
Final Exam Review CMSC 104 May 16, 2014

CMSC 104 - Final Exam Topics!

Number Systems
- Bits, Bytes, Words!

• A bit is a single 0 or 1!

• A byte consists of 8 bits!

• A word is 32 bits or 4 bytes. On more modern computers, a word may be 64 bits.!

• Sometimes you will here references to a nibble. This is just half a byte, or 4 bits.!

- Number Systems - decimal, binary, and hex!

• Decimal numbers are base 10. We think of the columns (right to left) as the powers
of 10 starting with 1 = 10^0.!

• Binary numbers are base 2. We think of the columns (right to left) as the powers of
2 starting with 1 = 2^0.!

• Hexadecimal is a short hand for writing binary. !

- Each hexadecimal character corresponds to a nibble (0 = 0000, 1 = 0001, 2 =
0010, 3 = 0011, 4 = 0100, 5 = 0101, 6 = 0110, 7 = 0111, 8 = 1000, 9 = 1001, A =
1010, B = 1011, C = 1100, D = 1101, E = 1110, F = 1111). !

- A byte is written as two hexadecimal characters, e.g. 3F = 0011 1111.!

• You must know how to convert among the three number systems.!

Operating Systems and Linux
- The Operating System coordinates the CPU, memory, and I/O devices; it allows the

user to communicate with the computer, controls access, and keeps track of running
processes. Often just called an OS.!

- Examples of an OS: Linux, Windows, Android, Mac OS, iOS.!

- Linux provides both a Graphical User Interface (GUI) and a command-line interface
(CLI).!

- The Linux CLI prompt is something like "linux1[1]%". It can vary depending on the
configuration of the computer.!

Final Exam Review CMSC 104 May 16, 2014

- Linux CLI Overview!

• Files. A file is a sequence of bytes. Can be created in many different ways, for
example using emacs. File names should not include spaces; stick with upper and
lower case letters, numbers, underscore (_), and hyphen (-).!

• Directories. Directories are just special files that contain other files. They are
organized in a hierarchy, like an upside-down tree. You need to understand how
to navigate the directory hierarchy.!

• Special Directories. Home directory is where the OS looks for files when you first
login. The current directory is where the OS is currently looking for files; the
current directory is referenced by "." (dot). The parent directory is the directory
one level up from the current directory; it is referenced by ".." (dot-dot). Root (/) is
the top of the directory hierarchy. !

• Path names. Path names tell the OS where to find a file. Absolute path names
indicate the location of a file starting at the root; they always start with /. Relative
path names indicate the location of a file relative to the current directory.!

• Directory commands. cd is used to change directory; pwd prints the current
directory; mkdir creates a directory; rmdir removes a directory; ls lists the
contents of a directory. Know how to use these.!

• File commands. rm removes a file; cp copies a file; mv moves a file; cat displays
the content of a file; more pages through the content of a file. Know how to use
these.!

• Wildcards: in a file name, "?" matches any single character and "*" matches any
number of characters. E.g. hw?.txt matches hw1.txt, hw2.txt, but not
hw10.txt; hw*.txt matches hw314159blargh.txt.!

• I/O Redirection: You can use ">" to save the output of a command to a file. E.g.
ls > files.txt creates a file called files.txt containing a listing of the
current direcory.!

Algorithms
- An algorithm is a finite set of unambiguous executable instructions that directs a

terminating activity.!

- Examples of algorithms: washing machine, Euclid's algorithm.!

Final Exam Review CMSC 104 May 16, 2014

C Programming
- General C Stuff!

• The relationships among machine code, assembly language, and high-level
languages such as C.!

• Structure of a program: program header comment, preprocessor directives, main(),
other functions.!

• The header comment provides general documentation for the program - file name,
date, author, description. Comments begin with /* and end with */.!

• Preprocessor directives begin with a # in column one. They help to connect your
program with external programs (libraries). E.g. the printf() function is part of
the stdio library, so code that uses printf() should have #include <stdio.h>
in the preprocessor directives.!

• Every program has a main function called main() in the program. The main
function is typically the first thing after the preprocessor directives. The function
body is delimited by curly brackets ({ and }). The main function returns an integer,
so it is declared in the function as int main() and the last statement in the
function should be return 0;!

• Study the Hello, World! example. Be sure you understand the the structure of the
program.!

- Compiling a C program!

• The three phases:!

- Preprocessing - helps to interface your code to external code; also used to make
code more portable.!

- Compilation - transforms your code into object code, which is machine code, but
without all the parts needed for a runnable program.!

- Linking - the output of compilation is linked to external programs and the code
needed to make it runnable. Produces a file called a.out (unless you specify a
different name)!

• We are using the gcc compiler. To compile the program prog.c, creating an
executable called prog, use the command!

- gcc -Wall prog.c -o prog!

Final Exam Review CMSC 104 May 16, 2014

• The "-Wall" option generates warning messages, which are helpful for debugging.!

• The resulting program (prog) can be run using ./prog!

- Variables!

• Know the naming rules: letters, digits, underscore; can't begin with a number; may
not be a reserved word. Be able to identify illegal variable names.!

• Variable names are case sensitive.!

• Variable types: int, float, double, char!

• How variables are declared, e.g. float pi;!

• How variables are initialized (as part of declaration or later).!

• Using variables in simple formulas.!

- Arithmetic Operators!

• +, -, *, /, % - especially keep in mind how these work for int vs. float.!

• Types and promotion - how are mixed-type expressions evaluated (int < float, short
< long).!

• Operator Precedence!

- ()!

- * / % (left to right)!

- + - (left to right)!

- =!

• Using parentheses to affect order of computation or for clarity.!

- Relational and Logical Operators!

• In C, false is 0, true is anything other than zero.!

• Relational operators: < , >, <=, >=, ==, !=!

• Arithmetic expressions are false or true as they are 0 or non-zero, respectively.!

• Be able to evaluate relational and arithmetic expressions.!

• The if, if/else, and nested if/else statements.!

• Watch out for = vs. ==!

Final Exam Review CMSC 104 May 16, 2014

• Logical operators: && (AND), || (OR), ! (NOT)!

• Know the uses and truth tables for logical operators.!

• Order of precedence!

- ()!

- * / % (left to right)!

- + - (left to right)!

- < <= > >= (left to right)!

- == != (left to right)!

- &&!

- ||!

- =!

• Be able to evaluate logical expressions.

Loops

• while loop!

- Use for event controlled loops. For example, looping until a user enters a
positive number: the program can't know how many attempts the user will need
to enter something appropriate.!

printf("Enter a positive number\n");

scanf("%d", &num);

while (num < 0) {

 printf("Enter a positive number\n");

 scanf("%d", &num);

}

- Another example - reading an unknown number of grades!

int score, num_scores = 0;

float sum = 0.0, avg;

printf("Enter a student score (-1 to end)\n");

scanf("%d", &score);

while (score >= 0) {

Final Exam Review CMSC 104 May 16, 2014

 sum += score;

 num_scores++;

 printf("Enter a student score (-1 to end)\n");

 scanf("%d\n", &score);

}

avg = sum / num_scores;

printf("Average is %f\n", avg);

!
- Correct syntax, especially use of {}.!

• do-while loop!

- Use for event controlled loops where you want the body of the loop to execute at
least one time. !

In the "enter a positive number" example, we know we want to print the prompt
and get input at least one time, so we can replace the while loop with a do-while
loop:!

do {

 printf("Enter a positive number\n");

 scanf("%d", &num);

} while (num < 0);

- Could you replace the while loop in the "entering student grades" example with a
do-while loop?!

- Correct syntax, especially use of {}.!

• for loop!

- Use for counter-controlled loops, that is, loops that will repeat a known number of
times (known to the program a the point where the loop occurs). For example,
reading in the test scores for a known, fixed number of students.!

- Parts of a for loop: initialization, test, modification. For example!

! ! for (i = 0; i < 10; i++) {

 printf("%d\n", i);

 }

! Prints the numbers 0, 1, ..., 9.!

Final Exam Review CMSC 104 May 16, 2014

! Initialization is "i=0", test is "i < 10", and modification is "i++".!

- More complicated for loops. How many iterations execute? !

for (i=0; i<100; i += 5) { ... }

for (i=1; i<=20; i++) { ... }

for (j=1; j<100; j *= 2) { ... }

etc.!

Assignment Operators

• ++, --!

• Difference between pre-increment (++x) and post-increment (x++); also pre-
decrement (--x) and post-decrement (x--).!

• +=, -=, *=, /=, and %=!

• Be sure to study examples / questions on slides!!

The char Data Type

• Used to store a single character (actually, the integer code representing that
character)!

• Use of ' ' to denote a character, e.g. char c = 'X'; assigns the code for the letter
X to the variable c.!

• Use the "%c" format string with scanf() and printf(), e.g. printf("%c\n",
c);

• The getchar() function can be used to read individual characters from the
keyboard, but remember that the return key counts as a character.!

The Switch Statement

• Use of the switch statement and cases.!

• Proper use of the default case!

- case matters (switch NOT Switch, case, NOT CASE, etc.)!

Final Exam Review CMSC 104 May 16, 2014

- argument to switch must be an int variable (see below)!

- "case" is followed by an integer or #define'd integer value!

• Proper use of break!

• Comparison with if and if-else (see slides)!

• Example:!

! int day;

 ...

 switch (day) {

 case 0:

 printf("Sunday\n");

 break;

 case 1:

 printf("Monday\n");

 break;

 case 2:

 printf("Tuesday\n");

 break;

 case 3:

 printf("Wednesday\n");

 break;

 case 4:

 printf("Thursday\n");

 break;

 case 5:

 printf("Friday\n");

 break;

 case 6:

 printf("Saturday\n");

 break;

 default:

 printf("Error - invalid day\n");

 }

! How would I modify this to print the message "Weekend!" if day is 0 or 6?!

Final Exam Review CMSC 104 May 16, 2014

Functions

• Three aspects of defining and using a function:!

- Function prototype tells the compiler about the function - what arguments it
expects and what sort of value it returns.!

- Function definition is the code that defines what the function actually does.!

- Function call is the point in the program where the function is used.!

• A math example:!

- "The function f has domain the positive real numbers and range the real
numbers." This is like the prototype - it tells you that the function f expects a
positive real input and produces a real output.!

- "The function f is defined by f(x) = ln(x)." This is like the function definition - it
tells us what the function actually does (computes the natural logarithm). Note
that x is just a placeholder for whatever argument is given to the function.!

- "f(3) = 1.0986" or "If y = 7, then f(y) = 1.9459." These are examples of function
calls - they use the function to compute a value. Note that in math and C, the
variable name used in the function definition is just a symbolic placeholder - we
can call the function with any value or variable we like.!

• Know how to define and use a simple function!

- General syntax, e.g. use of curly braces!

- Declaration of function parameters and their types!

- Declaration of the type of the return value of the function!

- Declaration of the function body!

- Placement of the function prototype!

- Use of the return statement within a function body!

- Calling a function correctly!

• Relationship between parameters and arguments!

- Parameters are part of the definition of the function; they define the expected
inputs and give them names. Parameter names are only defined within the
function.!

Final Exam Review CMSC 104 May 16, 2014

- Arguments are the values (constants or variables) that are passed to the function
when it is called.!

- When you call the function with actual constants or variables as arguments, the
values of those constants or variables are passed to the function. Changes
made to the parameters within the function body do not affect the variables in the
calling function. !

- For example, the following code prints the value "3". Changing x in the function
does not affect the value of x in main().!

! void square(int);

 int main() {

 int x = 3;

 square(x); // call square() with argument x

 printf("%d\n", x);

 return 0;

 }

 void square(int x) { // square() has one parameter, x

 x = x * x;

 }

! How would you "fix" this code so that it prints the value "9"?! !

• The purpose and use of header files (e.g. stdio.h and math.h).!

Arrays
• An array is a group of related data items that all have the same data type and share a

common name.!
• A data item is known as an element; the elements of an array are stored contiguously in

memory; !
• Declaring an array: <type> <name>[<number of elements>]; for example!!
! /* declares an array of five integers */
 int numbers[5];

 /* Declare an array of 1000 floating point numbers */
 float weight[1000]; !
 /* declare an array of 20 characters */
 /* and initialize it to "Chris Marron" */

Final Exam Review CMSC 104 May 16, 2014

 char name[20] = "Chris Marron"; !
• Accessing array elements - [] syntax!

- For an array of n elements, the index (subscript) of the first element is 0, and the index of
the last element is n-1.!

- Using the example above, the first element of the numbers array is numbers[0]; the
second is numbers[1]. The last element is numbers[4].!

- You can read or write an array element, e.g.!!
! /* print the 4th element of numbers */
 printf("%d\n", numbers[3]); !
 /* assign the value 195 to the 10th element of weight */
 weight[9] = 195; !

- Can use any integer expression to access an array element, e.g.!!
! float data[100];
 float sum;
 int i; !
 /* Assume data is initialized here... */ !
 /* Add every other element of data */
 sum = 0.0;
 for (i=0; i<50; i++) {
 sum += data[2*i];
 }
• Initializing arrays - until the elements of an array are initialized, their values are undefined.!

- Initialize short arrays with constants, e.g.!
! !
! int numbers[5] = { 20, 21, 22, 53, 80}; !

- Initialize data arrays with a loop, e.g.!!
 int i;
 float height[100]; !
 /* initialize height array to zero */
 for (i=0; i<100; i++) {
 height[i] = 0.0;
 } !

- For our purposes, character arrays are initialized with constants, e.g. char name[10] =
"Chris";!

• Use of #define for array sizes. For example:!!
 #define NUMSTUDENTS 40 !

 int main() {
 int exam1[NUMSTUDENTS];

Final Exam Review CMSC 104 May 16, 2014

!
 etc.
 } !
• Passing arrays to functions!

- Use only the array name as argument. For example,!!
 float average(float[], int); !
 int main() {
 float x[5] = {20.0, 21.0, 22.0, 53.0, 80.0};
 float avg; !
 /* Note: only use name "x" as argument */
 /* Second argument is array length */
 avg = average(x, 5);

 printf("Average is %f\n", avg); !
 return 0;
 } !
 float average(float data[], int len) {
 float sum = 0.0;
 float avg;
 int i; !
 for (i=0; i<len; i++) {
 sum += data[i];
 } !
 avg = sum / len;
 return avg;
 }
! !

- Functions can change the values of array elements passed as arguments (remember,
functions can not change the value of variables passed as arguments). For example,!!

 void initialize_array(float [], int); !
 int main() {
 float x[1000];
 float y[1000]; !
 /* After these calls, the elements */
 /* of x and y are all initialized to zero. */
 initialize_array(x, 1000);
 initialize_array(y, 1000); !
 etc. !
 } !

Final Exam Review CMSC 104 May 16, 2014

 /* initialize_array() - initialize a float array to zeros */
 void initialize_array(float data[], int len) {
 int i; !
 for (i=0; i<len; i++) {
 data[i] = 0.0;
 }
 } !
• Review the grade_stats.c program!

- Use of constants for array sizes!
- Declarations of multiple arrays!
- Initializing arrays in function read_scores()!
- Multiple functions with arrays as parameters!

File I/O - See NOTES for Lectures 20 and 21
• File pointer fp is declared with FILE *fp; (don't have to call it fp).!
• Reading files - open, read, close!

- Use of fopen() to open a file; "r" (read) mode!
- Use of fscanf() to read data from a file!
- Use of fclose() to close a file!

• Writing files - open, write, close!
- Use of fopen() to open a file for writing; "w" (write) and "a" (append) modes!
- Use fprintf() to write data!
- Use of fclose() to close a file!

• Detecting errors!
- fopen() returns NULL if it fails to open the file!
- fscanf() returns the number of items in the format string that were matched!
- fprintf() returns the number of bytes written!

Command Line Arguments - See NOTES for Lecture 22
• Use of command line arguments for simple string arguments such as input and output file

names!
• Project gave you some practice with this

