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Assignment Operators
Topics

 Increment and Decrement Operators
 Assignment Operators
 Debugging Tips
 The char type and getchar() function
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Increment and Decrement 
Operators

 The increment operator  ++
 The decrement operator   --
 Precedence:  lower than (), but higher than 

*  /  and  %
 Associativity:  right to left
 Increment and decrement operators can only 

be applied to variables, not to constants or 
expressions
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Increment Operator

 If we want to add one to a variable, we can say:
     count = count + 1 ;
 Programs often contain statements that 

increment variables, so to save on typing, C 
provides these shortcuts:

    count++ ;     OR      ++count ;
 Both do the same thing.  They change the value 

of count by adding one to it.
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Postincrement Operator

 The position of the ++ determines when the value is 
incremented.  If the ++ is after the variable, then the 
incrementing is done last (a postincrement).

   int amount, count ;
   count = 3 ;
   amount = 2 * count++ ;

 amount gets the value of 2 * 3, which is 6, and then 1 
gets added to count.

 So, after executing the last line, amount is 6 and count 
is 4.
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Preincrement Operator

 If the ++ is before the variable, then the incrementing 
is done first (a preincrement).

   int amount, count ;
   count = 3 ;
   amount = 2 * ++count ;

 1 gets added to count first, then amount gets the 
value of 2 * 4, which is 8.

 So, after executing the last line, amount is 8 and 
count is 4.
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Code Example Using ++

 #include <stdio.h>
 int main ( )
 {
      int i = 1 ;

     /* count from 1 to 10 */
      while ( i < 11 )
      {
     printf (“%d  ”, i) ;
     i++ ;                        /* same as ++i */
      }
      return 0 ;
 }
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Decrement Operator

 If we want to subtract one from a variable, we 
can say:

     count = count - 1 ;
 Programs often contain statements that 

decrement variables, so to save on typing, C 
provides these shortcuts:

    count-- ;     OR      --count ;
 Both do the same thing.  They change the value 

of count by subtracting one from it.
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Postdecrement Operator

 The position of the -- determines when the value is 
decremented.  If the -- is after the variable, then the 
decrementing is done last (a postdecrement).

   int amount, count ;
   count = 3 ;
   amount = 2 * count-- ;

 amount gets the value of 2 * 3, which is 6, and        
then 1 gets subtracted from count.

 So, after executing the last line, amount is 6 and count 
is 2.
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Predecrement Operator

 If the -- is before the variable, then the decrementing 
is done first (a predecrement).

   int amount, count ;
   count = 3 ;
   amount = 2 * --count ;

 1 gets subtracted from count first, then amount gets 
the value of 2 * 2, which is 4.

 So, after executing the last line, amount is 4 and 
count is 2.

Monday, March 31, 14



11

A Hand Trace Example

 int answer, value = 4 ;
 Code                                        Value       Answer

            4  garbage
 value = value + 1 ;   
 value++ ;            
 ++value ;                  
 answer = 2 * value++ ;          
 answer = ++value / 2 ;          
 value-- ;        
 --value ;        
 answer = --value * 2 ;      
 answer = value-- / 3 ;
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Practice

 Given
      int a = 1, b = 2, c = 3 ;

 What is the value of this expression?

    ++a * b - c--

 What are the new values of a, b, and c?
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More Practice

 Given
      int a = 1, b = 2, c = 3, d = 4 ;

 What is the value of this expression?

    ++b / c + a * d++

 What are the new values of a, b, c, and d?

Monday, March 31, 14



14

Assignment Operators

 = += -= *= /= %=
 Statement               Equivalent Statement
 a = a + 2 ;   a += 2 ;
 a = a - 3 ;   a -= 3 ;
 a = a * 2 ;   a *= 2 ;
 a = a / 4 ;          a /= 4 ;
 a = a % 2 ;   a %= 2 ;
 b = b + ( c + 2 ) ;  b += c + 2 ;
 d = d * ( e - 5 ) ;  d *= e - 5 ;
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Practice with Assignment 
Operators

 int i = 1, j = 2, k = 3, m = 4 ;

 Expression                         Value
 i += j + k

 j *= k = m + 5

 k -= m /= j * 2
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Code Example Using  /= and ++
Counting the Digits in an Integer

 #include <stdio.h>
 int main ( )
 {
      int num, temp, digits = 0 ;
      temp = num = 4327 ;

    while ( temp > 0  )
      {

   printf (“%d\n”, temp) ;
     temp /= 10 ; 
    digits++ ; 
      }
      printf (“There are %d digits in %d.\n”, digits, num) ;
      return 0 ;
 }
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Debugging Tips
 Trace your code by hand (a hand trace), 

keeping track of the value of each variable.
 Insert temporary printf() statements so you 

can see what your program is doing.
 Confirm that the correct value(s) has been read 

in.
 Check the results of arithmetic computations 

immediately after they are performed.
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The char Data Type

 The char data type holds a single character.
   char ch;
 Example assignments:

  char grade, symbol;

  grade = ‘B’;
  symbol = ‘$’;
 The char is held as a one-byte integer in memory.  The 

ASCII code is what is actually stored, so we can use 
them as characters or integers, depending on our 
need.
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The char Data Type (con’t)

 Use
   scanf (“%c”, &ch) ;

    to read a single character into the variable ch.  (Note 
that the variable does not have to be called “ch”.”)

 Use
  printf(“%c”, ch) ;

 to display the value of a character variable.
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char Example

#include <stdio.h>
int main ( )
{
 char ch ;

 printf (“Enter a character: “) ;
 scanf (“%c”, &ch) ;
 printf (“The value of %c is %d.\n”, ch, ch) ;
     return 0 ;
}

If the user entered an A, the output would be:
 The value of A is 65.
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The getchar ( ) Function

 The getchar( ) function is found in the stdio 
library.

 The getchar( ) function reads one character 
from stdin (the standard input buffer) and 
returns that character’s ASCII value.

 The value can be stored in either a character 
variable or an integer variable.
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getchar ( ) Example

#include <stdio.h>
int main ( )
{
 char ch ;     /* int ch  would also work! */

 printf (“Enter a character: “) ;
     ch = getchar( ) ;  /*same as scanf(“%c”, &ch); */
 printf (“The value of %c is %d.\n”, ch, ch) ;
     return 0 ;
}

If the user entered an A, the output would be:
 The value of A is 65.
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Problems with Reading Characters

 When getting characters, whether using scanf( ) or  
getchar( ), realize that you are reading only one character.

 What will the user actually type?  The character he/she 
wants to enter, followed by pressing ENTER.  

 So, the user is actually entering two characters, his/her 
response and the newline character.

 Unless you handle this, the newline character will remain 
in the stdin stream causing problems the next time you 
want to read a character.  Another call to scanf() or 
getchar( ) will remove it.
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Improved Character Example

#include <stdio.h>
int main ( )
{
     char ch, newline ;

     printf (“Enter a character: “) ;
     scanf(“%c”, &ch) ;
     scanf(“%c”, &newline);  
     printf (“The value of %c is %d.\n”, ch, ch) ;
     printf (“Enter another character: “) ;
     scanf(“%c”, &ch) ;
     scanf(“%c”, &newline); 
     printf (“The value of %c is %d.\n”, ch, ch) ;     
     return 0 ;
}
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Additional Concerns with Garbage in 
stdin

 When we were reading integers using scanf( ), we 
didn’t seem to have problems with the newline 
character, even though the user was typing ENTER 
after the integer.

 That is because scanf( ) was looking for the next 
integer and ignored the newline (whitespace). 

 If we use scanf (“%d”, &num); to get an integer, the 
newline is still stuck in the input stream.

 If the next item we want to get is a character, whether 
we use scanf( ) or getchar( ), we will get the newline.

 We have to take this into account and remove it.
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