
Introduction to C
CMSC 104, Spring 2014
Christopher S. Marron

(thanks to John Park for slides)

1

Monday, February 17, 14

2

Introduction to C

Topics

 Brief History of Programming Languages & C
 The Anatomy of a C Program
 Compilation
 Using the gcc Compiler
 104 C Programming Standards and Indentation Styles

Monday, February 17, 14

History of Programming
Languages & C
 Machine code (“binary”)

 Somehow enter raw
sequence of binary
patterns
1011010111001011
1011010110101010

3

Hardware

Machine Code

Assembly Language

c Pascal FORTRAN

You need machine code just
to start this computer up!
(DEC PDP-8)

Monday, February 17, 14

History of Programming
Languages & C
 Assembly language

 Gave human-friendly
syntax to machine code:
MOV 1200, R0
SUB 1202, R0
MOV R0, 1200

•Really just short hand for

machine code.

4

Hardware

Machine Code

Assembly Language

c Pascal FORTRAN

Monday, February 17, 14

History of Programming
Languages & C
 Early high-level

languages
 COBOL

SUBTRACT B FROM A GIVING C
MULTIPLY C BY 2 GIVING D

 FORTRAN
S1 = 3.0
S2 = 4.0
H = SQRT((S1 * S1) + (S2 * S2))

4

Hardware

Machine Code

Assembly Language

c Pascal FORTRAN

Monday, February 17, 14

The Design of C
 C was designed to be:

 Efficient
 Close to the machine

 I.e., it could directly manipulate the CPU’s memory to
control hardware-level functions

 Structured
 A true high-level language with sophisticated control

flow, data structures
 C is written in C

 Although the first compilers were written in
assembly language. 6

Monday, February 17, 14

9

Writing C Programs

 A programmer uses a text editor to create or modify
files containing C code.
 We will use emacs or nano

 Code is also known as source code.

 A file containing source code is called a source file.

Monday, February 17, 14

10

A Simple C Program

 Our first program - Hello, world!

 Suppose the file hello.c contains the following
lines:

#include <stdio.h>

int main() {
 printf("hello, world!\n");
}

We’ll talk about all the parts of the program soon.

Monday, February 17, 14

Compiling a C Program

m a i n () { \n \t p r i n f (“
h e l l o , w o r l d “) ; \n
} - - - - - - - - - - - - - - -

11

• After a C source file has been created, the
programmer must invoke the C compiler to convert
the source code to machine code.

• The machine code can be executed (run).

• The source file is just a bunch of bytes:

Monday, February 17, 14

12

3 Stages of Compilation

Stage 1: Preprocessing
 Main purposes:

 Centralize reused chunks of code
 Allow “extensions” to the language
 Make code more portable

 Performed by a program called the preprocessor
 Modifies the source code according to preprocessor

directives (preprocessor commands) embedded in
the source code.

 The source code as stored on disk is not modified.
 “Include files” have names of form “*.h”

Monday, February 17, 14

13

3 Stages of Compilation (con’t)

Stage 2: Compilation
 Performed by a program called the compiler
 Translates the preprocessor-modified source code

into object code (machine code)
 Checks for syntax errors and warnings
 Saves the object code to a disk file, if instructed to

do so.
 If any compiler errors are received, no object code file

will be generated.
 An object code file will be generated if only warnings,

not errors, are received.

Monday, February 17, 14

14

3 Stages of Compilation (con’t)

Stage 3: Linking
 Combines the program object code with other

object code to produce the executable file.
 The other object code can come from the Run-

Time Library, other libraries, or object files that you
have created.

 Saves the executable code to a disk file. On the
Linux system, that file is called a.out.
 If any linker errors are received, no executable file will

be generated.

Monday, February 17, 14

Program Development Using gcc

15

Source File pgm.c

Program Object Code File pgm.o

Executable File a.out

Preprocessor

Modified Source Code in RAM

Compiler

Linker

Other Object Code Files (if any)

Editor

Monday, February 17, 14

16

A Simple C Program

1. /* Filename: hello.c
2. * Author:Brian Kernighan & Dennis Ritchie
3. * Date written: ?/?/1978
4. * Description: This program prints the
5. * greeting "Hello, World!"
6. */

7. #include <stdio.h>

8. int main()
9. {
10. printf("Hello, World!\n");
11. return 0;
12. }

Monday, February 17, 14

17

Anatomy of a C Program

 program header comment

 preprocessor directives (if any)

 int main ()
 {
 statement(s)
 return 0 ;
 }

Monday, February 17, 14

18

Program Header Comment

 A comment is descriptive text used to help a
reader of the program understand its content.

 All comments must begin with the characters /*
and end with the characters */
 These are called comment delimiters

 Program header comment always comes first.
 Look at the class web page for the required

contents of our header comment.

Monday, February 17, 14

19

Preprocessor Directives

 Lines that begin with a # in column 1 are called
preprocessor directives (commands).

 Example: the #include <stdio.h> directive
causes the preprocessor to include a copy of the
standard input/output header file stdio.h at this
point in the code.

 This header file was included because it contains
information about the printf() function that is
used in this program.

Monday, February 17, 14

20

int main ()

 Every program must have a function called
main. This is where program execution
begins.

 main() is placed in the source code file as
the first function for readability.

 The reserved word int indicates that
main() returns an integer value.

 The parentheses following “main” indicate
that it is a function.

Monday, February 17, 14

21

The Function Body

 A left brace or curly bracket ({) begins the body
of every function. A corresponding right brace
(}) ends the function body.

 The style is to place these braces on separate
lines in column 1 and to indent the entire function
body 3 to 4 spaces.

Monday, February 17, 14

22

printf (“Hello, World!\n”) ;

 This line is a C statement.
 It is a call to the function printf() with a

single argument (parameter), namely the
string “Hello, World!\n”.

 Even though a string may contain many
characters, the string itself should be thought
of as a single quantity.

 Notice that this line ends with a semicolon.
All statements in C end with a semicolon.

Monday, February 17, 14

23

return 0 ;

 Because function main() returns an integer value, there
must be a statement that indicates what this value is.

 The statement
return 0;

indicates that main() returns a value of zero to
the operating system.

 A value of 0 indicates that the program successfully
terminated execution.

 Do not worry about this concept now. Just remember to
use the statement.

Monday, February 17, 14

24

Another C Program

1. /***
2. ** File: message.c
3. ** Author: Joe Student
4. ** Date: 9/15/06
5. ** Section: 0101
6. ** E-mail: jstudent22@umbc.edu
7. **
8. ** This program prints a cool message to
9. ** the user.
10. ***/

Monday, February 17, 14

25

Another C Program (con’t)

10. #include <stdio.h>
11. int main()
12. {
13. printf(“Programming in CMSC104 is\nfun. “) ;
14. printf(“C is a really cool language!\n”) ;
15. return 0 ;
16. }

What will the output be?

Monday, February 17, 14

26

Using the C Compiler at UMBC

 Invoking the compiler is system dependent.

 At UMBC, we have two C compilers available, cc
and gcc.

 For this class, we will use the gcc compiler as it is
the compiler available on the Linux system.

Monday, February 17, 14

27

Invoking the gcc Compiler

 At the prompt, type

 gcc -Wall program.c –o program.out

 where program.c is the C program source
file.

 -Wall is an option to turn on all compiler
warnings (best for new programmers).

Monday, February 17, 14

28

The Result : a.out

 If there are no errors in pgm.c, this command
produces an executable file, which is one that
can be executed (run).

 If you do not use the “-o” option, the compiler
names the executable file a.out .

 To execute the program, at the prompt, type
 program.out

 Although we call this process “compiling a
program,” what actually happens is more
complicated.

Monday, February 17, 14

29

Good Programming Practices

 C programming standards and indentation styles are
available on the 104 course Web page.

 You are expected to conform to these standards for all
programming projects in this class and in CMSC 201.
(This will be part of your grade for each project!)

 The program just shown conforms to these standards,
but is uncommented (we’ll discuss commenting your
code later).

 Subsequent lectures will include more “Good
Programming Practices” slides.

Monday, February 17, 14

