
CMSC 104 May 12, 2014

Command Line Arguments in C
This is our last topic for the semester - how to make our programs use simple command line
arguments. For example, in Homework 5, you had to finish a program to compute the
correlation of two lists of numbers read from a file. The name of the data file was to be "hard
coded" into the C source code, e.g.,!!
! FILE *fp;
 fp = fopen("test.dat", "r"); !
If we wanted to use the program to compute the correlation of data in a different file, we would
either have to modify the program source code or change the name of our data file to "test.dat".
It would be nice if we could specify the name of the input file on the command line so that if we
wanted to compute the correlation of the data in the file "physics_data.txt" we could just enter
the command!!
! ./a.out physics_data.txt!!
This is an example of a command line argument - a value of a variable which we specify on the
command line. The details of handling command line arguments are beyond what we can cover
in this course, and we will only learn about specifying the names of input and output files on the
command line. !!
Consider the correlation program example: we need to read the name of the input file from the
command line. We have to make a few changes in main() to do this:!!
! main(int argc, char *argv[]) {
 FILE *fp; !
 /* argv[1] contains the name of the input file */
 fp = fopen(argv[1], "r"); !
 etc. !
 } !
The important thing here is that we have had to add two parameters to the definition of main().
The first, argc, will contain the number of command line arguments, including the program
name, and the second argument, argv[], is an array of strings where each string is one of the
whitespace-separated strings from the command line.!!
Example: Consider running the program !!
! ./a.out physics_data.txt!!
The values of argc and argv[] would be:!!

• argc is 2 since there are two strings in the command line: "./a.out" and "physics_data.txt"!
• argv[0] is "./a.out" since this is the first string in the command line!

CMSC 104 May 12, 2014

• argv[1] is "physics_data.txt" since this is the second string in the command line!!
Example: Suppose I've modified my grade statistics program to get the input file name from the
command line and to write the report to an output file, the name of which also comes from the
command line:!!
! ./a.out grades.dat grade_report.txt!!
The values of argc and argv[] are:!!

• argc is 3 since there are three strings in the command line: "./a.out", "grades.dat", and
"grade_report.txt"!

• argv[0] is "./a.out"!
• argv[1] is "grades.dat"!
• argv[2] is "grade_report.txt"!!

Here is how the main() function might look for this example:!!
! main(int argc, char *argv[]) {
 FILE *infp; /* pointer to input file */
 FILE *outfp; /* pointer to output file */ !
 [...other variable declarations go here...] !
 /* Check that there are three strings in the command line:*/
 /* program name, input file name, and output file name. */ !
 if (argc != 3) {
 printf("Error - the command line is incorrect.");
 return 1;
 } !
 /* Open the input file */ !
 infp = fopen(argv[1], "r"); !
 [...code to read data and compute statistics goes here...] !
 fclose(infp); !
 /* Open the output file */ !
 outfp = fopen(argv[2], "w"); !
 [...code to write report goes here...] !
 fclose(outfp); !
 return 0;
 } !

CMSC 104 May 12, 2014

Note the use of argc in this example. Since the program requires the user to specify input and
output files on the command line, it is good practice to check that they at least provided the
correct number of command line arguments. Since the program expects two arguments, argc
should be equal to 3 (two arguments plus the program name).!!
One last comment: you can treat the parameter definitions for main() as the necessary
incantation to use command line arguments, that is, as something to memorize. However,
they're not too hard to understand. argc is just an integer that contains the number of
whitespace-separated strings in the command line. argv is an array of pointers to characters.
That is, in our examples, argv[0] isn't actually the string "./a.out" but a pointer to the first
character in the string "./a.out". As it turns out, that is all any string variable is - a pointer to the
first character in the string - with the end of the string indicated by a null byte (byte with value 0).

