digits, and underscores

May be as long as you like, but only the first 31
characters are significant

May not begin with a number
May not be a C reserved word (keyword)

Tuesday, February 18, 14

Reserved Words (Keywords) inC | ¢

e auto

® case
® const
e default
e double
® enum
e float

® goto

break
char
continue
do

else
extern
for

If

Int
register
short
sizeof
struct
typedef
unsigned
volatile

long
return
sighed
static
switch
union
void
while

Tuesday, February 18, 14

Naming Conventions .

e C programmers generally agree on the
following conventions for naming variables.
Use meaningful identifiers (names)

Separate “words” within identifiers with underscores
or mixed upper and lower case.

Examples: surfaceArea surface Area
surface area

Be consistent!

Tuesday, February 18, 14

Case Sensitivity e

e C is case sensitive

It matters whether an identifier, such as a variable
name, Is uppercase or lowercase.

Example:
area
Area
AREA
ArEa
are all seen as different variables by the compiler.

Tuesday, February 18, 14

Legal Identifiers vs. Naming .
Conventions

¢ |egal identifiers refer to the restrictions C
places on naming identifiers, i.e. variable
names cannot begin with a number.

e Naming conventions refer to the standards
typically followed by programmers, i.e.
separating words with mixed case or
underscores.

Tuesday, February 18, 14

Which Are Legal Identifiers?

AREA

lucky™**

Last-Chance

X_yt3

num9
area_under_the curve

3C
num45
#values
o]
%done

Tuesday, February 18, 14

Which follow the Naming -
Conventions?

Area

Last Chance

X_yt3

finaltotal
area_under_the curve

persont
values

o]
numChildren

10

Tuesday, February 18, 14

Declaring Variables °

e Before using a variable, you must give the
compiler some information about the
variable; i.e., you must declare it.

e The declaration statement includes the
data type of the variable.

e Examples of variable declarations:
int meatballs;

float area;

11

Tuesday, February 18, 14

Declaring Variables (con’t) e

¢ \\When we declare a variable

Space is set aside in memory to hold a value of the
specified data type

That space is associated with the variable name

That space is associated with a unique address
¢ Visualization of the declaration

int meatballs; meatballs

I I garbage
type name

FEO7 <e== address

12

Tuesday, February 18, 14

More About Variables ¢

C has three basic predefined data types:

¢ |ntegers (whole numbers)
int, long int, short int, unsigned int
¢ Floating point (real numbers)
float, double
e Characters
char

e At this point, you need only be concerned with
the data types that are bolded.

13

Tuesday, February 18, 14

Using Variables: Initialization

e Variables may be be given initial values, or
initialized, when declared. Examples:

int length = 7 ;

float diameter = 5.9 ;

char initial = ‘A’ ;

)

-
-

length

14

diameter

5.9

initial

‘A’

14

Tuesday, February 18, 14

Using Variables: Initialization
(con’t)

e Do not “hide” the initialization
Put initialized variables on a separate line
A comment is always a good idea

Example:

int height; /* rectangle height
int width = 6; /* rectangle width
int area; /* rectangle area

C will let you do the following:
int height, width=6, area;
but it's harder to read!

*/
*/
*/

15

Tuesday, February 18, 14

Using Variables: Assignment |:

Variables may have values assigned to them through the
use of an assignment statement.

Such a statement uses the assignment operator =

This operator does not denote equality. It assigns the
value of the righthand side of the statement (the
expression) to the variable on the lefthand side.

Examples: @
L2\ A

diameter = 5.9 ; area = Ierngth * widjch :

Note that only single variables may appear on the lefthand
side of the assignment operator. 6

Tuesday, February 18, 14

000
Example: Declarations and I3
Assignments
inches
1. #include <stdio.h> fiz[bage
2. Int main()/\/ garbage
fathoms
3. 4 % garbage
4. iInt inches, feet, fathoms
fathoms
5. fathoms =7 ; — 7
6. feet = 6 * fathoms : : feet v
7. iInches = 12 * feet ; : inches
504

17

Tuesday, February 18, 14

Example: Declarations and oo
Assignments (cont’d)

11

printf (“lts depth at sea: \n") ;
prlntf “ %d fathoms \n” fathoms)

("
(
printf (* %d feet \n”, feet)
printf (* %d inches \n”, inches) ;

return O ;

18

Tuesday, February 18, 14

Enhancing Our Example e

¢ \What if the depth were really 5.75 fathoms?
Our program, as it is, couldn’t handle it.

e Floating point numbers can contain decimal
portions.

e \Ne can also ask the user to enter the number
of fathoms, rather than “hard-coding” it in.

19

Tuesday, February 18, 14

Enhanced Program

H

#include <stdio.h>
2. 1nt main ()

3. |

4. float inches, feet, fathoms;

5 printf ("Enter the depth in fathoms:
6. scanf ("3f", &fathoms);

7. feet = 6 * fathoms;

8 inches = 12 * feet;

9. printf ("Its depth at sea:\n");

10. printf (" %f fathoms\n", fathoms);
11. printf (" %f feet\n", feet);

12. printf (" %f inches\n", inches);
13. return 0O;

") ;

20

Tuesday, February 18, 14

Final “Clean” Program :

#include <stdio.h>

1
2
3. 1nt main()
4

{

5 float inches; /* number of inches deep */

6 float feet ; /* number of feet deep */
7. float fathoms ; /* number of fathoms deep */
8

9. /* Get the depth in fathoms from the user */

10. printf ("Enter the depth in fathoms: ");

11. scanf ("3f", &fathoms);

21

Tuesday, February 18, 14

Final “Clean” Program (con’t) |

12.
13.
14.
15.
l6.
17.
18.
19.
20.
21.
22.

23.

/* Convert the depth to inches */
feet = 6 * fathoms;
inches = 12 * feet;

/* Display the results */

printf ("Its depth at sea:\n");
printf (" $f fathoms\n", fathoms);
printf (" $f feet\n", feet);
printf (" $f inches\n", inches);

return 0;

22

Tuesday, February 18, 14

Good Programming Practices |

7

e Place a comment before each logical “chunk” of
code describing what it does.

® Do not place a comment on the same line as
code (with the exception of variable
declarations).

e Use spaces around all arithmetic and
assignment operators.

e Use blank lines to enhance readabillity.

23

Tuesday, February 18, 14

Good Programming Practices | e
(con’t)

e Place a blank line between the last variable
declaration and the first executable statement
of the program.

¢ |ndent the body of the program 3 to 4 spaces
- be consistent!

24

Tuesday, February 18, 14

