
The C “switch”
Statement

CMSC 104, Spring 2014
Christopher S. Marron

(thanks to John Park for slides)

1

Monday, March 31, 14

2

The switch Statement
Topics

 Multiple Selection
 switch Statement
 char Data Type and getchar()

Reading

 Section 4.7, 4.12

Monday, March 31, 14

3

Multiple Selection

 So far, we have only seen binary selection.
 if (age >= 18)

{

 printf(“Vote!\n”) ;

}

if (age >= 18)

{

 printf(“Vote!\n”) ;

}

else

{

 printf(“Maybe next time!\n”) ;

}

Monday, March 31, 14

4

Multiple Selection (con’t)

 Sometimes it is necessary to branch in more
than two directions.

 We do this via multiple selection.
 The multiple selection mechanism in C is the

switch statement.

Monday, March 31, 14

5

Multiple Selection with if

if (day == 0) {
 printf (“Sunday”) ;
}
if (day == 1) {
 printf (“Monday”) ;
}
if (day == 2) {
 printf (“Tuesday”) ;
}
if (day == 3) {
 printf (“Wednesday”) ;
}

 (continued)

if (day == 4) {
 printf (“Thursday”) ;
}
if (day == 5) {
 printf (“Friday”) ;
}
if (day == 6) {
 printf (“Saturday”) ;
}
if ((day < 0) || (day > 6)) {
 printf(“Error - invalid day.\n”) ;
}

Monday, March 31, 14

6

Multiple Selection with if-else

if (day == 0) {
 printf (“Sunday”) ;
} else if (day == 1) {
 printf (“Monday”) ;
} else if (day == 2) {
 printf (“Tuesday”) ;
} else if (day == 3) {
 printf (“Wednesday”) ;
} else if (day == 4) {
 printf (“Thursday”) ;
} else if (day == 5) {
 printf (“Friday”) ;
} else if (day == 6) {
 printf (“Saturday”) ;
} else {
 printf (“Error - invalid day.\n”) ;
}

This if-else structure is more
efficient than the corresponding
if structure. Why?

Are there any other functional
differences?

Monday, March 31, 14

7

Multiple Selection with if-else

if (day == 0) {
 printf (“Sunday”) ;
 day = 3;
}
if (day == 1) {
 printf (“Monday”) ;
}
if (day == 2) {
 printf (“Tuesday”) ;
}
if (day == 3) {
 printf (“Wednesday”) ;
}
if (day == 4) {
 printf (“Thursday”) ;
}
…

if (day == 0) {
 printf (“Sunday”) ;
 day = 3;
} else if (day == 1) {
 printf (“Monday”) ;
} else if (day == 2) {
 printf (“Tuesday”) ;
} else if (day == 3) {
 printf (“Wednesday”) ;
} else if (day == 4) {
 printf (“Thursday”) ;
} else if (…)
…

vs.

Monday, March 31, 14

8

The switch Multiple-Selection
Structure

switch (integer expression)
{
 case constant1 :

 statement(s)
 break ;
 case constant2 :

 statement(s)
 break ;

 . . .
 default:
 statement(s)
 break ;
}

Monday, March 31, 14

9

switch Statement Details

 The last statement of each case in the switch
should almost always be a break.

 The break causes program control to jump to
the closing brace of the switch structure.

 Without the break, the code flows into the next
case. This is almost never what you want.

 A switch statement will compile without a
default case, but always consider using one.

Monday, March 31, 14

10

Good Programming Practices

 Include a default case to catch invalid data.
 Inform the user of the type of error that has

occurred (e.g., “Error - invalid day.”).
 If appropriate, display the invalid value.
 If appropriate, terminate program execution

(discussed in CMSC 201).

Monday, March 31, 14

11

switch Example

switch (day)

{

 case 0: printf (“Sunday\n”) ;

 break ;
 case 1: printf (“Monday\n”) ;

 break ;

 case 2: printf (“Tuesday\n”) ;

 break ;

 case 3: printf (“Wednesday\n”) ;
 break ;

 case 4: printf (“Thursday\n”) ;

 break ;

 case 5: printf (“Friday\n”) ;

 break ;
 case 6: printf (“Saturday\n”) ;

 break ;

 default: printf (“Error -- invalid day.\n”) ;

 break ;

Is this structure more
efficient than the
equivalent nested if-else
structure?

Monday, March 31, 14

12

switch Example

switch (day)

{

 case 1: printf (“Monday\n”) ;

 break ;
 case 2: printf (“Tuesday\n”) ;

 break ;

 case 3: printf (“Wednesday\n”) ;

 break ;

 case 4: printf (“Thursday\n”) ;
 break ;

 case 5: printf (“Friday\n”) ;

 break ;

 case 0:

 case 6: printf (“Weekend\n”) ;
 break ;

 default: printf (“Error -- invalid day.\n”) ;

 break ;

}

Monday, March 31, 14

13

Why Use a switch Statement?

 A switch statement can be more efficient than
an if-else.

 A switch statement may also be easier to
read.

 Also, it is easier to add new cases to a switch
statement than to a nested if-else structure.

Monday, March 31, 14

In-Class Exercise
Use nested loops to write a prime number
calculator:
Determine whether each member of a range
of number is prime, by attempting to divide it
evenly by each of the smaller numbers

18

Monday, March 31, 14

In-Class Exercise
 General strategy:
 Prompt user for upper limit

 Your program will then test all numbers from 2 to
limit

 Outer loop: iterate over all numbers from 2 to
limit, testing each in an inner loop to see if it’s
prime

19

Monday, March 31, 14

In-Class Exercise
 Inner loop: You have the loop variable from the

outer loop—let’s say you called it num_to_test
 Iterate over all numbers from 2 to (num_to_test

– 1) (why “- 1”?):
 For each turn of the inner loop, test that number to

see if it divides evenly into num_to_test
 If it does, num_to_test is not prime!

 At end of inner loop, if you were never able to
evenly divide num_to_test, it is prime—print that
out to user

20

Monday, March 31, 14

