
Arrays:
Part 1 of 2

CMSC 104, Spring 2014
Christopher S. Marron

(thanks to John Park for slides)

1

Monday, April 14, 14

Arrays, Part 1 of 2
Topics

 Definition of a Data Structure
 Definition of an Array
 Array Declaration, Initialization, and Access
 Program Example Using Arrays

Reading

 Sections 6.1 - 6.5

Monday, April 14, 14

Data Types
 So far, we have seen only simple data types,

such as int, float, and char.
 Simple variables can hold only one value at

any time during program execution, although
that value may change.

 A data structure is a data type that can hold
multiple values, in a structured form, at the
same time. (Synonyms: complex data type,
composite data type)

 The array is one kind of data structure.

Monday, April 14, 14

A Motivating Example
 We want to write a program that will accept a

collection of numerical grades, and then print
out the mean grade

4

Monday, April 14, 14

A Motivating Example
 #include <stdio.h>

int main() {
 int counter = 0;
 float total = 0.0;

 do {
 scanf(“%d”, &grade);
 if (grade >= 0) {
 total += grade;
 counter++;
 }
 } while (grade >= 0);
 printf(“Mean for %d grades is %f”, counter, total / counter);
 return(0);
}

5

Monday, April 14, 14

A Motivating Example
Now, the user wants us to print out the median grade:

 We don’t know in advance exactly how many grades
we will be getting
 (We can, however, enforce an upper limit on how

many we can handle)
 Can we do it “in place”, as with calculating the mean?

 Unfortunately, NO.
 Can we do it with a collection of simple variables?

 Again, NO.
 So, we need a special place to save all the input

values
6

Monday, April 14, 14

Arrays
 An array is a group of related data items that all

have the same data type, and share a common
name

 Arrays can be of any data type we choose.
 Arrays are static in that they remain the same size

throughout program execution.
 An array’s data items are stored contiguously in

memory.
 Each of the data items is known as an element of

the array. Each element can be accessed
individually.

Monday, April 14, 14

Array Declaration and
Initialization
 int numbers[5] ;

 The name of this example array is “numbers”.
 This declaration sets aside a chunk of memory that is big

enough to hold 5 integers.
 It does not initialize those memory locations to 0 or any

other value. They contain garbage.
 Initializing an array may be done with an array initializer,

as in :
 int numbers[5] = { 5, 2, 6, 9, 3 } ;

5 2 6 9 3numbers

Monday, April 14, 14

Array Declaration and
Initialization
 A special case is an “array of chars”:

 char name[5] ;
 A string is in fact an array of chars, usually ending in a 0

 The 0-valued char at the end is called a “null terminator”
 Strings do not necessarily have to be null-terminated.

 Initializing a char array may be done the usual way, as in:
char name[5] = { ‘J’, ‘o’, ‘h’, ‘n’, 0 } ;

 …or with a string constant:
 char name[5] = “John” ;

‘J’ ‘o’ ‘h’ ‘n’ ‘\0’name

Monday, April 14, 14

Accessing Array Elements
 Each element in an array has a subscript (index)

associated with it.

 Subscripts are integers and always begin at zero.
 Values of individual elements can be accessed by

indexing into the array. For example,
 printf(“The third element = %d.\n”, numbers[2]);
 would give the output
 The third element = 6.

5 2 6 9 3numbers

0 1 2 3 4

Monday, April 14, 14

Accessing Array Elements
(con’t)
 A subscript can also be any expression that

evaluates to an integer.

 numbers[(a + b) * 2] ;

 Caution! It is a logical error when a subscript
evaluates to a value that is out of range for the
particular array. Some systems will handle an
out-of-range error gracefully and some will not
(including ours).

Monday, April 14, 14

Modifying Elements
 Individual elements of an array can also be modified using

subscripts.
 numbers[4] = 20 ; /*changes the value of the element found at

 subscript 4 to 20 */
 Initial values may be stored in an array using indexing, rather

than using an array initializer.
 numbers[0] = 5 ;
 numbers[1] = 2 ;
 numbers[2] = 6 ;
 numbers[3] = 9 ;
 numbers[4] = 3 ;

Monday, April 14, 14

Filling Large Arrays
 Since many arrays are quite large, using an

array initializer can be impractical.
 Large arrays are often filled using a for loop.
 for (i = 0; i < 100; i++)
 {
 values [i] = 0 ;
 }
 would set every element of the 100 element

array “values” to 0.

Monday, April 14, 14

More Declarations
 int score [39] , gradeCount [5];
 Declares two arrays of type int.

 Neither array has been initialized.
 “score” contains 39 elements (one for each

student in a class).
 “gradeCount” contains 5 elements (one for

each possible grade, A - F).

Monday, April 14, 14

Using #define for Array Sizes
 #define SIZE 39
 #define GRADES 5
 int main ()
 {
 int score [SIZE] ;
 int gradeCount [GRADES] ;





 }

Monday, April 14, 14

Example Using Arrays
Problem: Find the average test score and the
number of A’s, B’s, C’s, D’s, and F’s for a particular
class.

Design:

Main

Print User
Instructions

Calculate
Average Score

Monday, April 14, 14

“Clean” Example Using Arrays
(con’t)

 #include <stdio.h>
 #define SIZE 39 /* number of tests */
 #define GRADES 5 /* number of different grades: A, B, C, D, F */
 void PrintInstructions () ;
 double FindAverage (double sum, int quantity) ;
 int main ()
 {
 int i ; /* loop counter */
 int total ; /* total of all scores */
 int score [SIZE] ; /* student scores */
 int gradeCount [GRADES] ; /* count of A’s, B’s, C’s, D’s, F’s */
 double average ; /* average score */

 /* Print the instructions for the user */
 PrintInstructions () ;

Monday, April 14, 14

“Clean” Example Using Arrays
(con’t)
 /* Initialize grade counts to zero */

 for (i = 0; i < GRADES; i++)
 {
 gradeCount [i] = 0 ;
 }

 /* Fill score array with scores */

 for (i = 0; i < SIZE; i++)
 {
 printf (“Enter next score: ”) ;
 scanf (“%d “, &score [i]) ;
 }

Monday, April 14, 14

“Clean” Example Using Arrays
(con’t)

 /* Calculate score total and count number of each grade */

 for (i = 0; i < SIZE; i++)
 {
 total += score [i] ;
 switch (score [i] / 10)
 {
 case 10 :
 case 9 : gradeCount [4]++ ;
 break ;
 case 8 : gradeCount [3]++ ;
 break ;
 case 7 : gradeCount [2]++ ;
 break ;
 case 6 : gradeCount [1]++ ;
 break ;
 default : gradeCount [0]++ ;
 }
 }

Monday, April 14, 14

“Clean” Example Using Arrays
(con’t)

 /* Calculate the average score */

 average = FindAverage (total, SIZE) ;

 /* Print the results */

 printf (“The class average is %.2f\n”, average) ;
 printf (“There were %2d As\n”, gradeCount [4]) ;
 printf (“ %2d Bs\n”, gradeCount [3]) ;
 printf (“ %2d Cs\n”, gradeCount [2]) ;
 printf (“ %2d Ds\n”, gradeCount [1]) ;
 printf (“ %2d Fs\n”, gradeCount [0]) ;

 return 0 ;

 } /* end main */

Monday, April 14, 14

“Clean” Example Using Arrays
(con’t)

/***
** PrintInstructions - prints the user instructions
** Inputs: None
** Outputs: None
/***
void PrintInstructions ()
{
 printf (“This program calculates the average score\n”) ;
 printf (“for a class of 39 students. It also reports the\n”) ;
 printf (“number of A’s, B’s, C’s, D’s, and F’s. You will\n”) ;
 printf (“be asked to enter the individual scores.\n”) ;
}

Monday, April 14, 14

“Clean” Example Using Arrays
(con’t)

 /***
 ** FindAverage - calculates an average
 ** Inputs: sum - the sum of all values
 ** num - the number of values
 ** Outputs: the computed average
 **/
 double FindAverage (double sum, int num)
 {
 double average ; /* computed average */

 if (num != 0) {
 average = sum / num ;
 }
 else {
 average = 0 ;
 }

 return average ;
 }

Monday, April 14, 14

Improvements ?
 We’re trusting the user to enter valid grades. Let’s add

input error checking.
 If we aren’t handling our array correctly, it’s possible that

we may be evaluating garbage rather than valid scores.
We’ll handle this by adding all the cases for F’s (0 - 59) to
our switch structure and using the default case for
reporting errors.

 We still have the “magic numbers” 4, 3, 2, 1, and 0 that are
the quality points associated with grades. Let’s use
symbolic constants for these values.

Monday, April 14, 14

Improved Program
 #include <stdio.h>
 #define SIZE 39 /* number of scores */
 #define GRADES 5 /* number of different grades: A, B, C, D, F */
 #define A 4 /* A’s position in grade count array */
 #define B 3 /* B’s position in grade count array */
 #define C 2 /* C’s position in grade count array */
 #define D 1 /* D’s position in grade count array */
 #define F 0 /* F’s position in grade count array */
 #define MAX 100 /* maximum valid score */
 #define MIN 0 /* minimum valid score */
 void PrintInstructions () ;
 double FindAverage (double sum, int quantity) ;
 int main ()
 {
 int i ; /* loop counter */
 int total ; /* total of all scores */
 int score [SIZE] ; /* student scores */
 int gradeCount [GRADES] ; /* count of A’s, B’s, C’s, D’s, F’s */
 double average ; /* average score */

Monday, April 14, 14

Improved Program (con’t)
 /* Print the instructions for the user */

 PrintInstructions () ;

 /* Initialize grade counts to zero */

 for (i = 0; i < GRADES; i++)
 {
 gradeCount [i] = 0 ;
 }

Monday, April 14, 14

Improved Program (con’t)
 /* Fill array with valid scores */

 for (i = 0; i < SIZE; i++)
 {
 printf (“Enter next score : ”) ;
 scanf (“%d “, &score [i]) ;
 while ((score [i] < MIN) || (score [i] > MAX))
 {
 printf (“Scores must be between”) ;
 printf (“ %d and %d\n”, MIN, MAX) ;
 printf (“Enter next score : ”) ;
 scanf (“%d “, &score [i]) ;
 }
 }

Monday, April 14, 14

Improved Program (con’t)
 /* Calculate score total and count number of each grade */
 for (i = 0 ; i < SIZE ; i++)
 {
 total += score [i] ;
 switch (score [i] / 10)
 {
 case 10 :
 case 9 : gradeCount [A]++ ;
 break ;
 case 8 : gradeCount [B]++ ;
 break ;
 case 7 : gradeCount [C]++ ;
 break ;
 case 6 : gradeCount [D]++ ;
 break ;
 case 5 : case 4 : case 3 : case 2 : case 1 : case 0 :
 gradeCount [F]++ ;
 break;;
 default : printf(“Error in score.\n”) ;
 }
 }

Monday, April 14, 14

Improved Program (con’t)
 /* Calculate the average score */

 average = FindAverage (total, SIZE) ;

 /* Print the results */

 printf (“The class average is %.2f\n”, average) ;
 printf (“There were %2d As\n”, gradeCount [A]) ;
 printf (“ %2d Bs\n”, gradeCount [B]) ;
 printf (“ %2d Cs\n”, gradeCount [C]) ;
 printf (“ %2d Ds\n”, gradeCount [D]) ;
 printf (“ %2d Fs\n”, gradeCount [F]) ;

 return 0 ;

 } /* end main */

Monday, April 14, 14

Other Improvements?
 Why is main so large?
 Couldn’t we write functions to:

 Initialize an array to hold all 0s?
 Fill an array with values entered by the user?
 Count the grades and find the class average?
 Print the results?

 Yes, we can as soon as we learn about passing
arrays as parameters to functions in the next
lecture.

Monday, April 14, 14

