
The while Looping
Structure

CMSC 104, Spring 2014
Christopher S. Marron

(thanks to John Park for slides)

1

Sunday, March 23, 14

2

The while Looping Structure

Topics

 The while Loop
 Program Versatility

 Sentinel Values and Priming Reads
 Checking User Input Using a while Loop

Reading

 Section 3.7

Sunday, March 23, 14

3

Review: Repetition Structure

 A repetition structure allows the programmer to
specify that an action is to be repeated while some
condition remains true.

 There are three repetition structures in C, the while
loop, the for loop, and the do-while loop.

Sunday, March 23, 14

4

The while Repetition Structure

while (condition) {
 statement(s)
}

The braces are not required if the loop body
contains only a single statement. However, they
are a good idea and are required by the 104 C
Coding Standards.

Sunday, March 23, 14

5

Example

 while (children > 0) {
 children = children - 1 ;
 cookies = cookies * 2 ;
 }

Sunday, March 23, 14

6

Good Programming Practice

 Always place braces around the body of a
while loop.

 Advantages:
 Easier to read
 Will not forget to add the braces if you go back

and add a second statement to the loop body
 Less likely to make a semantic error

 Indent the body of a while loop 3 to 4 spaces
-- be consistent!

Sunday, March 23, 14

7

Example

 while (input < 0)
 scanf("%d", &input);
 printf("Finally, got something positive\n");

Sunday, March 23, 14

8

Example

 while (input < 0)
 printf("Enter a positive number: ");
 scanf("%d", &input);
 printf("Finally, got something positive\n");

Sunday, March 23, 14

9

Another while Loop Example

 Problem: Write a program that calculates the
average exam grade for a class of 10
students.

 What are the program inputs?
 the exam grades

 What are the program outputs?
 the average exam grade

Sunday, March 23, 14

10

The Pseudocode

 <total> = 0
 <grade_counter> = 1

 While (<grade_counter> <= 10)
 Display “Enter a grade: ”

 Read <grade>
 <total> = <total> + <grade>

 <grade_counter> = <grade_counter> + 1
 End_while
 <average> = <total> / 10
 Display “Class average is: “, <average>

Sunday, March 23, 14

11

1. #include <stdio.h>
2. int main () {
3. int counter, grade, total, average ;
4. total = 0 ;
5. counter = 1 ;
6. while (counter <= 10) {
7. printf (“Enter a grade : “) ;
8. scanf (“%d”, &grade) ;
9. total = total + grade ;
10. counter = counter + 1 ;
11. }
12. average = total / 10 ;
13. printf (“Class average is: %d\n”, average) ;
14. return 0 ;
15. }

The C Code

Sunday, March 23, 14

12

Versatile?

 How versatile is this program?
 It only works with class sizes of 10.
 We would like it to work with any class size.
 A better way :

 Ask the user how many students are in the class.
Use that number in the condition of the while loop
and when computing the average.

Sunday, March 23, 14

13

New Pseudocode

<total> = 0
<grade_counter> = 1
Display “Enter the number of students: “
Read <num_students>
While (<grade_counter> <= 10)
 Display “Enter a grade: ”
 Read <grade>
 <total> = <total> + <grade>

<grade_counter> = <grade_counter> + 1
End_while
<average> = <total> / 10
Display “Class average is: “, <average>

Sunday, March 23, 14

14

New Pseudocode

<total> = 0
<grade_counter> = 1
Display “Enter the number of students: “
Read <num_students>
While (<grade_counter> <= 10)
 Display “Enter a grade: ”
 Read <grade>
 <total> = <total> + <grade>

<grade_counter> = <grade_counter> + 1
End_while
<average> = <total> / 10
Display “Class average is: “, <average>

Sunday, March 23, 14

15

New Pseudocode

<total> = 0
<grade_counter> = 1
Display “Enter the number of students: “
Read <num_students>
While (<grade_counter> <= <num_students>)
 Display “Enter a grade: ”
 Read <grade>
 <total> = <total> + <grade>

<grade_counter> = <grade_counter> + 1
End_while
<average> = <total> / <num_students>
Display “Class average is: “, <average>

Sunday, March 23, 14

16

New C Code

1. #include <stdio.h>
2. int main () {
3. int numStudents, counter, grade, total, average ;
4. total = 0 ;
5. counter = 1 ;
6. printf (“Enter the number of students: “) ;
7. scanf (“%d”, &numStudents) ;
8. while (counter <= numStudents) {
9. printf (“Enter a grade : “) ;
10. scanf (“%d”, &grade) ;
11. total = total + grade ;
12. counter = counter + 1 ;
13. }
14. average = total / numStudents ;
15. printf (“Class average is: %d\n”, average) ;
16. return 0 ;
17. }

Sunday, March 23, 14

17

Why Bother to Make It Easier?

 Why do we write programs?
 So the user can perform some task

 The more versatile the program, the more
difficult it is to write. BUT it is more useable.

 The more complex the task, the more difficult
it is to write. But that is often what a user
needs.

 Always consider the user first.

Sunday, March 23, 14

18

Using a Sentinel Value

 We could let the user keep entering grades
and when he’s done enter some special value
that signals us that he’s done.

 This special signal value is called a sentinel
value.

 We have to make sure that the value we
choose as the sentinel isn’t a legal value. For
example, we can’t use 0 as the sentinel in our
example as it is a legal value for an exam
score.

Sunday, March 23, 14

19

The Priming Read

 When we use a sentinel value to control a
while loop, we have to get the first value from
the user before we encounter the loop so that
it will be tested and the loop can be entered.

 This is known as a priming read.
 We have to give significant thought to the

initialization of variables, the sentinel value,
and getting into the loop.

Sunday, March 23, 14

20

New Pseudocode

<total> = 0
<grade_counter> = 0
Display “Enter a grade: “
Read <grade>
While (<grade> != -1)
 <total> = <total> + <grade>

<grade_counter> = <grade_counter> + 1
 Display “Enter another grade: ”
 Read <grade>
End_while
<average> = <total> / <grade_counter>
Display “Class average is: “, <average>

Sunday, March 23, 14

21

New C Code

1. #include <stdio.h>
2. int main () {
3. int counter, grade, total, average ;

4. total = 0 ;
5. counter = 0 ;
6. printf(“Enter a grade: “) ;
7. scanf(“%d”, &grade) ;
8. while (grade != -1) {
9. total = total + grade ;
10. counter = counter + 1 ;
11. printf(“Enter another grade: “) ;
12. scanf(“%d”, &grade) ;
13. }

14. average = total / counter ;
15. printf (“Class average is: %d\n”, average) ;
16. return 0 ;
17. }

Sunday, March 23, 14

22

Final “Clean” C Code

1. #include <stdio.h>
2.
3. int main () {
4. int counter ; /* counts number of grades entered */
5. int grade ; /* individual grade */
6. int total; /* total of all grades */
7. int average ; /* average grade */
8.
9. /* Initializations */
10. total = 0 ;
11. counter = 0 ;
12.
13. /* Priming read to get initial grade from user */
14. printf(“Enter a grade: “) ;
15. scanf(“%d”, &grade) ;

Sunday, March 23, 14

23

Final “Clean” C Code (con’t)

16. /* Get grades until user enters -1. Compute grade total
17. and grade count. */
18. while (grade != -1) {
19. total = total + grade ;
20. counter = counter + 1 ;
21. printf(“Enter another grade: “) ;
22. scanf(“%d”, &grade) ;
23. }
24.
25. /* Compute and display the average grade */
26. average = total / counter ;
27. printf (“Class average is: %d\n”, average) ;
28.
29. return 0 ;
30. }

Sunday, March 23, 14

24

Using a while Loop to Check User
Input

1. #include <stdio.h>
2. int main () {
3. int number ;
4. printf (“Enter a positive integer : “) ;
5. scanf (“%d”, &number) ;
6. while (number <= 0) {

7. printf (“\nThat’s incorrect. Try again.\n”) ;
8. printf (“Enter a positive integer: “) ;
9. scanf (“%d”, &number) ;
10. }
11. printf (“You entered: %d\n”, number) ;
12. return 0 ;
13. }

Sunday, March 23, 14

