CMSC 100 — Fall 2012
Programming Assignment #1
Handed out Thursday 9/13/12
Due Tuesday 10/2/12
Notes:

· The program file name you use should be in the form Firstname_Lastname_PA1.sb (my submission would be called Marie_desJardins_PA1.sb). This convention will make it easier for us to download and test everyone’s program.

· Some of this material is borrowed from Adam Anthony and James MacGlashan.

· Start early! If you run into trouble, come to any of the TA office hours or Dr. dJ’s office hours, post a question (not your code) on Piazza, or email any of the course staff.

· As you’re working through the assignment, if you run into any snags and figure out how to deal with them, and can summarize your advice in a general way (again, without posting your code), post your tip to Piazza! (And check in on Piazza or set up email notifications so you’ll see other students’ tips...)

· This assignment is a very structured, step-by-step program creation that tells you exactly what to do. If you want a bit more of a challenge and the chance to be creative, you can take the “Make Your Own Pattern” option (see last page). The next programming assignment is a bit more open-ended, and the final assignment (the Scratch project) is completely unstructured.

Getting Started
1. Read through Scratch’s help screens. Launch Scratch, pull down the “Help” menu, and then choose “Help Screens.” This will open up a web page describing how to use Scratch in various ways. You should read through at least the Motion, Pen, and Control sections, since we’ll be using those capabilities in this assignment. You may want to follow along in Scratch to make sure you understand how to do everything explained in those sections. This is a useful reference page that you will probably want to come back to – you don’t need to memorize everything. You can also refer to the “Scratch Reference Guide” that is linked from the course schedule.

2. Create a new Scratch project and save it using the file name Yourfirstname_Yourlastname_PA1.sb (so for example, my submission would be called Marie_desJardins_PA1.sb). (The extension “.sb” will automatically be added to the file name; you should just type the first part into the Save dialog.)

3. Delete the standard cat Sprite1 (if it is present) by right-clicking on the sprite in the bottom-right Sprites pane, and choosing Delete.

4. Create a new sprite from an existing file (second button in the Sprite pane tool bar) – pick any sprite you would like!

5. You may need to make your sprite a little smaller (it should be about the same size as the cat in my picture below). You can do this by right clicking on the sprite in the Stage pane and choosing “Resize this Sprite.” Once chosen, a couple of arrows will appear. Click and hold on the arrows and drag your cursor to the left to make the sprite smaller. Release and click anywhere else on the stage to stop resizing.

Reset Script
In this assignment, you will want the sprite to draw (leave a “trail”) with the pen, so you will want to create a reset script. A reset script simply clears the screen and puts everything back to the desired starting point. You can accomplish this by making the reset script activate whenever the Green Flag is pressed.

1. To start making your script, drag a “When [Green Flag] clicked” item from the Control panel into the Scripts pane. The rest of your reset code block should be attached to this control.

2. From the Pen panel, drag a “pen up” statement and then a “clear” statement into the block (attach the “pen up” statement to the bottom of the green flag control and then “clear” to the bottom of “pen up”). Make sure that these statements are attached to the “When...” block.

3. Pick your favorite color for the pen! The one I’ve shown below is blue, which is the default, but you should pick some different color. To change the pen color, add a “set pen color to __” statement just under the “clear” statement, click on the small color block in the statement, and pick a color from the palette that appears.

4. From the Motion panel, drag a “go to x:__ y:__” statement out and attach it to the bottom of the reset block. Set the values to 0, 0 (these should be the defaults). Finally, attach a “point in direction” statement and set it to 90 (right—again, this should be the default).

5. Test that your reset script works. You can do this by dragging your sprite to some other location on the stage (and optionally rotating it, by right clicking on the sprite and selecting “Rotate,” then using the little circular arrow to rotate the sprite). Now click the Green Flag on the top right corner of the stage. The sprite should be moved back to the center.

Draw Square Script
You will now want to make a new script for this sprite that will draw a square using the pen tool. This script should be activated when a message is broadcast. (The directions below will do this, but you may want to refer back to the control help screen to remind yourself about how broadcasting works.)

1. Drag a “When I receive” statement from the Control panel to the Scripts pane. From the drop down menu of this control, choose “new” and specify the name “drawSquare.”

2. Now construct a script that draws a single line using the following set of statements:

a. Pen down

b. Move __ steps

c. Turn clockwise __ degrees

d. Wait __ seconds

e. Pen up

3. Next, change the script to draw a full square. You will need to use most of those statements several times and you will have to figure out the correct value for the turn statement (remember, it’s a square!). For the move statement, you can experiment with different values, but it should be the same value for each move statement. The wait statement should follow any move statement (to make sure you can watch what the sprite is doing), but you can set the wait length to a small value such as 0.5.

a. Now would be a good time to experiment with script editing: for example, you can drag a set of instructions “away” from the block, right click on that set of instructions, choose “duplicate” to make a copy of the instruction set, and then regroup everything, so that you don’t have to keep going back to the menu of primitive actions.

b. Note: To get the figure below to look just right, you should not have the sprite turn after the last Move command. (In other words, there should be four Moves but only three Turns.)

4. Make sure the pen is up when the script terminates.

5. Make sure the script you generated is all attached to the “When I receive” control that you created, so that it is activated when the message “drawSquare” is broadcast.

6. Test the draw square script by clicking on the “When I receive” statement. You should see the sprite move around drawing a square and then stop. You can reset everything by clicking the Green Flag.

a. At this point, you may need to experiment with your parameters (the values of the “move,” “turn,” and “wait” steps) to get the script to work the way you want it to.

Draw Line Script (times 8 = Draw Octagon!)
Now create a new script for this sprite that is activated by another broadcast message.

1. Drag out a “when I receive” control (again, unattached to any of the other scripts).

a. Note: if you’re running out of room in the Scripts panel, Scratch will automatically create some more space and a scroll bar if you place instructions near the bottom of the panel.

2. From the drop down menu of the “when I receive” control, choose “new” and type “move.”

3. Now attach the following sequence of controls:

a. Pen down

b. Turn clockwise 45 degrees

c. Move __ steps (choose a value that is greater than the one you used in the draw square script; you may need to go back and adjust the size of the square if it is now making the pattern too big or too small)

d. Wait 0.5 seconds

e. Pen up

4. Test that this script will cause the sprite to turn 45 degrees and then draw a straight line. You can test it by clicking on the “When I receive” at the top. Remember that you can reset everything using the Green Flag. If you test the script eight times in a row without resetting in between, the sprite should draw an octagon.

Draw Pattern Button

Finally, you will create a control button that draws the pattern below, by using a loop to execute the “move” script eight times, drawing a square at each corner (i.e., in between every pair of moves). The pattern should look like this:

[image: image1.png]

1. The button itself will be a sprite (just like every object in Scratch)

a. Click on the “Choose new sprite from file” icon.

b. Navigate to the “Things” folder and choose “Button.” (Note: The dialog may start in the “Animals” folder, since you used that before. If so, go back up a folder level by clicking the up arrow you should see in the dialog, just to the right of the folder name.)

c. On the stage, position the button in the top left corner.

d. Click on the button sprite in the bottom-right sprite pane to open its script area—it will be blank to start with.

e. Add a control statement, “When Sprite2 clicked.”

f. Attach to the control a “repeat __” block and set the number of repeats to 8.

g. Inside the bracket that the repeat block makes, add two “broadcast ____ and wait” statements.

h. Set the first “broadcast and wait” value to “move” and the second to “drawSquare.”

2. Test the program!

a. First, click the green flag to reset everything.

b. Next, click on the button on the stage.

c. You should see the sprite draw a pattern like the one shown in the image below.

3. Save your work and submit! (See below.)

Submitting Your Work

1. You will need to submit two files into blackboard, under Programming Assignment 1:

a. Submit the Firstname_Lastname.sb program file.

b. After clicking the Draw Pattern button, while the pattern is on your screen, you need to do a screen capture, and submit that as a picture file.

i. On a Mac: just type Command-Shift-3, and a “.PNG” file will automatically be saved to your Desktop. Upload this .PNG file.

ii. On a PC: your keyboard should have a Print Screen function (depending on the keyboard, you may have to type Shift-PrtSc or Fn-PrtSc). That function will create an image of the screen in your clipboard. You can then open either Paint or Microsoft Word, paste the image into the document (Edit menu, then Paste), save it into your documents as a .JPG (Paint) or .DOC (Word) file, and then upload that file.

2. You do not need to submit anything in hardcopy for this assignment!

Make Your Own Pattern Option (& Possible Extra Credit)

1. Want to try something different? Instead of submitting the above program, make your own pattern! You can create any pattern you’d like as long as it satisfies these requirements:

a. The pattern script should have at least one “Repeat” block and should use at least one “broadcast” statement to invoke another block.

b. The pattern should be at least as complicated as the sample pattern given for the program above (where “complicated” is defined subjectively – an intricate snowflake pattern would obviously qualify; a circle or a hexagon would not).

2. If you take this option, you still need to submit two files: the program file (which should follow the same naming convention as the regular assignment) and a screen capture of the pattern your program creates in the Scratch window. You should also include a short comment to the effect that you wrote your own program, describing the pattern you’ve created (just a few sentences about what the design is or what you were trying to generate).

3. The TAs have the discretion to award up to 10 bonus points to students taking this option for above-and-beyond creativity (an especially interesting or complex pattern or program structure).
