
Arrays:
Part 2 of 2

CMSC 104, Spring 2014
Christopher S. Marron

(thanks to John Park for slides)

1

Wednesday, April 16, 14

Arrays, Part 2 of 2
Topics
 Array Names Hold Address
 How Indexing Works
 Call by Value
 Call by Reference
 Grades Program Revised

Reading
 Section 5.8
 Sections 6.1 - 6.5

Wednesday, April 16, 14

Array Declarations Revisited
 int numbers[5] ;
 This declaration sets aside a chunk of memory that is big

enough to hold 5 integers.
 Besides the space needed for the array, there is also a

variable allocated that has the name of the array. This
variable holds the address of the beginning (address of
the first element) of the array.

-- -- -- -- --

numbers

0 1 2 3 4

FE00

FE00

Wednesday, April 16, 14

Array Name Holds an Address
 #include <stdio.h>
 int main()
 {
 int numbers[5] = {97, 68, 55, 73, 84} ;
 printf (“numbers[0] = %d\n”, numbers[0]) ;
 printf (“numbers = %X\n”, numbers) ;
 printf (“&numbers[0] = %X\n”, &numbers[0]) ;
 return 0 ;
 }
 numbers[0] = 97
 numbers = FE00
 &numbers[0] = FE00

output

Wednesday, April 16, 14

How Indexing Works
 numbers[2] = 7 ;
 The element assigned the value 7 is stored in a memory

location that is calculated using the following formula:

numbers

0 1 2 3 4

FE00 FE04 FE08 FE0C FE10

FE00

Location = (beginning address) +
 (index * sizeof(array type))

Assuming a 4-byte integer,

Location = FE00 + (2 * 4)

97 68 7 73 84

Wednesday, April 16, 14

Indexing Arrays
 As long as we know

– the beginning location of an array,
– the data type being held in the array, and
– the size of the array (so that we don’t go out of

range),
 then we can access or modify any of its elements

using indexing.
 The array name alone (without []) is just a

variable that contains the starting address of the
block of memory where the array is held.

Wednesday, April 16, 14

Call (Pass) by Value
 So far, we have passed only values to functions.
 The function has a local variable (a formal

parameter) to hold its own copy of the value
passed in.

 When we make changes to this copy, the original
(the corresponding actual parameter) remains
unchanged.

 This is known as calling (passing) by value.

Wednesday, April 16, 14

Passing Arrays to Functions
 The function prototype:
 void FillArray (int nums[], int numElements);
 The function definition header:
 void FillArray (int nums[], int numElements)
 The function call:
 FillArray (ages, SIZE);
 Notice that we are passing only the name of the array

(the address) and that we aren’t returning anything
(the function is void) because we will be modifying
the original array from within the function.

Wednesday, April 16, 14

Call (Pass) by Reference
 As demonstrated with arrays, we can pass

addresses to functions. This is known as calling
(passing) by reference.

 When the function is passed an address, it can
make changes to the original (the corresponding
actual parameter). There is no copy made.

 This is great for arrays, because arrays are
usually very large. We really don’t want to make
a copy of an array. It would use too much
memory.

Wednesday, April 16, 14

Passing an Array to a Function
 #include <stdio.h>
 #define SIZE 4
 void FillArray (int intArray[], int size) ;
 int main ()
 {
 int someArray [SIZE] ;
 FillArray (someArray, SIZE) ;

 /* Print the elements of the array */
 for (i = 0; i < SIZE; i++)
 {
 printf (someArray[%d] = %d\n”,
 i, someArray[i]) ;
 }
 return 0 ;
 }

 /***
 FillArray is a function that will fill each

element of any integer array passed to
it with a value that is the same as that
element’s subscript.
***/

 void FillArray (int anArray[],
 int numElements)
 {
 int i ;
 for (i = 0; i < numElements; i++)
 {
 anArray [i] = i ;
 }
 }

someArray[0] = 0
someArray[1] = 1
someArray[2] = 2
someArray[3] = 3

output

Wednesday, April 16, 14

Grades Program Using Pass by
Reference
 Problem: Find the average test score and the number of

A’s, B’s, C’s, D’s, and F’s for a particular class.
 New Design:

Main

Read
 Grades

Process
the Grades

Print
the Results

Initialize
Grade Counts

To Zero

Print User
Instructions

Calculate
Average Score

Wednesday, April 16, 14

“Clean” Grades Program
(con’t)

 #include <stdio.h>
 #define SIZE 39
 #define GRADES 5
 #define A 4
 #define B 3
 #define C 2
 #define D 1
 #define F 0
 #define MAX 100
 #define MIN 0
 void PrintInstructions () ;
 void InitArray (int anArray[], int size) ;
 void FillArray (int anArray[], int size) ;
 double ProcessGrades (int score[], int size, int gradeCount[]) ;
 double FindAverage (double sum, int num) ;
 void PrintResults (double average, int gradeCount[]) ;

Wednesday, April 16, 14

“Clean” Grades Program
(con’t)

 int main ()
 {
 int score [SIZE]; /* student scores */
 int gradeCount [GRADES] ; /* count of A’s, B’s, C’s, D’s, F’s */
 double average; /* average score */

 PrintInstructions () ;
 InitArray (gradeCount, GRADES) ;
 FillArray (score, SIZE) ;
 average = ProcessGrades (score, SIZE, gradeCount) ;
 PrintResults (average, gradeCount) ;

 return 0 ;
 }

Wednesday, April 16, 14

“Clean” Grades Program
(con’t)

/***
** PrintInstructions - prints the user instructions
** Inputs: None
** Outputs: None
/***
void PrintInstructions ()
{
 printf (“This program calculates the average score\n”) ;
 printf (“for a class of 39 students. It also reports the\n”) ;
 printf (“number of A’s, B’s, C’s, D’s, and F’s. You will\n”) ;
 printf (“be asked to enter the individual scores.\n”) ;
}

Wednesday, April 16, 14

“Clean” Grades Program
(con’t)

/***
/* InitArray - initializes an integer array to all zeros
/* Inputs: anArray - array to be initialized
/* size - size of the array
/* Outputs: None
/**/
void InitArray (int anArray [], int size)
{
 for (i = 0; i < size; i++)
 {
 anArray [i] = 0 ;
 }
}

Wednesday, April 16, 14

“Clean” Grades Program
(con’t)

 /**
 ** FillArray - fills an integer array with valid values that are entered by the user.
 ** Assures the values are between MIN and MAX.
 ** Inputs: anArray - array to fill
 ** Outputs: size - size of the array
 ** Side Effect - MIN and MAX must be #defined in this file
 **/
 void FillArray (int anArray [], int size)
 {
 int i ; /* loop counter */
 for (i = 0; i < size; i++) {
 printf (“Enter next value : ”) ;
 scanf (“%d “, &anArray [i]) ;
 while ((anArray [i] < MIN) || (anArray [i] > MAX)) {
 printf (“Values must be between %d and %d\n ”, MIN, MAX) ;
 printf (“Enter next value : ”) ;
 scanf (“%d “, &anArray[i]) ;
 }
 }
 }

Wednesday, April 16, 14

“Clean” Grades Program
(con’t)

 /**
 ** ProcessGrades - counts the number of A’s, B’s, C’s, D’s, and F’s, and
 ** computes the average score
 ** Inputs: score - array of student scores
 size - size of the array
 gradeCount - grade counts all initialized to zero
 ** Outputs: gradeCount - number of A’s, B’s, C’s, D’s, and F’s
 ** Side Effect: A, B, C, D, and F must be #defined in this file
 ***/
 double ProcessGrades (int score [], int size, int gradeCount [])
 {
 int total = 0; /* total of all scores */
 double average; /* average score */
 for (i = 0 ; i < size ; i++) {
 total += score [i] ;
 switch (score [i] / 10)
 {
 case 10 :
 case 9 : gradeCount [A]++ ;
 break ;

Wednesday, April 16, 14

“Clean” Grades Program
(con’t)

 case 8 : gradeCount [B]++ ;
 break ;
 case 7 : gradeCount [C]++ ;
 break ;
 case 6 : gradeCount [D]++ ;
 break ;
 case 5 :
 case 4 :
 case 3 :
 case 2 :
 case 1 :
 case 0 :gradeCount [F]++ ;
 break ;
 default : printf (“Error in score.\n”) ;
 }
 }
 average = findAverage (total, size) ;
 return average ;
 }

Wednesday, April 16, 14

“Clean” Grades Program
(con’t)

 /***
 ** FindAverage - calculates an average
 ** Inputs: sum - the sum of all values
 ** num - the number of values
 ** Outputs: the computed average
 **/
 double FindAverage (double sum, int num)
 {
 double average ; /* computed average */

 if (num != 0) {
 average = sum / num ;
 }
 else {
 average = 0 ;
 }

 return average ;
 }

Wednesday, April 16, 14

“Clean” Grades Program
(con’t)

 /***
 ** PrintResults - prints the class average and the grade distribution for
 ** the class.
 ** Inputs: average - class average
 ** gradeCount - number of A’s, B’s, C’s, D’s, and F’s
 ** Outputs: None
 ** Side Effect: A, B, C, D, and F must be #defined in this file
 /***/
 void PrintResults (double average, int gradeCount [])
 {
 printf (“The class average is %.2f\n”, average) ;
 printf (“There were %2d As\n”, gradeCount [A]) ;
 printf (“ %2d Bs\n”, gradeCount [B]) ;
 printf (“ %2d Cs\n”, gradeCount [C]) ;
 printf (“ %2d Ds\n”, gradeCount [D]) ;
 printf (“ %2d Fs\n”, gradeCount [F]) ;
 }

Wednesday, April 16, 14

