
The C “switch”
Statement

CMSC 104, Spring 2014
Christopher S. Marron

(thanks to John Park for slides)

1

Monday, March 31, 14

2

The switch Statement
Topics

 Multiple Selection
 switch Statement
 char Data Type and getchar()

Reading

 Section 4.7, 4.12

Monday, March 31, 14

3

Multiple Selection

 So far, we have only seen binary selection.
 if (age >= 18)

{

 printf(“Vote!\n”) ;

}

if (age >= 18)

{

 printf(“Vote!\n”) ;

}

else

{

 printf(“Maybe next time!\n”) ;

}

Monday, March 31, 14

4

Multiple Selection (con’t)

 Sometimes it is necessary to branch in more
than two directions.

 We do this via multiple selection.
 The multiple selection mechanism in C is the

switch statement.

Monday, March 31, 14

5

Multiple Selection with if

if (day == 0) {
 printf (“Sunday”) ;
}
if (day == 1) {
 printf (“Monday”) ;
}
if (day == 2) {
 printf (“Tuesday”) ;
}
if (day == 3) {
 printf (“Wednesday”) ;
}

 (continued)

if (day == 4) {
 printf (“Thursday”) ;
}
if (day == 5) {
 printf (“Friday”) ;
}
if (day == 6) {
 printf (“Saturday”) ;
}
if ((day < 0) || (day > 6)) {
 printf(“Error - invalid day.\n”) ;
}

Monday, March 31, 14

6

Multiple Selection with if-else

if (day == 0) {
 printf (“Sunday”) ;
} else if (day == 1) {
 printf (“Monday”) ;
} else if (day == 2) {
 printf (“Tuesday”) ;
} else if (day == 3) {
 printf (“Wednesday”) ;
} else if (day == 4) {
 printf (“Thursday”) ;
} else if (day == 5) {
 printf (“Friday”) ;
} else if (day == 6) {
 printf (“Saturday”) ;
} else {
 printf (“Error - invalid day.\n”) ;
}

This if-else structure is more
efficient than the corresponding
if structure. Why?

Are there any other functional
differences?

Monday, March 31, 14

7

Multiple Selection with if-else

if (day == 0) {
 printf (“Sunday”) ;
 day = 3;
}
if (day == 1) {
 printf (“Monday”) ;
}
if (day == 2) {
 printf (“Tuesday”) ;
}
if (day == 3) {
 printf (“Wednesday”) ;
}
if (day == 4) {
 printf (“Thursday”) ;
}
…

if (day == 0) {
 printf (“Sunday”) ;
 day = 3;
} else if (day == 1) {
 printf (“Monday”) ;
} else if (day == 2) {
 printf (“Tuesday”) ;
} else if (day == 3) {
 printf (“Wednesday”) ;
} else if (day == 4) {
 printf (“Thursday”) ;
} else if (…)
…

vs.

Monday, March 31, 14

8

The switch Multiple-Selection
Structure

switch (integer expression)
{
 case constant1 :

 statement(s)
 break ;
 case constant2 :

 statement(s)
 break ;

 . . .
 default:
 statement(s)
 break ;
}

Monday, March 31, 14

9

switch Statement Details

 The last statement of each case in the switch
should almost always be a break.

 The break causes program control to jump to
the closing brace of the switch structure.

 Without the break, the code flows into the next
case. This is almost never what you want.

 A switch statement will compile without a
default case, but always consider using one.

Monday, March 31, 14

10

Good Programming Practices

 Include a default case to catch invalid data.
 Inform the user of the type of error that has

occurred (e.g., “Error - invalid day.”).
 If appropriate, display the invalid value.
 If appropriate, terminate program execution

(discussed in CMSC 201).

Monday, March 31, 14

11

switch Example

switch (day)

{

 case 0: printf (“Sunday\n”) ;

 break ;
 case 1: printf (“Monday\n”) ;

 break ;

 case 2: printf (“Tuesday\n”) ;

 break ;

 case 3: printf (“Wednesday\n”) ;
 break ;

 case 4: printf (“Thursday\n”) ;

 break ;

 case 5: printf (“Friday\n”) ;

 break ;
 case 6: printf (“Saturday\n”) ;

 break ;

 default: printf (“Error -- invalid day.\n”) ;

 break ;

Is this structure more
efficient than the
equivalent nested if-else
structure?

Monday, March 31, 14

12

switch Example

switch (day)

{

 case 1: printf (“Monday\n”) ;

 break ;
 case 2: printf (“Tuesday\n”) ;

 break ;

 case 3: printf (“Wednesday\n”) ;

 break ;

 case 4: printf (“Thursday\n”) ;
 break ;

 case 5: printf (“Friday\n”) ;

 break ;

 case 0:

 case 6: printf (“Weekend\n”) ;
 break ;

 default: printf (“Error -- invalid day.\n”) ;

 break ;

}

Monday, March 31, 14

13

Why Use a switch Statement?

 A switch statement can be more efficient than
an if-else.

 A switch statement may also be easier to
read.

 Also, it is easier to add new cases to a switch
statement than to a nested if-else structure.

Monday, March 31, 14

In-Class Exercise
Use nested loops to write a prime number
calculator:
Determine whether each member of a range
of number is prime, by attempting to divide it
evenly by each of the smaller numbers

18

Monday, March 31, 14

In-Class Exercise
 General strategy:
 Prompt user for upper limit

 Your program will then test all numbers from 2 to
limit

 Outer loop: iterate over all numbers from 2 to
limit, testing each in an inner loop to see if it’s
prime

19

Monday, March 31, 14

In-Class Exercise
 Inner loop: You have the loop variable from the

outer loop—let’s say you called it num_to_test
 Iterate over all numbers from 2 to (num_to_test

– 1) (why “- 1”?):
 For each turn of the inner loop, test that number to

see if it divides evenly into num_to_test
 If it does, num_to_test is not prime!

 At end of inner loop, if you were never able to
evenly divide num_to_test, it is prime—print that
out to user

20

Monday, March 31, 14

