Chapter 2/6

— Critica Section Problem / Mutual exclusion
 progress, bounded wait

— Hardware Solution

o disableinterrupts
— problems?

— Software Solution
* busy wait ?
— Tokens
— Bakery algorithm
— Special instructions (atomic test-set)
* Semaphores
* Monitors

Other Synchrnization Problems

Dining Philosophers
Producer Consumer

Readers Writers
— reader’ s priority, writer’ s priority

Readers/Writers with R priority

e Reader

P(mutex)
If (nr==20) {
nr++; P(notaccessed);
} else
nr++;
V (mutex);

I/l Read Operations
P(mutex);
nr --;

if (nr ==0) V(notaccessed);

V(mutex);

e Writer

P(exclw);
P(notaccessed);

//\Write Operations
V (notaccesed);
P(exclw);

Seriaizers

— Monitor Problems

« |f monitor encapsulates resource, then concurrency is reduced even
where it is possible

* |f resourceis outside, then rouge processes can bypass the monitor.
— Seridizerstry to avoid this:

 They are still an ADT with defined operations that encapsulate data,
and enforce mutual exclusion.

 Procedures mahave “hollow” regions where they may allow other
processes to access the serializer.
— join-crowd (crowdid) then body end
— enque (prio,gname) until (condition)

 all eventsthat gain and release the serializer are totally ordered.

Serializer to solve
Readers/Writers

 Read

Enque (rg) until empty(wcrowd)
Joincrowd(rc) then

//Read operation
end

 Write
Enque (wq) until (empty(wc) & & empty(rc) & & empty(rq))
Joincrowd (wc) then
[/\Write Operation
end

Path Expressions

— Defines possible “valid” execution histories of the
operations
* Sequencing: a;b —a precedes b, no concurrency.

» Selection: atb — either aor b isdone, but not both and in any
order.

» Concurrency: {a} —any number of instances of a can be done
at the same time.
— Path {read} + write end gives aweak reader’s priority
solution.

CSP

P2V

» Get the value of v from P2 as an input
P1!10

e Output value 10 to P1

The input and output are synchronized if they name each other as
source/destination, and the types match

G-> CL — execute commandsin list CL if guard G istrue.

Alternative command — execute one of the choices where is guard
IStrue.

e G1->CL10G2->CL2...0...Gn->CLn

Repetitive Command *[Alternative] — repeat until all guards are
false.

Ch6

— In adistributed system, a site can either be requesting
CS execution, executing CS, or none of the above.
— Requirements for solutions:
» Deadlock free, starvation free, Fair, Fault tolerant

— Metrics of performance (loading conditions)
o # of messages needed for CS

» Synch. Delay — time between one site leaving CS and another
entering.

* Response time— Time interval between CS request and end of
CS

* Throughput: rate at which system executes CS.
— 1/ (snych. delay + CS execution time)

Solutions

— Centralized approach: Make asingle site responsible
for permissions.

* Needsonly 3 messages/ CS (which 3 ?)
» Single point of failure, load on central site, 2T synch. Delay

— Lamports algorithm (non token based, FIFO delivery)

 When S needs CS, it sends REQ(tgl, i) to all sitesin its request
set., and placesit in its request queue. A site § which receives
this places it in its own queue, and sends a timestamped
REPLY message

e S can enter CSwhen
— Itsrequest is as the top of the queue
— It hasareply from all sitesit sent a message to with timestamp >
timestamp of request
« Upon exiting CS, removes its request, and sends arelease

message to all sites. Each receiving site dequeues the request
aswell

Does It work ?

Can Prove by contradiction

» Basically this means that a process entered CS even though a request
from another process with lower timestamp was in its queue.

Requires 3(n-1) messages/ CS, sdisT
|mprovement — Ricart-Agrawala Algorithm
* A request issent just asin Lamport’s algo.

* Onrecelving arequest, areply issent if thissiteis neither executing
Its CS nor requesting it. Otherwise, timestamps are compared and a
reply sent if the received tstamp is lower than the local tstamp.
Otherwise defer.

« Enter CSwhen reply received from all.
» Upon exiting CS, send replies to defered sites.

Note that once | have clearance to go into CS, | can do so many
timesaslong as| don’t send back reply.

Maekawa s Algo.

— Each site’ srequest set is constructed so that
* Intersection of request set for any pair of sitesis not null
» Each giteisinits own request set
* Therequest set sizeisK for any site.
« Eachsiteiscontained in K sets (K = sgrt(N))

— To reguest

e Site S sends REQ(i) to all sitesin its request s&t.

* Onreceiving therequest, § will send REPLY (j) if it hasn't sent a
reply to anyone since it got the last release. Otherwise hold.

— To Execute CS
e When you get all Replies

— To Release CS
» Send Release(i) to all sitesin request s&t.
 When § getsrelease message, it sends reply to next waiting request.

— Need 3*sgrt(N) messages, 2* T synch. delay.
— Problem — deadlock can occur
* Imagine a situation with three sites each requesting CS.
— Solution — prioritize request using timestamps and do
some extra processing.

» Basically, eliminate circular wait. Site will send afailure
message if it can’t honor your request.

» If asiteislocked, but receives arequest from a site with higher
priority, it “inquires’ from the locking site to see if the lock
can be released.

o Message traffic now 5* sgrt(N)

Token Based

Suzuki Kasami Broadcast Algorithm:

» Basicadly, need atoken to get into CS. Site possesing the token can get into CS
repeatedly. RN is an array of integers denoting the largest number in request
sequence from a site. The token itself has an array LN containing sequence
number of most recently executed request and a queue Q of requesting sites.

Request
* |f requesting site does not have token, it increments RNi[i] and sends

REQ(i, RNi[i]) to everyone else. When § receivesthis, it updates
RN;j[i]. If it hasidle token it sendsitto S

CSis executed when token is recelved
Release
o Set LN[i] to RNI[i]. If RNI[j] = LN[j]+1, then § is appended to token
Q

* |f token queue is nonempty, delete top entry and send token to that
site. This makes it “non-symmetric”

MessagesisOor N, Snych. delay isOor T.

Raymond’'s Tree Based Algo.

The site with the token is the root of atree. Each node has avariable
called holder pointing to parent. Each node also has ar-q that contains
requests for tokens from children.

Request
» Torequest, send request to parent if your r_qis empty and add yourself to the
r_q

* When you get arequest, add to r_g and forward to parent if you have not sent
a previous request.

» When root Site gets request, it sends token to requesting site and sets holder to
point to that site.

» When site gets atoken, it deletes top entry from r_q, sends token and points
holder. If r_q is nonempty, it sends request to holder.

Execute
* When get the token and your request at top of r_q
Release

« If r_qgisnonempty, delete top entry , send token,point holder. If r_q still
nonempty, send request to holder.

Message complexity is O(logN), Synch. Delay is(T log N) /2

Do Section 6.14

