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The while Looping Structure

Topics

 The while Loop
 Program Versatility

 Sentinel Values and Priming Reads
 Checking User Input Using a while Loop

Reading

 Section 3.7
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Review:  Repetition Structure

 A repetition structure allows the programmer to 
specify that an action is to be repeated while some 
condition remains true.

 There are three repetition structures in C, the while 
loop, the for loop, and the do-while loop.
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The while Repetition Structure

while ( condition ) {
    statement(s)
}

The braces are not required if the loop body 
contains only a single statement.  However, they 
are a good idea and are required by the 104 C 
Coding Standards.
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Example

 while ( children > 0 ) {
   children = children - 1 ;
   cookies = cookies * 2 ;
 }
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Good Programming Practice

 Always place braces around the body of a 
while loop.

 Advantages:
 Easier to read
 Will not forget to add the braces if you go back 

and add a second statement to the loop body
 Less likely to make a semantic error

 Indent the body of a while loop 3 to 4 spaces 
-- be consistent!
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Example

 while ( input < 0 )
    scanf("%d", &input);
 printf("Finally, got something positive\n");
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Example

 while ( input < 0 )
      printf("Enter a positive number: ");
      scanf("%d", &input);
 printf("Finally, got something positive\n");
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Another while Loop Example

 Problem:  Write a program that calculates the 
average exam grade for a class of 10 
students.

 What are the program inputs?
 the exam grades

 What are the program outputs?
 the average exam grade
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The Pseudocode

 <total> = 0
 <grade_counter> = 1

 While  (<grade_counter> <= 10)
   Display “Enter a grade: ”

 Read <grade>
   <total> = <total> + <grade>

   <grade_counter> = <grade_counter> + 1
 End_while
 <average> = <total> / 10
 Display “Class average is: “, <average>
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1. #include <stdio.h>
2. int main ( ) {
3.  int  counter, grade, total, average ;
4.                   total = 0 ;
5.   counter = 1 ;
6.   while ( counter <= 10 ) {
7.        printf (“Enter a grade : “) ;
8.        scanf (“%d”, &grade) ;
9.        total = total + grade ;
10.        counter = counter + 1 ;
11.   }
12.   average = total / 10 ;
13.   printf (“Class average is: %d\n”, average) ;
14.      return 0 ;
15. }
        

The C Code
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Versatile?

 How versatile is this program?
 It only works with class sizes of 10.
 We would like it to work with any class size.
 A better way :

 Ask the user how many students are in the class.  
Use that number in the condition of the while loop 
and when computing the average.
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New Pseudocode

<total> = 0
<grade_counter> = 1
Display “Enter the number of students: “
Read <num_students>
While  (<grade_counter>  <=  10)
     Display “Enter a grade: ”
     Read <grade>
     <total> = <total> + <grade>

<grade_counter> = <grade_counter> + 1
End_while
<average> = <total> / 10
Display “Class average is: “, <average>
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New Pseudocode

<total> = 0
<grade_counter> = 1
Display “Enter the number of students: “
Read <num_students>
While  (<grade_counter>  <=  10)
     Display “Enter a grade: ”
     Read <grade>
     <total> = <total> + <grade>

<grade_counter> = <grade_counter> + 1
End_while
<average> = <total> / 10
Display “Class average is: “, <average>
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New Pseudocode

<total> = 0
<grade_counter> = 1
Display “Enter the number of students: “
Read <num_students>
While  (<grade_counter>  <=  <num_students>)
     Display “Enter a grade: ”
     Read <grade>
     <total> = <total> + <grade>

<grade_counter> = <grade_counter> + 1
End_while
<average> = <total> / <num_students>
Display “Class average is: “, <average>
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New C Code

1. #include <stdio.h>
2. int main ( ) {
3.      int  numStudents, counter, grade, total, average ;
4.      total = 0 ;
5.      counter = 1 ; 
6.      printf (“Enter the number of students: “) ;
7.      scanf (“%d”, &numStudents) ;
8.      while ( counter <= numStudents) {
9.          printf (“Enter a grade : “) ;
10.          scanf (“%d”, &grade) ;
11.          total = total + grade ;
12.          counter = counter + 1 ;
13.       }
14.      average = total / numStudents ;
15.      printf (“Class average is: %d\n”, average) ;
16.      return 0 ;
17. }
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Why Bother to Make It Easier?

 Why do we write programs?
  So the user can perform some task

 The more versatile the program, the more 
difficult it is to write.  BUT it is more useable.

 The more complex the task, the more difficult 
it is to write.  But that is often what a user 
needs.

 Always consider the user first.
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Using a Sentinel Value

 We could let the user keep entering grades 
and when he’s done enter some special value 
that signals us that he’s done.

 This special signal value is called a sentinel 
value.

 We have to make sure that the value we 
choose as the sentinel isn’t a legal value.  For 
example, we can’t use 0 as the sentinel in our 
example as it is a legal value for an exam 
score.
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The Priming Read

 When we use a sentinel value to control a 
while loop, we have to get the first value from 
the user before we encounter the loop so that 
it will be tested and the loop can be entered.

 This is known as a priming read.
 We have to give significant thought to the 

initialization of variables, the sentinel value, 
and getting into the loop.
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New Pseudocode

<total> = 0
<grade_counter> = 0
Display “Enter a grade: “
Read <grade>
While  ( <grade>  !=  -1 )
     <total> = <total> + <grade>

<grade_counter> = <grade_counter> + 1
     Display “Enter another grade: ”
     Read <grade>
End_while
<average> = <total> / <grade_counter>
Display “Class average is: “, <average>
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New C Code

1. #include <stdio.h>
2. int main ( ) {
3.      int counter, grade, total, average ;

4.      total = 0 ;
5.      counter = 0 ;
6.      printf(“Enter a grade: “) ;
7.      scanf(“%d”, &grade) ;
8.      while (grade != -1) {
9.           total = total + grade ;
10.           counter = counter + 1 ;
11.           printf(“Enter another grade: “) ;
12.           scanf(“%d”, &grade) ;
13.      }

14.      average = total / counter ;
15.      printf (“Class average is: %d\n”, average) ;
16.      return 0 ;
17. }
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Final “Clean” C Code

1. #include <stdio.h>
2.  
3. int main ( ) {
4.      int counter ;     /* counts number of grades entered */
5.      int grade ;        /* individual grade                            */
6.      int total;           /* total of all grades                          */
7.      int average ;    /* average grade                              */
8.  
9.      /* Initializations */
10.      total = 0 ;
11.      counter = 0 ;
12.       
13.       /* Priming read to get initial grade from user      */
14.      printf(“Enter a grade: “) ;
15.      scanf(“%d”, &grade) ;
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Final “Clean” C Code (con’t)

16.    /* Get grades until user enters -1.  Compute grade total 
17.        and grade count.   */
18.    while (grade != -1) {
19.         total = total + grade ;
20.         counter = counter + 1 ;
21.         printf(“Enter another grade: “) ;
22.         scanf(“%d”, &grade) ;
23.    }
24.   
25.    /* Compute and display the average grade */ 
26.    average = total / counter ;
27.    printf (“Class average is: %d\n”, average) ;
28.   
29.    return 0 ;
30. }
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Using  a while Loop to Check User 
Input

1. #include <stdio.h>
2. int main ( ) {
3.     int number ;
4.     printf (“Enter a positive integer :  “) ;
5.     scanf (“%d”, &number) ;
6.      while ( number <= 0 ) {

7.          printf (“\nThat’s incorrect.  Try again.\n”) ;  
8.          printf (“Enter a positive integer:  “) ;
9.          scanf (“%d”, &number) ;
10.      }
11.      printf (“You entered: %d\n”, number) ;
12.      return 0 ;
13. }
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