CMSC 100 – Midterm Study Guide
Midterm date: Thursday, October 18, 2012
General Notes

· You may bring one page of notes and a basic calculator to the exam. You will also need a pencil. You will not need anything else (scrap paper, etc.).

· Answers will be written on the exam itself. You will each receive additional scratch paper, which must be returned with the exam.

· Be on time on test day! No extra time will be given at the end of class for late arrivals.

· The exam will cover all material covered in class (lectures and lecture slides), plus the assigned readings. The summary below is a guide to the main topics that are likely to appear on the exam, and some notes about what will not be covered on the exam. In general, boldface concepts in the text are important to recognize.

Class 1-3: Overview, Google, Computer Deconstruction

· Main themes of the course: Abstraction, complexity and exponential growth, “it’s all just bits.”

· Basic methods that Google uses to crawl, index, store, and search the Web.

· PageRank idea and other search criteria.

· Top Ten Events in CS History from Piazza poll: early computer networks, ENIAC, Leibnitz’s Wheel, Jacquard loom/punch cards, Pascaline mechanical calculator, Ada Lovelace, John Atanasoff (“inventor of the first computer”), Colossus/Enigma code cracker, Altair 8800 (first microcomputer), UNIVAC
· Not details of Google’s history (dates, etc.)

· Main components of a computer

Class 4, 6: Bits, Boolean Algebra, Data Storage, Huffman Codes

· Binary number representations (ordinary unsigned binary numbers, hexadecimal), ASCII representation, bytes, powers of 2.
· Sound representations (amplitude/period/frequency, sampling rate and bit depth).

· RGB encoding and color palettes.
· Types of data compression methods.

· How to construct, encode, and decode a Huffman encoded message.

· Basic Boolean algebra ((, (, (, ((extra credit: DeMorgan’s Law).

· Truth tables – reading and constructing.
· Digital logic – gates and simple circuits.

· Not signed numbers, floating point numbers, excess notation, how a flip-flop works, memorizing ASCII code values, memorizing specific compression models (GIF, JPEG, MPEG…), complex circuits.
Class 5, 8: Scratch
· The Scratch programming language will not be on the exam. (However, the material about algorithms that we went over on those dates is fair game.)

Class 7, 10: Algorithms
· Interpreting and writing simple pseudocode algorithms, including variables, lists, conditions (if.. then.. else), loops (while, repeat, for), logical tests.

· Not memorizing or reproducing complex algorithms.

Class 9: Computer Organization and Operating Systems
· Basic elements of modern computers and the Von Neumann architecture (control unit, ALU, registers, main memory, external devices).
· Fetch-Decode-Execute control loop.

· Types of memory (registers, RAM, cache, mass storage).

· Virtual memory, memory management, file allocation and fragmentation.

· Mass storage – seek/latency/access time, transfer rate.
· Instruction sets and machine code – RISC vs. CISC architectures.
· Know what the operating system’s main functions are and the notion of a virtual machine.

· Understand the idea of assembly language and why it is useful.

· Know how the different scheduling algorithms work (queuing models—LIFO, FIFO, priority-based, and combinations of these), and be able to simulate their behavior on a given set of jobs.

· Understand and recognize deadlock conditions.

· Batch vs. multiprocessing – why and how these different approaches are used.

· Not details of how semaphores and critical regions prevent deadlock, operating systems security issues and management schemes, specific op codes and assembly language instructions.
Class 11: Algorithmic Efficiency

· Evaluating algorithms: attributes of algorithms.

· Be able to characterize the running time of an algorithm (given as a mathematical expression) using the complexity classes discussed in class.

· Ideas of worst case / best case / average case analysis and order of magnitude.

· Sequential search, binary search, selection sort.

· Not big-theta notation, software verification (proofs of correctness), analyzing complexity of a given algorithm.

Class 12: Networks

· Digital/analog conversion – modulation and demodulation.

· Network technologies: DSL, broadband, cable modem, Ethernet, wireless routers, WiFi, Bluetooth.

· Types of networks: bus vs. ring vs. star topology, connection hardware (e.g., routers, repeaters, bridges, switches).

· Know what a protocol is and why it is necessary.

· Internet, ISP, IP addresses, DNS, WWW vs. Internet, HTTP and URL standards.
· Major network applications, client/server computing, “cloud computing.”
· Basic idea of HTML and markup tags.

· Not collision detection/avoidance, XML, memorizing protocol names and details (e.g., specific network or email protocols).

