
Assignment Operators
CMSC 104, Spring 2014
Christopher S. Marron

(thanks to John Park for slides)

1

Monday, March 31, 14



2

Assignment Operators
Topics

 Increment and Decrement Operators
 Assignment Operators
 Debugging Tips
 The char type and getchar() function

Monday, March 31, 14



3

Increment and Decrement 
Operators

 The increment operator  ++
 The decrement operator   --
 Precedence:  lower than (), but higher than 

*  /  and  %
 Associativity:  right to left
 Increment and decrement operators can only 

be applied to variables, not to constants or 
expressions

Monday, March 31, 14



4

Increment Operator

 If we want to add one to a variable, we can say:
     count = count + 1 ;
 Programs often contain statements that 

increment variables, so to save on typing, C 
provides these shortcuts:

    count++ ;     OR      ++count ;
 Both do the same thing.  They change the value 

of count by adding one to it.

Monday, March 31, 14



5

Postincrement Operator

 The position of the ++ determines when the value is 
incremented.  If the ++ is after the variable, then the 
incrementing is done last (a postincrement).

   int amount, count ;
   count = 3 ;
   amount = 2 * count++ ;

 amount gets the value of 2 * 3, which is 6, and then 1 
gets added to count.

 So, after executing the last line, amount is 6 and count 
is 4.

Monday, March 31, 14



6

Preincrement Operator

 If the ++ is before the variable, then the incrementing 
is done first (a preincrement).

   int amount, count ;
   count = 3 ;
   amount = 2 * ++count ;

 1 gets added to count first, then amount gets the 
value of 2 * 4, which is 8.

 So, after executing the last line, amount is 8 and 
count is 4.

Monday, March 31, 14



7

Code Example Using ++

 #include <stdio.h>
 int main ( )
 {
      int i = 1 ;

     /* count from 1 to 10 */
      while ( i < 11 )
      {
     printf (“%d  ”, i) ;
     i++ ;                        /* same as ++i */
      }
      return 0 ;
 }

Monday, March 31, 14



8

Decrement Operator

 If we want to subtract one from a variable, we 
can say:

     count = count - 1 ;
 Programs often contain statements that 

decrement variables, so to save on typing, C 
provides these shortcuts:

    count-- ;     OR      --count ;
 Both do the same thing.  They change the value 

of count by subtracting one from it.

Monday, March 31, 14



9

Postdecrement Operator

 The position of the -- determines when the value is 
decremented.  If the -- is after the variable, then the 
decrementing is done last (a postdecrement).

   int amount, count ;
   count = 3 ;
   amount = 2 * count-- ;

 amount gets the value of 2 * 3, which is 6, and        
then 1 gets subtracted from count.

 So, after executing the last line, amount is 6 and count 
is 2.

Monday, March 31, 14



10

Predecrement Operator

 If the -- is before the variable, then the decrementing 
is done first (a predecrement).

   int amount, count ;
   count = 3 ;
   amount = 2 * --count ;

 1 gets subtracted from count first, then amount gets 
the value of 2 * 2, which is 4.

 So, after executing the last line, amount is 4 and 
count is 2.

Monday, March 31, 14



11

A Hand Trace Example

 int answer, value = 4 ;
 Code                                        Value       Answer

            4  garbage
 value = value + 1 ;   
 value++ ;            
 ++value ;                  
 answer = 2 * value++ ;          
 answer = ++value / 2 ;          
 value-- ;        
 --value ;        
 answer = --value * 2 ;      
 answer = value-- / 3 ;

Monday, March 31, 14



12

Practice

 Given
      int a = 1, b = 2, c = 3 ;

 What is the value of this expression?

    ++a * b - c--

 What are the new values of a, b, and c?

Monday, March 31, 14



13

More Practice

 Given
      int a = 1, b = 2, c = 3, d = 4 ;

 What is the value of this expression?

    ++b / c + a * d++

 What are the new values of a, b, c, and d?

Monday, March 31, 14



14

Assignment Operators

 = += -= *= /= %=
 Statement               Equivalent Statement
 a = a + 2 ;   a += 2 ;
 a = a - 3 ;   a -= 3 ;
 a = a * 2 ;   a *= 2 ;
 a = a / 4 ;          a /= 4 ;
 a = a % 2 ;   a %= 2 ;
 b = b + ( c + 2 ) ;  b += c + 2 ;
 d = d * ( e - 5 ) ;  d *= e - 5 ;

Monday, March 31, 14



15

Practice with Assignment 
Operators

 int i = 1, j = 2, k = 3, m = 4 ;

 Expression                         Value
 i += j + k

 j *= k = m + 5

 k -= m /= j * 2

Monday, March 31, 14



16

Code Example Using  /= and ++
Counting the Digits in an Integer

 #include <stdio.h>
 int main ( )
 {
      int num, temp, digits = 0 ;
      temp = num = 4327 ;

    while ( temp > 0  )
      {

   printf (“%d\n”, temp) ;
     temp /= 10 ; 
    digits++ ; 
      }
      printf (“There are %d digits in %d.\n”, digits, num) ;
      return 0 ;
 }

Monday, March 31, 14



17

Debugging Tips
 Trace your code by hand (a hand trace), 

keeping track of the value of each variable.
 Insert temporary printf() statements so you 

can see what your program is doing.
 Confirm that the correct value(s) has been read 

in.
 Check the results of arithmetic computations 

immediately after they are performed.

Monday, March 31, 14



14

The char Data Type

 The char data type holds a single character.
   char ch;
 Example assignments:

  char grade, symbol;

  grade = ‘B’;
  symbol = ‘$’;
 The char is held as a one-byte integer in memory.  The 

ASCII code is what is actually stored, so we can use 
them as characters or integers, depending on our 
need.

Monday, March 31, 14



15

The char Data Type (con’t)

 Use
   scanf (“%c”, &ch) ;

    to read a single character into the variable ch.  (Note 
that the variable does not have to be called “ch”.”)

 Use
  printf(“%c”, ch) ;

 to display the value of a character variable.

Monday, March 31, 14



16

char Example

#include <stdio.h>
int main ( )
{
 char ch ;

 printf (“Enter a character: “) ;
 scanf (“%c”, &ch) ;
 printf (“The value of %c is %d.\n”, ch, ch) ;
     return 0 ;
}

If the user entered an A, the output would be:
 The value of A is 65.

Monday, March 31, 14



17

The getchar ( ) Function

 The getchar( ) function is found in the stdio 
library.

 The getchar( ) function reads one character 
from stdin (the standard input buffer) and 
returns that character’s ASCII value.

 The value can be stored in either a character 
variable or an integer variable.

Monday, March 31, 14



18

getchar ( ) Example

#include <stdio.h>
int main ( )
{
 char ch ;     /* int ch  would also work! */

 printf (“Enter a character: “) ;
     ch = getchar( ) ;  /*same as scanf(“%c”, &ch); */
 printf (“The value of %c is %d.\n”, ch, ch) ;
     return 0 ;
}

If the user entered an A, the output would be:
 The value of A is 65.

Monday, March 31, 14



19

Problems with Reading Characters

 When getting characters, whether using scanf( ) or  
getchar( ), realize that you are reading only one character.

 What will the user actually type?  The character he/she 
wants to enter, followed by pressing ENTER.  

 So, the user is actually entering two characters, his/her 
response and the newline character.

 Unless you handle this, the newline character will remain 
in the stdin stream causing problems the next time you 
want to read a character.  Another call to scanf() or 
getchar( ) will remove it.

Monday, March 31, 14



20

Improved Character Example

#include <stdio.h>
int main ( )
{
     char ch, newline ;

     printf (“Enter a character: “) ;
     scanf(“%c”, &ch) ;
     scanf(“%c”, &newline);  
     printf (“The value of %c is %d.\n”, ch, ch) ;
     printf (“Enter another character: “) ;
     scanf(“%c”, &ch) ;
     scanf(“%c”, &newline); 
     printf (“The value of %c is %d.\n”, ch, ch) ;     
     return 0 ;
}

Monday, March 31, 14



21

Additional Concerns with Garbage in 
stdin

 When we were reading integers using scanf( ), we 
didn’t seem to have problems with the newline 
character, even though the user was typing ENTER 
after the integer.

 That is because scanf( ) was looking for the next 
integer and ignored the newline (whitespace). 

 If we use scanf (“%d”, &num); to get an integer, the 
newline is still stuck in the input stream.

 If the next item we want to get is a character, whether 
we use scanf( ) or getchar( ), we will get the newline.

 We have to take this into account and remove it.

Monday, March 31, 14


