
Functions:
Part 1 of 3

CMSC 104, Spring 2014
Christopher S. Marron

(thanks to John Park for slides)

1

Monday, March 31, 14

Functions, Part 1 of 3
Topics

 Using Predefined Functions
 Programmer-Defined Functions
 Using Input Parameters
 Function Header Comments

Reading

Monday, March 31, 14

Review of Structured
Programming
 Structured programming is a problem solving

strategy and a programming methodology that
includes the following guidelines:
 The program uses only the sequence, selection,

and repetition control structures.
 The flow of control in the program should be as

simple as possible.
 The construction of a program embodies top-

down design.

Monday, March 31, 14

Review of Top-Down Design
 Involves repeatedly decomposing a problem

into smaller problems
 Eventually leads to a collection of small

problems or tasks each of which can be
easily coded

 The function construct in C is used to write
code for these small, simple problems.

Monday, March 31, 14

Functions
 A C program is made up of one or more functions,

one of which is main().
 Execution always begins with main(), no matter

where it is placed in the program. By convention,
main() is located before all other functions.

 When program control encounters a function
name, the function is called (invoked).
 Program control passes to the function.
 The function is executed.
 Control is passed back to the calling function.

Monday, March 31, 14

#include <stdio.h>

 int main () printf is the name of a predefined
{ function in the stdio library

 printf (“Hello World!\n”) ; this statement is
 return 0 ; is known as a
} function call
 this is a string we are passing
 as an argument (parameter) to
 the printf function

Sample Function Call

Monday, March 31, 14

Functions (con’t)
 We have used several predefined functions:

 printf
 scanf
 getchar
 sqrt
 sin

 Programmers can write their own functions.
 Typically, each module in a program’s design

hierarchy chart is implemented as a function.

Monday, March 31, 14

Sample Programmer-Defined
Function

#include <stdio.h>

void PrintMessage (void) ;

int main ()
{
 PrintMessage () ;
 return 0 ;
}

void PrintMessage (void)
{
 printf (“A message for you:\n\n”) ;
 printf (“Have a nice day!\n”) ;
}

Monday, March 31, 14

Examining printMessage
#include <stdio.h>

void PrintMessage (void) ; function prototype

int main ()
{
 PrintMessage () ; function call
 return 0 ;
}

void PrintMessage (void) function header
{
 printf (“A message for you:\n\n”) ; function
 printf (“Have a nice day!\n”) ; body
}

 function definition
Monday, March 31, 14

The Function Prototype
 Even though this comes first, we’ll describe this

last…

Monday, March 31, 14

The Function Call
 Passes program control to the function
 Must match the prototype in name, number of

arguments, and types of arguments

 void PrintMessage (void) ;

 int main () same name no arguments
 {
 PrintMessage () ;
 return 0 ;
 }

Monday, March 31, 14

The Function Definition
 Control is passed to the function by the function call. The

statements within the function body will then be executed.
 void PrintMessage (void)
 {
 printf (“A message for you:\n\n”) ;
 printf (“Have a nice day!\n”) ;
 }

 After the statements in the function have completed,
control is passed back to the calling function, in this case
main() .
Note that the calling function does not have to be main() .

Monday, March 31, 14

The Function Prototype
 (Now, we’re ready for this) It informs the compiler

that there will be a function defined later that:

 returns this type
 has this name
 takes these arguments

 void printMessage (void) ;

 Needed because the function call is made before
the definition -- the compiler uses it to see if the
call is made properly

Monday, March 31, 14

General Function Definition
Syntax

type functionName (parameter1, . . . , parametern)
{
 variable declaration(s)
 statement(s)
}

 If there are no parameters, either
functionName() OR functionName(void)

is acceptable.
 There may be no variable declarations.
 If the function type (return type) is void, a return

statement is not required, but the following are permitted:
 return ; OR return() ;

Monday, March 31, 14

Using Input Parameters
void PrintMessage (int counter) ;
int main ()
{
 int num;
 printf (“Enter an integer: “) ;
 scanf (“%d”, &num) ;
 PrintMessage (num) ; one argument matches the one formal parameter
 return 0 ; of type int of type int
}

void PrintMessage (int counter)
{
 int i ;
 for (i = 0; i < counter; i++)
 {
 printf (“Have a nice day!\n”) ;
 }
}

Monday, March 31, 14

Final “Clean” C Code
#include <stdio.h>

void PrintMessage (int counter) ;

int main ()
{
 int num ; /* number of times to print message */

 printf (“Enter an integer: “) ;
 scanf (“%d”, &num) ;
 PrintMessage (num) ;

 return 0 ;
}

Monday, March 31, 14

Final “Clean” C Code (con’t)
/***
** PrintMessage - prints a message a specified number of times
** Inputs: counter - the number of times the message will be
** printed
** Outputs: None
/***/
void PrintMessage (int counter)
{
 int i ; /* loop counter */

 for (i = 0; i < counter; i++)
 {
 printf (“Have a nice day!\n”) ;
 }
}

Monday, March 31, 14

Good Programming Practice
 Notice the function header comment before the

definition of function PrintMessage.
 This is a good practice and is required by the 104 C

Coding Standards.
 Your header comments should be neatly formatted

and contain the following information:
 function name
 function description (what it does)
 a list of any input parameters and their meanings
 a list of any output parameters and their meanings
 a description of any special conditions

Monday, March 31, 14

