Operating Systems
and
Using Linux

CMSC 104, Spring 2014
Christopher S. Marron

(thanks to John Park for slides)

Operating Systems and Using
Linux

Topics
e \What is an Operating System?
¢ Linux Overview

e Frequently Used Linux Commands

What is an Operating System?

e A computer program that:

Controls how the CPU, memory and I/O devices
work together to execute programs
Performs many operations, such as:

Allows you to communicate with the computer (tell it
what to do)

Controls access (login) to the computer
Keeps track of all processes currently running

e Often referred to as simply OS

What is an Operating System?

® Provides a uniform interface for users and

programs to access changing, evolving
hardware (H/\W)

¢ Very different H/W platforms can support a
common OS (partially custom-written, of
course) (standard “PC”, Sony PSP can both
run Linux)

e One H/W platform can support multiple OSs

E.g.: Latest Macs can run MacOS or Windows

How Do | Communicate With
Using the OS?

the Computer

® You communicate using the particular OS’s

user interface.
Mac OS, Linux

Linux
e \We will be using t
which is very simi
listed as both GU

— Windows,

- DOS, UNIX,

ne Linux operating system,
ar to UNIX. Notice that it is

and Command-driven.

GUI vs. Command-driven

e \We will be using both the GUI version of
Linux and the Command-driven Interface.

¢ \When you connect to GL through TeraTerm,
you are using only the Command-driven
Interface.

¢ \When you reboot the computer into Linux,
you will use both the GUI and the Command-
driven Interface.

Example of Command-driven

B dblock ®@linux3 - gl.umbe.edu VT
Fle Edt Setup Control Window Help

Screenshot of connection to linux3.gl.umbc.edu

Example of GUI

£) Applications Places System A E AN H Fedora User 10:46 PM &}/)

Screenshot of Fedora 7

Another Example of GUI

M Appic

Screenshot of Red Hat Enterprise Linux (RHEL) 5

How Do | Communicate With the
Computer Using the OS? (con’t)

When you log in to the Linux system here, a user prompt will be
displayed:

linux#[1]% _

where # is the number of the Linux server to which you
have connected. You may use any of the Linux servers:
linux1, linux2 or linuxa3.

The number in the brackets will change as you work. It is the
“‘number” of the command that you are about to type.

If this prompt is not on the screen at any time, you are not
communicating with the OS.

Linux Overview

® Files and Filenames

® Directories and Subdirectories

e Abolute & Relative Pathnames, *.’, and ..’
¢ \Why a Command Line?

¢ Frequently Used Commands

e The Shell(s)

¢ |/O Redirection and Pipes

e Command Line Editing &

e History

Files

e A file is a sequence of bytes.

¢ |t can be created by
a text editor (XEmacs or Notepad)
a computer program (such as a C program)
¢ |t may contain a program, data, a document,
or other information .

e Files that contain other files are called
directories (sometimes called folders).

Linux Filenames

e Restrictions
Typically do not have spaces or other reserved characters

Have a maximum length (typically 255 characters but who
wants to type that much!)

Are case sensitive

For this class, you should stick with filenames that
contain only letters (uppercase or lowercase),
numbers, and the underscore () or hypen (-). No
spaces!

Some examples: firefox.exe, things2do. txt,
dinner menu.pdf

Directories

e Directories contain files or other directories
called . They may also be

empty.
® Directories are organized in a hierarchical

fashion.
® They help us to keep our files organized.

Example Directory Tree

/afs/umbc.edu/users/j/d/jdoe28/home/

_— T

Mail/ recipes/

courses/ //////\\\\\ ‘
’//PQij COOkisii\ CMSC104/

apple. txt peach. txt choc chip. txt

More Directories

Your ho Is where you are located when
you log in

(e.qg., /afs/lumbc.edu/users/j/d/jdoe28/homel/).

The IS where you are located at any
time while you are using the system.

e The / (pronounced “slash”) is the root directory in Linux.

e Files within the same directory must be given unique
names.

allow us to give the same name to different files
located in different directories.

Each running program has a current directory and all
filenames are implicitly assumed to start with the name
of that directory unless they begin with a slash.

16

Absolute Path

® The absolute path is a path that contains the
root directory and all other subdirectories you
need to access the file

¢ |t points to the same location in the directory
tree regardless of the current working
directory

e An example of an absolute path

[\/afs /umbc.edu/users/j/d/jdoe28/home/recipes/

Starts with
/

Relative Path

e The relative path is a partial path to a file in
relation to the current working directory

e |f inside of the home directory in the previous
directory example, a relative path would be

/\ recipes/cookies/

Does not
start with /

Subdirectories

® Are used for organizing your files

® For example,
make a subdirectory for CMSC104
make subdirectories for each project

CMSC104/

Moving in the Directory Tree

® . (dot)is the current directory.
o () is the parent directory.

e Use the Linux command cd to change
directories.

e Use “.." to move up the tree (to “parent
directory”)

e Use the directory name to move down (to a
“subdirectory” or “child directory”).

e Use the absolute path to move anywhere.

Why a GUI?

e GUIs are sometimes better, because:
Give a good sense of “where | am”
Succinct visual summary of small sets
Easier to find “forgotten” target, then act on it

Simple to execute default behavior
Otherwise, often resort to complex “environments”

Why a Command Line?

e Command lines are sometimes better,
because:

Easier to operate on large sets

Convenient if you remember filenames

Can act on multiple objects in disparate locations
Easier if no simple default behavior

What is a “Shell”?

® The “most important program in the OS” ©
e Your primary means of controlling the OS
¢ On Linux, just another program!

Can use other shells: sh, csh, bash, tcsh
e Can be programmed to do complex tasks

e Every command (almost) is just running
another program

¢ Main differences are in syntax, ease of use

Common Commands

e First things first: help!
“man” is for manual
® Directory operations:
pwd, cd, mkdir, rmdir
¢ File manipulation:
S, rm, cp, my, cat
® File perusal
cat, more, less, head, tail, file

Common Commands

e File editing
ed, emacs, sed
e Misc (pine, find, etc.)

e ctrl-c

e References:
Linux man page
Links from the 104 homepage
Books and the Internet

Wildcard Characters

Can use patterns to specify, or match, filenames.
Useful when you don’t remember exact name, or it is long

Two wildcard characters are * and ?

? is used to represent any single character.
For example, 1s hw?. txt would match the files hwl. txt
and hw2. txt but not hwl23. txt

* is used to represent O or more characters.

For example, 1s hw*. txt would match the files hwl. txt

and hw2 . txt, as well as hw. txt, hwl23. txt and
hw assignment. txt

/O Redirection

e All programs read from standard “channel”,
write to standard “channel”

Called “file descriptors”
e Shell can manipulate these file descriptors

before executing command (i.e., program)
e Devices and files treated similarly
e “<" redirect input
e “>": redirect output

/O Redirection

e Examples:
% Is > my-files.txt
% wc < my-files.txt

Pipes

e Communications channel between two programs

Can think of as a temporary file that first program writes to,
second program then reads from

¢ Syntax:
% program1 | program?2

e Example:
% Is | wc

will give you the number of files you have

Command Line Editing

¢ Allows command to be edited before being
executed

e Uses subset of emacs commands:
Ctl-B, Ctl-F, Ctl-A, Ctl-E, <Backspace>, Ctl-D

e Allows previous commands to be recalled,
then optionally edited

e \ery convenient for:
Typos
Repetitive commands

