Ch 3

— What isadeadlock ?

— Conditions
 Hold and Wait
 Mutual Exclusion
* Non Preemption
e Circular Wait

— Deadlock Models
e Single Unit Request
 AND Request
 OR Request
 AND-OR Reguest
e P-out of-Q Request



e Resource Models

— Reusable — fixed number of units which can neither be
created nor destroyed. Unit available after release from
Process.

— Consumable —is used up by aprocess and no longer
available. Are"produced’ aswell.

e Resource Access
— Exclusive or Shared

o Miscelany: Wait For Graphs (WFG)
— Cycles?Knots ?



General Resource Graph

« Bipartite Directed Graph

— Vertices are:
o P=setof processes P1 --- Pn

 R=sat of resourecs R1 --- Rn
— Can be subdivided into digoint sets of consumable and reusable
— For every reusable resource Ri, ti denotes total number of Ri

— Edges are:
* Request -- directed fromPto R

» Assignment —directed from reusable R to P
e Producer — directed from consumable R to P

— Available Unites vector

 (r,—r,) of nonnegative integers denotes instances of resource
availlable in agiven state.



— For every reusable resource
* No. of assignment edges <=ti
* ri =ti - No. of assignment edges
« At any instant, a process cannot request more than the total no.
of resources #(P}, Ri) + #Ri, F) <= i.
— For every consumable resource, ri >= 0.

— A process can request resources, acquire a resource,
and release it. These will lead to changes in the graph.

* Request will add request edges. Assignment will convert
request edges to assignment edges for reusables, delete them
for consumables, and decreaserr.

* Release occurs when the process does not need RJ anymore. r,
Is incremented (differently for reusables and consumables).



Conditions for Deadlock

— Processis blocked if the number of its request edges for
some Rj is greater than rj, the number available.

— Thiswill lead to a deadlock iff it can’t become
unblocked eventually.
« Canyou “reduce’ the GRG to unblock the process ?

— An unblocked process Pi can reduce the GRG as
follows

 For each reusable resource R}, delete assignment (and request)
edges from Pi, and increment rj by the number of assignment
edges del eted

 For each consumable resource, decrement rj by the number of
request edges. If Pi isaproducer of R}, set rj to “infinity”.
Delete request edges.



Sufficiency Conditions

— A GRG is completely reducible if some sequence of
reductions will delete all edges.

— Theorem: A process is not deadlocked iff some
sequence of reductionswill leave it unblocked

— Corollary: A system state is deadlock free if the GRG is
completely reducible.

* Reverseisnot true — non reducibility does not imply that a
state is deadl ocked.

— Detecting deadlocks = investigating n! reduction
Sequences.



A state is expedient if all processes having outstanding reguests are
blocked

X =2 Y implies reachability.

Sink, Cycle, Knot

A Sink can’t be in aknot

An “active process’ isasink —reducing is basically removing sink
nodes from the graph.

Theorem: InaGRG

« A Cycleisanecessary condition for deadlock

* |f the graph is expedient then aknot is a sufficient condition for
deadlock.

Corollary : If in an expedient resource graph, Pi isnot asink nor
does it have a path leading to a sink then the the processis
deadlocked.



— For Single Unit Requests

o An expedient GRG with SU Reguests represents a deadlock i it
contains a knot.

— Systems with Consumable Resources only

» Claim limited graph represents aworst case condition — no
resources are available

o |f thisclaim limited graph is reducible, then the system is

deadlock free. Thisrequires that there be a producer which is
not a consumer.

— Systems with Reusable Resources only

 All reduction sequences give the same outcome.
» A stateisnot deadlock state iff it is completely reducible.

— Systems with Single Unit Resources
» Cycleisnecessary and sufficient condition.



e Sofar, we have looked at Deadlock Detection

 Deadlock Prevention

— Eliminate one of the 4 necessary conditions.
» One shot alocation, preemption, resource ordering

 Deadlock Avoidance.

— When a process reguests resources, check to seeif the
allocation would lead to a safe state. Don't allocate
otherwise. Requires advance knowledge of claims.

» Befamiliar with Banker’s algorithm.



