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More Loops -

Topics

e Counter-Controlled (Definite) Repetition
e Event-Controlled (Indefinite) Repetition
e for Loops

® do-while Loops

® Choosing an Appropriate Loop

¢ Break and Continue Statements

Reading
® Sections4.1-4.6,4.8,4.9 2
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Counter-Controlled Repetition o
(Definite Repetition)

e |f it is known in advance exactly how many
times a loop will execute, it is known as a
counter-controlled loop.

inti=1:

while (i<=10){
printf(“i = %d\n”, i) ;
1=i+1;
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Event-Controlled Repetition oo
(Indefinite Repetition)

e |fitis NOT known in advance exactly how
many times a loop will execute, it is known as
an event-controlled loop.

sum=0;
printf("Enter an integer value: “) ;
scanf(“%d”, &value) ;

while ( value = -1) {
sum = sum + value ;

printf("Enter another value: “) ;
scanf(“%d”, &value) ;
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Event-Controlled Repetition |:
(con’t)

e An event-controlled loop will terminate when
some event occurs.

¢ The event may be the occurrence of a
sentinel value, as in the previous example.

® There are other types of events that may
occur, such as reaching the end of a data file.
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The 3 Parts of a Loop :

#include <stdio.h>

int main () {
inti =1, ——_ 1 initialization of loop control variable

/* count from 1 to 100 */

while (i <101 ){ —=—"=——=test of loop termination condition
printf (“%d “, i) ;
i=i+1; e — modification of loop control

} variable

return O ;
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The for Loop Repetition 35
Structure

e The for loop handles details of the counter-controlled
loop “automatically”.

¢ The initialization of the the loop control variable, the
termination condition test, and control variable
modification are handled in the for loop structure.

for (i=1:i<=100;i=i+1){

initializationﬁ modification
} test
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When Does a for Loop Initialize, Test | e
and Modify?

e Just as with a while loop, a for loop

initializes the loop control variable before
beginning the first loop iteration,

modifies the loop control variable at the very end
of each iteration of the loop, and

performs the loop termination test before each
iteration of the loop.

® The for loop is easier to write and read for
counter-controlled loops.
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A for Loop That Counts From 0 ¢

to 9

for(i=0; i<10; i=1+1){
printf ("%d\n”, 1) ;
}
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We Can Count Backwards, Too

for(i=9;i>=0;i=i-1){
printf ("%d\n”, 1) ;
}
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We Can CountBy 2’s ...or7’s |

... or Whatever

for(i=0;i<10;i=i+2){
printf (“%d\n”, 1) ;
}
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The do-while Repetition o
Structure

do {
Statement(s)
} while ( condition ) ;

¢ The body of a do-while is ALWAYS executed
at least once. Is this true of a while loop?
What about a for loop?

12
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Example :

do {
printf ("Enter a positive number: %) ;
scanf (“%d”, &num) ;
if (num <=0 ){
printf ("\nThat is not positive. Try again\n”) ;
}

} while (num <=0 ) ;
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An Equivalent while Loop :

printf ("Enter a positive number: ) ;

scanf ("%d”, &num) ;

while ( num <=0 ) {
printf ("\nThat is not positive. Try again\n”) ;
printf ("Enter a positive number: %) ;
scanf ("%d”, &nhum) ;

;

® Note the priming read here—we didn’t need one in
the equivalent do-while loop

14
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An Equivalent for Loop °

*You can use a for loop for an event-controlled
loop... but it is very awkward:

printf ("Enter a positive number: “) ;
scanf ("%d”, &num) ;

for (; num<=0;){
printf ("\nThat is not positive. Try again\n”) ;
printf ("Enter a positive number: ) ;
scanf ("%d”, &num) ;

}
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So, Which Type of Loop Should | | 2
Use?

e Use a for loop for counter-controlled
repetition.

e Use a while or do-while loop for event-
controlled repetition.

Use a do-while loop when the loop must execute
at least one time.

Use a while loop when it is possible that the loop
may never execute.
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Nested Loops -

® L oops may be nested (embedded) inside of
each other.

e Actually, any control structure (sequence,
selection, or repetition) may be nested inside
of any other control structure.

¢ |t is common to see nested for loops.
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Nested for Loops c

for(i=0;i<5;i=i+1){
for (j=0;j<3;j=j+1){
if(j%2==0){ —=—==== How many times is the "if’

printf (“O”); statement executed?
} else {
printf (“X”) ;
) What is the output ?
}
printf (\n”) ;

}
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The break Statement

® The break statement can be used In
while, do-while, and for loops to cause
premature exit of the loop.

e Should be used sparingly!
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Example break in a for Loop °

#include <stdio.h>

int main () { OUTPUT:
inti;
for(i=1;i<10;i=i+1){ 1234
if (i ==5){
break ; Broke out of loop at i = 5.
}
printf (“%d “, i) ;
}
printf (\nBroke out of loop ati = %d.\n", i) ;
return O ;
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The continue Statement

® The continue statement can be used In

while, do-while, and for loops.

e |t causes the remaining statements in
the body of the loop to be skipped for
the current iteration of the loop.

e Should be used sparingly!
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Example continue in a for |
Loop

#include <stdio.h>

int main () { OUTPUT:
inti;
for(i=1;i<10;i=i+1){ 12346789
if (i==5){
continue ; Done.
}
printf (“%d 7, i) ;
}
printf (\nDone.\n") ;
return O ;

}
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