
Ch 3
– What is a deadlock ?
– Conditions

• Hold and Wait
• Mutual Exclusion
• Non Preemption
• Circular Wait

– Deadlock Models
• Single Unit Request
• AND Request
• OR Request
• AND-OR Request
• P-out of-Q Request



• Resource Models
– Reusable – fixed number of units which can neither be 

created nor destroyed. Unit available after release from 
process.

– Consumable – is used up by a process and no longer 
available. Are“produced” as well.

• Resource Access
– Exclusive or Shared

• Miscellany: Wait For Graphs (WFG)
– Cycles ? Knots ?



General Resource Graph
• Bipartite Directed Graph

– Vertices are:
• P = set of processes P1 --- Pn
• R = set of resourecs R1 --- Rn

– Can be subdivided into disjoint sets of consumable and reusable
– For every reusable resource Ri, ti denotes total number of Ri

– Edges are:
• Request -- directed from P to R
• Assignment – directed from reusable R to P
• Producer – directed from consumable R to P

– Available Unites vector
• (r1 – rn) of nonnegative integers denotes instances of resource 

available in a given state.



– For every reusable resource
• No. of assignment edges <=ti
• ri = ti - No. of assignment edges
• At any instant, a process cannot request more than the total no.

of resources #(Pj, Ri) + #(Ri, Pj) <= ti.

– For every consumable resource, ri >= 0.
– A process can request resources, acquire a resource, 

and release it. These will lead to changes in the graph.
• Request will add request edges. Assignment will convert 

request edges to assignment edges for reusables, delete them 
for consumables, and decrease r. 

• Release occurs when the process does not need Rj anymore. rj
is incremented (differently for reusables and consumables).



Conditions for Deadlock
– Process is blocked if the number of its request edges for 

some Rj is greater than rj, the number available.
– This will lead to a deadlock iff it can’t become 

unblocked eventually.
• Can you “reduce” the GRG to unblock the process ?

– An unblocked process Pi can reduce the GRG as 
follows

• For each reusable resource Rj, delete assignment (and request) 
edges from Pi, and increment rj by the number of assignment 
edges deleted

• For each consumable resource, decrement rj by the number of 
request edges. If Pi is a producer of Rj, set rj to “infinity”. 
Delete request edges.



Sufficiency Conditions
– A GRG is completely reducible if some sequence of 

reductions will delete all edges.
– Theorem: A process is not deadlocked iff some 

sequence of reductions will leave it unblocked
– Corollary: A system state is deadlock free if the GRG is 

completely reducible.
• Reverse is not true – non reducibility does not imply that a 

state is deadlocked.

– Detecting deadlocks è investigating n! reduction 
sequences.



– A state is expedient if all processes having outstanding requests are 
blocked

– X à Y implies reachability.
– Sink, Cycle, Knot
– A Sink can’t be in a knot
– An “active process” is a sink – reducing is basically removing sink 

nodes from the graph.
– Theorem: In a GRG

• A Cycle is a necessary condition for deadlock
• If the graph is expedient then a knot is a sufficient condition for 

deadlock.
– Corollary : If in an expedient resource graph, Pi is not a sink nor 

does it have a path leading to a sink then the the process is 
deadlocked.



– For Single Unit Requests
• An expedient GRG with SU Requests represents a deadlock i it 

contains a knot.

– Systems with Consumable Resources only
• Claim limited graph represents a worst case condition – no 

resources are available
• If this claim limited graph is reducible, then the system is 

deadlock free. This requires that there be a producer which is 
not a consumer.

– Systems with Reusable Resources only
• All reduction sequences give the same outcome.
• A state is not deadlock state iff it is completely reducible.

– Systems with Single Unit Resources
• Cycle is necessary and sufficient condition.



• So far, we have looked at Deadlock Detection
• Deadlock Prevention

– Eliminate one of the 4 necessary conditions.
• One shot allocation, preemption, resource ordering

• Deadlock Avoidance.
– When a process requests resources, check to see if the 

allocation would lead to a safe state. Don’t allocate 
otherwise. Requires advance knowledge of claims.

• Be familiar with Banker’s algorithm.


