More Loops

CMSC 104, Spring 2014
Christopher S. Marron

(thanks to John Park for slides)

Sunday, March 23, 14



More Loops -

Topics

e Counter-Controlled (Definite) Repetition
e Event-Controlled (Indefinite) Repetition
e for Loops

® do-while Loops

® Choosing an Appropriate Loop

¢ Break and Continue Statements

Reading
® Sections4.1-4.6,4.8,4.9 2

Sunday, March 23, 14



Counter-Controlled Repetition o
(Definite Repetition)

e |f it is known in advance exactly how many
times a loop will execute, it is known as a
counter-controlled loop.

inti=1:

while (i<=10){
printf(“i = %d\n”, i) ;
1=i+1;

Sunday, March 23, 14



Event-Controlled Repetition oo
(Indefinite Repetition)

e |fitis NOT known in advance exactly how
many times a loop will execute, it is known as
an event-controlled loop.

sum=0;
printf("Enter an integer value: “) ;
scanf(“%d”, &value) ;

while ( value = -1) {
sum = sum + value ;

printf("Enter another value: “) ;
scanf(“%d”, &value) ;

Sunday, March 23, 14



Event-Controlled Repetition |:
(con’t)

e An event-controlled loop will terminate when
some event occurs.

¢ The event may be the occurrence of a
sentinel value, as in the previous example.

® There are other types of events that may
occur, such as reaching the end of a data file.

Sunday, March 23, 14



The 3 Parts of a Loop :

#include <stdio.h>

int main () {
inti =1, ——_ 1 initialization of loop control variable

/* count from 1 to 100 */

while (i <101 ){ —=—"=——=test of loop termination condition
printf (“%d “, i) ;
i=i+1; e — modification of loop control

} variable

return O ;

Sunday, March 23, 14



The for Loop Repetition 35
Structure

e The for loop handles details of the counter-controlled
loop “automatically”.

¢ The initialization of the the loop control variable, the
termination condition test, and control variable
modification are handled in the for loop structure.

for (i=1:i<=100;i=i+1){

initializationﬁ modification
} test

Sunday, March 23, 14



When Does a for Loop Initialize, Test | e
and Modify?

e Just as with a while loop, a for loop

initializes the loop control variable before
beginning the first loop iteration,

modifies the loop control variable at the very end
of each iteration of the loop, and

performs the loop termination test before each
iteration of the loop.

® The for loop is easier to write and read for
counter-controlled loops.

Sunday, March 23, 14



A for Loop That Counts From 0 ¢

to 9

for(i=0; i<10; i=1+1){
printf ("%d\n”, 1) ;
}

Sunday, March 23, 14



We Can Count Backwards, Too

for(i=9;i>=0;i=i-1){
printf ("%d\n”, 1) ;
}

10

Sunday, March 23, 14



We Can CountBy 2’s ...or7’s |

... or Whatever

for(i=0;i<10;i=i+2){
printf (“%d\n”, 1) ;
}

11

Sunday, March 23, 14



The do-while Repetition o
Structure

do {
Statement(s)
} while ( condition ) ;

¢ The body of a do-while is ALWAYS executed
at least once. Is this true of a while loop?
What about a for loop?

12

Sunday, March 23, 14



Example :

do {
printf ("Enter a positive number: %) ;
scanf (“%d”, &num) ;
if (num <=0 ){
printf ("\nThat is not positive. Try again\n”) ;
}

} while (num <=0 ) ;

13

Sunday, March 23, 14



An Equivalent while Loop :

printf ("Enter a positive number: ) ;

scanf ("%d”, &num) ;

while ( num <=0 ) {
printf ("\nThat is not positive. Try again\n”) ;
printf ("Enter a positive number: %) ;
scanf ("%d”, &nhum) ;

;

® Note the priming read here—we didn’t need one in
the equivalent do-while loop

14

Sunday, March 23, 14



An Equivalent for Loop °

*You can use a for loop for an event-controlled
loop... but it is very awkward:

printf ("Enter a positive number: “) ;
scanf ("%d”, &num) ;

for (; num<=0;){
printf ("\nThat is not positive. Try again\n”) ;
printf ("Enter a positive number: ) ;
scanf ("%d”, &num) ;

}

15

Sunday, March 23, 14



So, Which Type of Loop Should | | 2
Use?

e Use a for loop for counter-controlled
repetition.

e Use a while or do-while loop for event-
controlled repetition.

Use a do-while loop when the loop must execute
at least one time.

Use a while loop when it is possible that the loop
may never execute.

16

Sunday, March 23, 14



Nested Loops -

® L oops may be nested (embedded) inside of
each other.

e Actually, any control structure (sequence,
selection, or repetition) may be nested inside
of any other control structure.

¢ |t is common to see nested for loops.

17

Sunday, March 23, 14



Nested for Loops c

for(i=0;i<5;i=i+1){
for (j=0;j<3;j=j+1){
if(j%2==0){ —=—==== How many times is the "if’

printf (“O”); statement executed?
} else {
printf (“X”) ;
) What is the output ?
}
printf (\n”) ;

}

18

Sunday, March 23, 14



The break Statement

® The break statement can be used In
while, do-while, and for loops to cause
premature exit of the loop.

e Should be used sparingly!

19

Sunday, March 23, 14



Example break in a for Loop °

#include <stdio.h>

int main () { OUTPUT:
inti;
for(i=1;i<10;i=i+1){ 1234
if (i ==5){
break ; Broke out of loop at i = 5.
}
printf (“%d “, i) ;
}
printf (\nBroke out of loop ati = %d.\n", i) ;
return O ;

20

Sunday, March 23, 14



The continue Statement

® The continue statement can be used In

while, do-while, and for loops.

e |t causes the remaining statements in
the body of the loop to be skipped for
the current iteration of the loop.

e Should be used sparingly!

21

Sunday, March 23, 14



Example continue in a for |
Loop

#include <stdio.h>

int main () { OUTPUT:
inti;
for(i=1;i<10;i=i+1){ 12346789
if (i==5){
continue ; Done.
}
printf (“%d 7, i) ;
}
printf (\nDone.\n") ;
return O ;

}

22

Sunday, March 23, 14



