
An Abstract Machine for Computing the

Well-Founded Semantics

Konstantinos Sagonas Terrance Swift David S. Warren
Department of Computer Science

State University of New York at Stony Brook

Abstract
The well-founded semantics has gained wide acceptance partly because it is a skep-
tical semantics. That is, the well-founded model posits as unknown atoms which
are deemed true or false in other formalisms such as stable models. This skepti-
cism makes the well-founded model not only useful in itself, but also suitable as a
basis for other forms of non-monotonic reasoning. For instance, since algorithms to
compute stable models are intractable, the atoms relevant to such algorithms can
be limited to those unde�ned in the well-founded model.

This paper presents an implementation of the well-founded semantics in the
SLG-WAM of XSB. To compute the well-founded semantics, the SLG-WAM adds
three operations to its tabling engine | negative loop detection, delay and simpli-
�cation | which serve to detect, to break and to resolve cycles through negation
that may arise in evaluating normal programs. We describe fully the addition of
these operations to our tabling engine, and demonstrate the e�ciency of our imple-
mentation in two ways. First, we present a theorem that bounds the need for delay
to those literals which are not dynamically strati�ed for a �xed-order computation.
Secondly, we present performance results that indicate that the overhead of delay
and simpli�cation to Prolog | or tabled | evaluations is minimal.

1 Introduction
The past decade of logic programming research has provided steady advancements
in the power of evaluation methods and in their implementation. Certainly the most
popular resolution method to date is SLDNF and the most popular implementa-
tion method WAM-style Prolog engines. As proven by its widespread acceptance,
the SLDNF/Prolog paradigm is extremely powerful for programming. However this
method su�ers from drawbacks which have prevented its extension into other areas
such as databases or non-monotonic reasoning that need a higher level of declara-
tivity than Prolog can o�er. A strong claim can be made that these drawbacks stem
from the fact that SLDNF (and its semantics as represented by Clark's Program
Completion) does not adequately address either positive or negative loops. Indeed,
major areas of logic programming research can be viewed as e�orts to formalize or
implement evaluation methods that handle loops.

Handling positive loops has been addressed by many methods, with magic sets
and tabling constituting the two main approaches. Although formulated di�erently,
these methods turn out to treat positive loops in essentially the same way. Both
assign failing values to SLD derivation paths which contain positive loops. As for
negative loops, perhaps the critical insight behind the well-founded semantics is to
assign the value unde�ned to derivations containing loops through negation [14]. It
is natural, then, to extend tabling methods to handle negative loops and thereby ex-
ecute the well-founded semantics, as several authors have noticed [2, 1]. For de�nite
programs, tabling is amenable to an e�cient, WAM-style implementation [13], so it

is also natural to try to extend its implementation to normal programs. However,
such an extension immediately leads to di�culties, based on fundamental aspects
of computing normal logic programs. The �rst di�culty arises because an evalua-
tion of a negative query has to wait until that query is completely evaluated before
succeeding | conceptually the loop check must be extended from a check of a path
of computation in the de�nite case, into a check of dependencies between subgoals.
The second di�culty arises from the inability of a �xed-order computation rule to
evaluate normal programs [8, 6]. Taking these di�culties at face value may lead to
a conclusion that the well-founded semantics cannot be e�ciently computed | in
other words, that normal programs, unrestricted by strati�cation, are not suitable
for programming but only for speci�cation or knowledge representation.

This paper provides detailed evidence that queries to normal program under
the well-founded semantics can be computed at the speed of Prolog programs, and
integrated with Prolog. Further, we show a bound on the non-determinism of the
computation rule required by normal programs (Theorem 2.1). In short, we demon-
strate that logic programming is feasible over all normal programs. Speci�cally:

� We describe implementation details of a publicly available engine, the full
SLG-WAM, for computing the well-founded semantics. This engine inher-
its most of the properties of SLG, including polynomial data complexity for
ground queries to Datalog programs.

� We show that the features needed for the full SLG-WAM slow Prolog execution
only minimally; also, that for Datalog programs with negation that terminate
under Prolog, tabled execution in the SLG-WAM is competitive with Prolog.

� We show that the Prolog's left-to-right computation rule need be broken only
when the evaluation encounters a literal that is not left-to-right dynamically
strati�ed [11]. This result indicates that the e�ciency of the SLG-WAM ac-
crues from its search strategy in addition to low-level implementation details.

1.1 Informal review of SLG resolution

A long development e�ort has preceded the results of this paper. To make this
paper self-contained, we begin by summarizing previously reported aspects of SLG
and the SLG-WAM.1

Like other tabling methods, SLG evaluates programs by keeping tables of sub-
goals and their associated answers, and by resolving repeated instances of subgoals
against answer clauses from the table rather than against program clauses. By us-
ing answer resolution in this manner, rather than repeatedly using program clause
resolution as in SLD, SLG avoids looping and terminates for all programs with the
bounded term-depth property. In practice, not all subgoals need to be tabled for
termination or e�ciency: predicates may either be tabled in which case they are
evaluated using SLG, or non-tabled in which case SLD evaluation is used.

Informally, an intermediate state of an SLG evaluation, called an SLG system,
consists of a set of subgoals and their associated clauses, including answers. Such
a system can be mapped to the usual forest-of-trees representation for tabling, in
which each subgoal forms the root of a tree in the forest, the clauses form nodes
of the tree, and answers are leaves with empty goal lists. Primitive operations for
SLG have been presented elsewhere, and we review them brie
y here. Assuming
all predicates in a program are tabled, the evaluation of de�nite programs can be

1Full details of SLG can be found in [2] and of the variant we use in [11]. Details of the
SLG-WAM for de�nite programs are in [13] and for strati�ed programs in [10].

modeled through four operational primitives. (1) Given a node N in a tree, new
subgoal checks to see if a the subgoal for a selected literal L already forms the
root of a tree in the forest (or, equivalently is in the global table); if the subgoal
is new, a new tree is created whose root is called a generator node and against
which program resolution is used. Whether or not this is the case, the status of N
becomes active with L as selected literal, and answer resolution will be used for L in
N (for negative selected literals, the status of N is set to suspended: see below). (2)
Because the derivation of answers may be asynchronous with their resolution against
active nodes, a positive return operation is formulated to explicitly perform the
resolution. (3) When a resolution path produces an empty node, an answer has
been derived, and a new answer operation is performed which changes the status
of the node to answer (operationally, this adds the answer to the table if it is not
already there). (4) Finally, when a subgoal (or set of subgoals) can produce no more
answers, it is termed completely evaluated. Through the completion operation,
an evaluation detects this condition and explicitly marks the subgoals as completed,
and their active and suspended nodes as disposed.

Determining when subgoals can produce no more answers may involve �nding
a set of mutually dependent subgoals, and a subgoal dependency graph (SDG) is
used to represent these dependencies. In the SDG, nodes consist of uncompleted
subgoals in the system. A positive link from S1 to S2 occurs in the SDG if an
active node in the tree for S1 has S2 as its selected literal. A negative link occurs
in the same manner, but when the node of S1 has status suspended. The mutual
dependencies in the SDG are termed Strongly Connected Components (or SCCs).
An SCC that depends on no other SCC is termed independent.

In the variant of SLG that we employ here, when a node has a selected negative
literal for a subgoal that is not completed, the node's status becomes suspended.
When the subgoal either succeeds (produces a fully evaluated answer) or fails, a
negative return operation is performed to either remove the literal from the
node, or to fail the derivation path.

In the evaluation of normal programs, a set of tabled subgoals may depend
upon one another through negation in such a way that none can be determined to
be completely evaluated before the rest. To allow tabled evaluation to proceed, SLG
applies a delaying transformation to ground negative literals involved in negative
loops, so that the remaining literals in the body of clauses can be resolved. The de-
layed literals are maintained in a delay list so that each node, including answers, is
represented as: answer template : � [delay list] goal list. If the goal list is empty,
then the node is an answer which is added in the table through the new answer

operation. In SLG, each node is associated with the subgoal S that forms the root
of the tree, so that answer template is subsumed by S, and if the node is an answer,
we will speak of the answer substitution which is the mgu of the answer template

and S. Answers in the system whose delay list is empty are termed unconditional,
while answers with a non-empty delay list are termed conditional. An answer is
called supported if none of the literals in its delay list is false; otherwise it is un-
supported. Unconditional answers are always supported. There is a one-to-one
mapping between an answer template and an answer substitution, and we may
group properties of answers according to answer substitution. Thus, we speak of an
unconditional (supported) answer substitution �S if there is an unconditional (sup-
ported) answer with answer substitution �S. Otherwise the answer is conditional
(unsupported). Finally, a subgoal S succeeds if it has an unconditional answer that
is a variant of S, and it fails if it is completely evaluated with no answers.

Delayed literals within conditional answers may be removed from the body of

clauses through simplification operations. We further discuss delaying and
simplification, along with other aspects of SLG, through Example 1.1. Finally,
we mention that throughout this paper we assume a left-to-right computation rule.
Example 1.1 We present in detail the evaluation of a query ?- t with respect
to the program of Figure 1(a) where all predicates are tabled. We depict an SLG

t :- :p.
p :- q.

q :- :r.
r :- q, s.

s :- r.

t:susp:t :- :p.
p:act:p :- q.

q:susp:q :- :r.
r:act:r :- q, s.

t:susp:t :- : p.

p:act:p :- q.

q:act:q :- [:r].
r:act:r :- q, s.

t:susp:t :- :p.
p:ans:p :- [q].

q:ans:q :- [:r].
r:act:r :- [q],s.

s:act:s :- r.

failed(t).

p:ans:p.

q:ans:q.

failed(r).

failed(s).

negnegt p q r t p q rneg negt p r s

(a) (b) (c) (d) (e)

Figure 1: A program, selected SLG systems, and their SDGs for the query ?- t.

clause with status status of an SLG tree of subgoal S as S : status : A :- Body,
where the head of the clause A is an answer template. In the �rst stage of the
evaluation, the system in Figure 1(b) is produced. In this system, the leftmost
literal of the �rst four clauses has been selected. Clauses waiting for answers to
be returned to them have the status act (active), those waiting for completion
of a negative literal have the status susp (suspended). As can be seen from its
accompanying SDG, the evaluation has encountered a negative loop containing q

and r. Together, both subgoals form an SCC which is also independent. In order
to determine the truth of q and r in the well-founded model, the computation rule
must be broken so that other literals in clauses for q and r may be resolved. The
negative literals involved in the independent SCC are delayed, producing the system
in Figure 1(c) in which delayed literals are shown in a delay list. At this stage the
clause q:act:q :- [:r] has no more literals to resolve and becomes a conditional
answer, q:ans:q :- [:r] (through the new answer operation). This conditional
answer can be returned to the clause for r or to that for p. We assume that it is
�rst returned to p (through the positive return operation) producing another
conditional answer, and to r which then calls s and afterwards, recursively, itself.
The resulting system is shown in Figure 1(d). At this stage, s and r, which are in
a positive loop, have been completely evaluated and can be completed, with both
s and r failed. Upon the completion of r, the answer q:ans:q :- [:r] should
be made unconditional, since :r is now true. SLG addresses situations such as
this through the simplification operation which simpli�es away delayed literals
of conditional answers. Using a simplification operation, :r is removed from
the delay list for q making the answer q unconditional. This unconditional answer
enables a further simplification operation in the answer for p. Finally, since p has
succeeded the suspended clause for t fails (through a negative return operation),
leading to the �nal system of Figure 1(e).

We summarize the actions of Example 1.1 in handling negative loops: Delay-
ing can be thought of as a mechanism for dynamically changing the left-to-right
computation rule. As seen from the SDG of Figure 1(c), delaying a literal may also
avert dependencies through negation. As shown by the failure of r, delaying may
also allow a clause that creates a cyclic negative dependency to fail based on the
falsity of a literal in its body. Such failures trigger simplification operations. In
general, delayed literals that are true should be deleted from answers, and answers
with delayed literals that are false should be deleted from the system.

When resolution occurs for an active or suspended node, any variable bindings

accumulated in the answer head are propagated through uni�cation. However, de-
layed literals themselves are not propagated. Instead, positive delayed literals are
created as placeholders for propagating truth values of delayed ground negative lit-
erals. In Figure 1(d), the active clause for p uses the placeholder q, rather than
propagating the delayed list [:r]. This use of positive delayed literals guarantees
a polynomial representation of answers of queries that may otherwise have an ex-
ponential number of answers with only ground negative literals in answer bodies
(see [2] for an example of that situation).

In a �nal system, each delayed literal in the body of an answer corresponds to
the head of some conditional answer of that subgoal; i.e. an answer with delayed
literals in its body. The set of answers resulting from the evaluation of a query Q

with respect to a program P can be viewed as a residual program of the program-
query pair hP;Qi. This residual program consists of all answers of the query plus
the rules of all head atoms upon which the answers of the query depend directly or
indirectly through delayed literals in answer bodies.

Implementation Overview Example 1.1 brings up a number of issues that are
involved in implementing the well-founded semantics in a WAM-style framework.

Suspending and Resuming Computations In a tabled evaluation, the deriva-
tion of an answer may be asynchronous with its consumption by an active
node, and in a non-strati�ed program the resolution or delaying of a neg-
ative literal may be asynchronous with its completion or the derivation of
a conditional answer. A mechanism must therefore be provided to suspend
computation of active clauses, and to resume a computation at some point
after an answer is derived, or after a non-successful subgoal is completed.
[13] explains how a forward trail can be used to resume environments, and
also discusses how suspend and resume a�ect memory management. It also
discusses instructions for de�nite tabling which are presented in passing be-
low: the tabletry instruction which performs much of the SLG new subgoal

operation, and the answer return, new answer, and completion SLG-WAM in-
structions.

Determining SCCs and Resolving Negative Literals Mechanisms are needed
to determine when a subgoal has been completely evaluated : when every pos-
sible answer for that subgoal has been derived. The incremental stack-based
algorithm of [13] was altered in [10] to e�ciently compute �xed-order strati-
�ed programs. This involved a mechanism to detect negative loops by lazily
constructing parts of SDGs. Section 2 discusses how this negative loop check
is extended to normal programs, along with the tnot/1 predicate that resolves
negative literals in normal programs.

Table Access Routines Table access routines must be developed to check whether
an evaluation has called a subgoal or derived an answer, and to insert the sub-
goal or answer if not. A previous paper presented a solution using tries that
was e�ective for answers with empty delay lists [7]. Section 3 addresses how
tries can be extended to store delay lists and to support simplification.

Manipulating Delay Lists Delay lists occur not only in answers, but in the heap
for active and suspended clauses. Section 3 discusses the representation of
delay lists, and their maintenance under backtracking, suspend and resume.

Simpli�cation Operations The table space must also be extended to e�ciently
perform simpli�cation when the truth value of a literal in the delay list of an
answer becomes known, and so that these simplification operations can be
propagated if necessary. Section 4 discusses simplification in detail.

2 Handling Negative Literals
Mechanisms for detecting loops through negation, and for executing non-strati�ed
negation are based squarely on features of an engine that evaluates �xed-order
dynamically strati�ed programs ([13, 10]). Dynamically strati�ed programs were
introduced in [6], and di�er from most strati�cation formalisms in that recursive
components are determined in the course of a trans�nite �xpoint computation. The
power of dynamic strati�cation can be seen from the fact that a normal program
has a two-valued well-founded model i� it is dynamically strati�ed. Otherwise, in a
partial well-founded model, the unde�ned atoms may be designated as belonging to
the ultimate stratum. [11] introduces a natural restriction of dynamic strati�cation
to a �xed-order computation rule, along with a restriction of SLG, SLGRD (SLG
with Reduced Delaying) which delays negative subgoals only if they have no left-
to-right derivation. Speci�cally,
Theorem 2.1 ([11]) Let :S be a selected literal in a left-to-right SLGRD evalua-
tion of a ground program P . Then the delaying operation is applied to :S if and
only if S belongs to the ultimate left-to-right dynamic stratum of P .
Theorem 2.1 can be seen as addressing the question of relevance in SLGRD . In
principle, if a rule instance is used in a left-to-right well-founded evaluation, a literal
of that rule should be relevant only if it is preceded by a sequence of literals that
are true or unde�ned in the well-founded model of the program. This criterion for
relevance is quite strong and appears unobtainable in practice. Theorem 2.1 thus
states our approximation to this ideal measure of relevance by using the notion of
an ultimate left-to-right dynamic stratum.

Detection and handling of loops through negationAs shown by Example 1.1,
the evaluation of normal programs may encounter loops through negation. For
the correct evaluation of such programs, a negative loop detection mechanism is
required. Fortunately, in the SLG-WAM the same dependency mechanism that
detects completion of tabled subgoals can also be used to detect SCCs containing
loops through negation. First, a tabled parent register is added to the engine, and
stored in choice points. The use of this register, along with other information about
environments for calls to positive and negative subgoals, embeds the SDG in the
WAM Choice Point stack, as described in [10]. The completion instruction starts
with a stack-based approximation of the SDG. If there is a possibility that there is
a negative loop involving a subgoal about to be completed, the completion instruc-
tion lazily constructs a subgraph of the SDG to �nd the independent SCC I, and
determine if there is a negative loop among subgoals in I. Otherwise, the completion
instruction can complete subgoals based on their stack-based approximation.

Resolving Negative Literals in a Well-FoundedModel The predicate tnot/1
resolves negative literals in the SLG-WAM. Figure 2 sketches its implementation
using low-level builtins. When the negation involves a completed ground subgoal,
the builtin negate truth value/1 fails, succeeds, or delays depending on whether the
subgoal succeeds, fails, or has only conditional answers, respectively.
A more complex case of tabled negation occurs when the subgoal is still incomplete.
Then, the negation suspend/1 builtin, introduced in [10], suspends the current com-
putation, which will later be reinvoked when more is known about the truth value of
the subgoal. At the engine level, the suspension is performed by placing a negation
suspension frame onto the choice point stack to save the execution environment for
the suspended computation; this is done in a manner similar to the way computa-
tions are suspended on creating active nodes. In addition to the usual information of
WAM environments, this frame also contains a pointer to the subgoal that is being

tnot(S) :-
ground(S) !

(subgoal not in system(S), call(S), fail
; (is complete(S) ! negate truth value(S)
; negation suspend(S), tnot resume(S)))

; error("Flounder: subgoal ", S, " is not ground").

Figure 2: The implementation of tabled negation (tnot/1) for normal programs.

negatively suspended, and a Status �eld that will be later �lled by the completion
instruction to indicate whether the literal is delayed.

Three outcomes can occur for a negatively suspended literal; it can succeed, fail,
or its subgoal can complete with conditional answers only. Negation suspensions of
subgoals that succeed are removed so that the tnot resume/1 builtin will never be
called and the associated suspended clauses e�ectively fail. Otherwise, the comple-
tion instruction will create negation resume choice points chained together on the
choice point stack. Upon backtracking to these choice points, the engine resumes the
environment of the suspended computation (using the negation suspension frame),
and continues execution of the suspended clause.

Operationally, subgoals are resumed upon: (1) determining that the subgoal is
completely evaluated, and (2) delaying the subgoal before its completion. In the
�rst case, the subgoal will either be failed, or will have conditional answers only.
If the subgoal is failed, tnot resume/1 will do nothing, e�ectively resolving away a
literal for a failed subgoal. If the subgoal has conditional answers, tnot resume/1
will add the conditional negative literal to the delay list. In the second case, the
negation resume instruction was scheduled to break a loop through negation, and
the Status �eld of the negation suspension frame is marked as delayed. Once again,
tnot resume/1 will add the negative literal to the delay list, as if it were completed
with conditional answers.

3 Delaying and Handling of Conditional Answers
Delay lists and Delay elements As discussed in Section 1.1, delay lists rep-
resent unevaluated or unde�ned literals in the body of a clause. When and if the
truth value of these literals becomes known, simplification operations will either
remove the literals from the delay list, or dispose of the clause. The representation
of delay lists in the SLG-WAM must therefore support several operations: adding
elements to the delay list in the course of resolution; copying the delay list into the
table, and simplification.

At an operational level, a delay list can be thought as an extra argument in
tabled predicates. At subgoal call the argument is initialized to a variable repre-
senting an empty delay list; during resolution the variable may get bound to a list
of literals. In terms of the table, the binding of the delay argument is treated as
part of an answer and copied into the table if the derivation is successful. Ob-
taining a representation of the elements of delay lists, delay elements, to support
the above operations is complicated by changes made to the variable bindings of
a literal in the course of resolution. Consider the operational detail of delaying
a literal for a clause C. First, a selected literal is called during the course of
computation: for purposes of illustration let this literal be p(X;Y). Then, sup-
pose p(X;Y) has a conditional answer: p(a; Y): answer resolution propagates the
binding X = a into C, and p(a; Y) is added to the delay list. Finally, suppose

further resolution of C adds the binding Y = b. How should the delayed literal be
represented within the delay list? As p(X;Y), as p(a; Y) or as p(a; b)? E�cient
support of the above operations requires the delay element be represented by a
triple: hSubgoal Id; Literal; Answer Substr Idi where:

Subgoal Id indicates delayed literal as it was when it was a subgoal e.g. p(X;Y);

Literal indicates the delayed literal with all bindings accumulated during the course
of resolution e.g. p(a; b); and

Answer Subst Id either indicates the answer substitution if the delayed literal is
positive, e.g. p(a; Y), or contains the marker: if the delayed literal is negative.

In terms of data structures, Subgoal Id is a pointer to a subgoal frame (a data
structure in the table containing information on tabled subgoals: see Section 4.4),
while Answer Subst Id is a pointer to a node of the answer trie (see below) that
uniquely identi�es the answer substitution. A null pointer is used to denote the :
indicator. Note that the only part of the Literal that has to be explicitly stored
is the substitution for the variables in the answer, if any. Also note that even
though simplification may delete elements from the delay lists in tabled answers
it will never change the bindings for these delay elements. For notational conve-
nience, we will present answers by indicating their answer substitution; i.e. a set of
substitutions for the variables in the subgoal, since this is how tabled answers are
represented in the SLG-WAM [7]. Also, we will usually use the shorthand h:Li to
denote a negative delay element of the form hG;L;:i, since in a non-
oundering
evaluation, G must be ground and so G = L. Variations of the program in the fol-
lowing example will be used throughout this paper to describe the data structures
used to implement the delay operations.
Example 3.1 Consider the evaluation of query ?- p(X) against the program of
Figure 3. This requires delay of both positive literals, and of negative literals. No
simpli�cation is possible, however. This query produces the subgoals and answers
also shown in Figure 3. Both subgoals and answers are shown in chronological
order of generation when a \depth-�rst" scheduling strategy is used. The answers

:- table p/1.

p(f(X)) :- p(Y), r(X,Y), :q(X).
p(g(X)) :- q(X).

p(Y) :- r(X,Y), :p(Y).

q(X) :- r(X,g(X)).

r(a,g(c)). r(b,g(b)).

Subg Answer Ans Id

p(X) g(b) [] p(X)
1

g(c) [h:p(g(c))i] p(X)
2

f(a) [hp(X);p(g(c)); p(X)
2
i] p(X)

3

p(g(c)) [h:p(g(c))i] p(g(c))
1

p(g(b)) [] p(g(b))
1

Figure 3: A program requiring delay and the tables created for the query ?- p(X).

are shown as split into two parts; the answer substitution (e.g. g(c)), and the delay
list (e.g. [h:p(g(c))i]). Answers for di�erent subgoals may be conditional on the
same sets of delayed literals (e.g. answers p(X)

2
, and p(g(c))

1
). Note that in general

the same answer substitution can also have many di�erent delay lists corresponding
to di�erent derivations of the answer substitution. How the SLG-WAM supports
this many-to-many relationship e�ciently is illustrated below.

One of the goals of the SLG-WAM is to cleanly integrate SLG and SLD resolu-
tion. The introduction of conditional answers gives rise to an extra complication:
delay lists must be propagated through the \unfoldings" of SLD resolution as illus-
trated by the following example.
Example 3.2 We extend the program of Example 3.1 to include both a tabled
(pt/1), and a non-tabled (pp/1) alias for predicate p/1, along with a predicate u/1

which produces the unconditional answers of p/1. Figure 4 shows the extension,
and some of the tables that are created by the evaluation of queries pt(X) and u(X).
The answers to pt(X) should be self-explanatory. Contrast, however, delay lists of

:- table pt/1, u/1.

pt(X) :- p(X).

pp(X) :- p(X).

u(X) :- pp(X), : pt(X).

Subg Answer Ans Id

pt(X) g(b) [] pt(X)
1

g(c) [hp(X);p(g(c)); p(X)
2
i] pt(X)

2

f(a) [hp(X);p(f(a)); p(X)
3
i] pt(X)

3

u(X) g(c) [hp(X);p(g(c)); p(X)
2
i; h:pt(g(c))i] u(X)1

f(a) [hp(X);p(f(a)); p(X)
3
i; h:pt(f(a))i] u(X)2

Figure 4: Tables created for the queries ?- pt(X). and ?- u(X).

the answers of the u(X). These lists contain delay literals p(g(c)), and p(f(a))

which have been propagated through the non-tabled pp/1.

Delay list implementation and maintenance Delay lists are not only repre-
sented in the table, but also in the heap as a Prolog list, to which delay elements
can be added in constant time. Once an answer is derived, the delay list is copied
from the heap, interned, and stored in the answer table (all through the new answer
SLG-WAM instruction).

The WAM maintains information about the state of the computation in global
registers. To keep track of the current delay list, we introduce a new register,
dreg . Accordingly, all choice point frames used for program clause resolution, are
expanded with an extra �eld that records the value of dreg at the time of choice point
creation. Let S be the nearest tabled ancestor of a subgoal being evaluated. Then
dreg is updated to point to the delay list of the generator subgoal for S, under the
following three conditions. (1) When a new tabled subgoal is called or backtracked
into, dreg is set to point to an empty delay list. (2) As is done for all other WAM
registers, dreg is restored to its earlier value in the event of backtracking. (3) The
value of dreg is also updated in forward continuations of tabled predicates to re
ect
the resolution of a conditional answer in SLG. The introduction of dreg requires
changes to many SLG-WAM instructions, which are described in the full version of
this paper.

Extending the SLG-WAM Table Space for Delay As discussed in [7], the
table space of XSB is built around tries since these structures can avoid repeated
rescanning of common subterms within subgoal and answer tables. However, the
tries of [7] allow storage and manipulation of unconditional answers only, and an
extension is necessary to store delay lists in answer tables. This extension should
e�ciently support simplification, and, since delay lists do not need to be copied
out of the table, it should not impose an overhead on the return of answers

The SLG-WAM associates with each tabled subgoal set an answer trie, which
is organized using answer substitutions. Nodes of the trie consist of four �elds:
atom, child, parent, and sibling. The atom �eld records information about the
answer substitutions. The outgoing transitions from a node are traced using its
child pointer and by then following the list of sibling pointers of this child. An
answer substitution may have many delay lists associated with it, corresponding to
various partial deductions. We therefore access delay lists through the leaves of the
answer substitutions, e�ectively factoring the answer substitutions. Access from an
answer substitution �S is through a DelayInfo record that contains information
a pointer to a list of delay lists upon which an �S is conditional, back pointers to
positive delay elements conditional on �S, and a pointer back to the subgoal with
which �S is associated. Naturally, leaf nodes of unconditional answer substitutions

have null child pointers. Figure 5 provides a close look at these trie data structures
by presenting the subgoal trie for predicate p/1 of Example 3.1, and answer tables
for two of these subgoals. The �elds of the answer substitution trie nodes are shown
in the order: atom, child, parent, and sibling (parent pointers are used to return
answers, as explained below).

Subgoals:
S1 : p(X)
S2 : p(g(c))
S3 : p(g(b))

Answers for p(X):

Ans. Subst. Delay List

X = f(a) [hp(X);p(g(c)); p(X)
3
i]

X = g(b) []
X = g(c) [h:p(g(c))i]

Answers for p(g(c)):
Ans. Subst. Delay List

[h:p(g(c))i]

V1

b

p/1

 g/1

a

 g/1f/1

c

S1

S2

[< ,p(g(c)), >] [< ,p(g(c)), >]

c b

S3

Answer

Subgoal Trie for p/1

for
p(X)

Table

Answer return list

Delay Info

Figure 5: Subgoal and answer tables (using tries) for predicate p/1 of Example 3.1.

Both delay elements and delay lists are interned in global data structures since,
as illustrated by Examples 3.1 and 3.2, a given delay element may appear in more
than one delay list. These are called Interned Delay Elements (IDEs) and Interned
Delay Lists (IDLs) respectively. Interning elements usually saves space. However,
the main advantage of interning is that simpli�cation operations can now be shared:
for example, one simpli�cation operation for an interned delay element ide su�ces
to simplify all delay lists that contain the ide. Section 4 fully discusses this point.

A node may be delayed positively on a conditional answer, or negatively on a
(ground) negative literal. The structure of IDEs re
ect this fact. Positive IDEs
are grouped together based on their Answer Subst Id �eld (which identi�es their
answer substitution), while negative IDEs are grouped based on their Subgoal Id.
We can therefore refer to the positive IDEs of an answer substitution, or the negative
IDEs of a subgoal.

While these data structures are detailed at the level of instruction execution in
Section 4.4, we broadly summarize their uses here. First there is a one-to-many rela-
tion between an answer substitution �S and its (interned) delay lists. It is important
to maintain this relation explicitly since the addition of an unconditional answer for
�S means that all its conditional answers are unnecessary and should be removed.
Next, because the same delay list may occur for many answer substitutions, delay
lists are interned as IDLs so that a single simpli�cation operation will su�ce for
many delay lists (cf. in Example 3.1, the delay lists containing h:p(g(c))i). These
IDLs in their turn, consist of delay elements which are interned as IDEs so that
they can be grouped together. IDEs contain pointers back to the delay lists that
contain them, explicitly maintaining a relation used to propagate simpli�cation (cf.
in Example 1.1, the propagation of the simpli�cation of :r through the answer for
q to the answer for p).

Answers from completed subgoals may be returned by backtracking through the
answer trie [7]. However, since answers may be placed anywhere in the answer trie,
(for example, in Figure 5 the answer substitutions for p(X) are derived in the order

p(g(b)), p(g(c)), and p(f(a))) the SLG-WAM maintains the answer return list to
return answers to incomplete subgoals. This list chains together the leaves of the
answer substitution trie (in chronological order) e�ectively avoiding the traversal
of delay information when returning answers. To return answers accessed through
the answer return list, every node of the answer substitution trie maintains a back
pointer to its parent node.

4 Simpli�cation
Simpli�cation of delayed literals is necessary so that when subgoals are completed,
a ground instance of a subgoal S is true in the well-founded model if and only if it
is an instance of a unconditional answer, and a subgoal S is false if and only if it
has no answers, conditional or otherwise.2

4.1 Simpli�cation Principles

Example 1.1 provides instances of simpli�cation of both positive and negative de-
layed literals. As mentioned above, not all delayed literals are unde�ned in the
well-founded model, and some may become known to be true or false later during
the process of SLG evaluation. When their truth value does become known, the
literal or clause may be simpli�ed away, but until then answers conditional on the
delayed literal may be used to derive further answers and may unnecessarily open
up the search space. We therefore adhere to the following principles:
Principle I Conditions for simpli�cation of delayed literals should be detected, and
the simplification operation should be applied, as early as possible.
Principle II Derivation of an unconditional answer for a subgoal S should imme-
diately remove from the table for S all conditional answers with the same answer
substitution.
Principle III Unsupported answer substitutions (see Section 1.1) should be re-
moved from the answer tables as soon as possible.

4.2 Events that trigger simpli�cations

In order to follow Principle I, that is roughly, to simplify as soon as possible, the
SLG-WAM performs simpli�cation whenever the truth value of a subgoal or answer
becomes known. Simplification is driven by the following three events:

Derivation of an unconditional answer signi�es that all instances of the answer
will be true in the well-founded model of the program. Unconditional answers for
a subgoal S can be produced: (1) through program or answer clause resolution
before the completion of S; the new answer is then inserted in the answer table by
executing a new answer instruction, and (2) through simpli�cation of an existing
conditional answer by removing the last delay element from its delay list. Note that
in the latter case, the subgoal S might have already been completed.
Let A be a new unconditional answer of a subgoal S, and let �S be its answer
substitution. The derivation of A removes all conditional answers with �S from the
system (Principle II), and can trigger simpli�cation of both positive and negative
delay elements; (all positive elements of �S become true, while negative elements
of S become false). Note that simpli�cation of positive delay elements takes place

2Technically, the truth of the above statement requires the implementation of the SLG answer

completion operation. Our experience has shown that this operation is rarely needed in practical
programs, and its omission does not a�ect the soundness of our results.

only when conditional answers with answer substitution �S have already been (con-
ditionally) returned to consuming subgoals.

Completion of a subgoal with no answers The subgoal fails. As a result, all
negative elements delayed on that subgoal now succeed, and can be removed from
the delay lists that contain them. At an operational level, a step of the completion
instruction checks whether there are any negative IDEs for the failed subgoal, and
if so, triggers simpli�cation. Note that no direct simpli�cation of positive delay
elements can be initiated by a failing subgoal.

Deletion of an unsupported answer substitution Simpli�cation can change
the status of an answer substitution �S for a subgoal S from supported to unsup-
ported when the last conditional answer is removed due to one of its delay elements
becoming false. In this case, following Principle III, the engine must address two
types of situations. First, all answers delayed (positively) on �S must be removed.
This can cause further simpli�cations to occur in answers delayed on these condi-
tional answers. Secondly, if S is already marked as completed and �S was its last
answer substitution, then now S fails. Simpli�cations should take place similar to
those initiated by completion of a subgoal with no answers.

4.3 Simpli�cation procedures

The simpli�cation procedures perform two types of actions:

Deletion of a delay element from delay lists is directly applicable either when
a subgoal fails, or when an unconditional answer is derived for a conditional answer
substitution. In this case, all delay lists that contain the simpli�able delay element
are shortened by one element. More speci�cally, when a subgoal S fails all negative
delay elements whose Subgoal Id is S are removed from the lists where they appear.
Similarly, all positive delay elements whose Answer Subst Id is �S are removed
upon the derivation of an unconditional answer substitution �S .

Deletion of unsupported answers takes place when an answer becomes un-
supported because one of its delay elements is found to be false. This happens
either when an unconditional answer is derived for a subgoal S (in which case all
negative delay elements whose Subgoal Id is S are false), or when a conditional
answer substitution �S changes status to unsupported (in which case all positive
delay elements whose Answer Subst Id is �S become false). Note that because of
the factoring of answers on their answer substitution, deletion of answers in this
case may involve deletion only of delay lists. In the SLG-WAM, the following four
procedures implement the abstract operations speci�ed above:

simplify neg fails(Subgoal) Removes the negatively delay elements of a failed sub-
goal from delay lists.

simplify pos unconditional(AnswerSubstitution) Removes the positively delay ele-
ments of an unconditional answer substitution from delay lists.

simplify neg succeeds(Subgoal) Deletes answers negatively delayed on a successful
subgoal.

simplify pos unsupported(AnswerSubstitution) Deletes answers positively delayed
on an unsupported answer substitution.

Figure 6 contains representative pseudocode; the remaining procedures are similar
and are presented in the full version. Note that all procedures that implement
the simpli�cation operations are mutually recursive. This re
ects the fact that

Procedure simplify pos unconditional(AnswerSubstitution)

foreach PIDE in the IDE list of AnswerSubstitution
foreach IDL in which this PIDE appears
IDL := IDL � fPIDEg; /* remove the positive IDE from the delay list */
if (IDL = []) then /* the DL is empty; answers are now unconditional */
foreach answer A having answer substitution �S and IDL as delay list
i. Initiate a simplify pos unconditional(�S) simpli�cation;
ii. if (the subgoal S containing A now succeeds) then

Initiate a simplify neg succeeds(S) simpli�cation;

Figure 6: Pseudocode for one of the four simpli�cation procedures.

simpli�cation operations usually have a cascading e�ect. To e�ciently implement
both categories of simpli�cation operations mentioned above, we need information
linking each interned delay element E to the set of interned delay lists that contain
E, and this information is described in the following section.

4.4 SLG-WAM data structures that support simpli�cation

Clearly, the e�ciency of the simpli�cation operations heavily depends on the data
structures that support them. For example, to e�ciently perform simpli�cation
triggered by the derivation of an unconditional answer for a conditional answer, the
answer should be associated with its delay elements. The interned delay elements
need to be associated with the delay lists that contain them, and in turn, each of
these delay lists needs to be associated with the set of answers in which they are
contained. Figure 7 shows the persistent data structures added to the WAM,
and their relationships. Information about subgoals is recorded in subgoal frames;

IDE Table
...

...
IDL Table

...

...

...

...

<S1,L1,->

<S3,L4,->

Subgoal frames

Answer

(P)IDE list

S2

...S1

...
S3

(N)IDE list

[ide1]

[ide1,ide2]
[ide3,ide2,ide4]

S2 ...Delay info

Substitution
Trie

IDL usage info

IDL sets
ide1
ide2
ide3
ide4
ide5
ide6 ...

IDL

...
IDL

<S1,L6,->

...
[ide2,ide3,ide5,ide6]

η3

η2

η3

<S2,L2, >

<S2,L5, >

<S2,L3, >η3

Figure 7: Relationships between Persistent SLG-WAM Data Structures

through which, a subgoal S is associated with an answer trie, the answer return
list, and the list of negative IDEs of S. Note the DelayInfo record of the condi-
tional answer substitution �3 contains a pointer to a list of positive IDEs of �3, the
backpointer to the subgoal for �3, and the set of delay lists associated with �3.

The delay lists and elements are interned and stored in global tables, the Interned
Delay List (IDL) Table, and the Interned Delay Element (IDE) Table, respectively.

The information stored in the entries of these tables is actually in the form of
pointers (to subgoal frames, answer substitutions, and entries of the IDE Table);
they are not shown as such for readability of the �gure. Each entry of the IDE Table
is associated with the set of delay lists that contains this entry as an element. Also,
each entry of the IDL Table is associated with the conditional answer substitutions
that point to this entry.

Entries in the IDE Table, once inserted, appear uniquely. Note, however, that
through simpli�cation, the IDL Table can contain duplicates (for example, by sim-
plifying ide2 through a simplify pos unconditional simpli�cation). Currently, XSB
does not collapse these elements. Also, through simpli�cation, IDLs may become
empty (for example failure of S1 causes simpli�cation of ide1, so that the last entry
of the IDL Table becomes empty). Empty IDLs are removed from the table.

5 Performance
Overhead for the Evaluation according to the WFS As reported in [9], the
SLG-WAM performs signi�cantly better than other deductive database systems for
in-memory computation of a variety of recursive queries. For de�nite programs,
the SLG-WAM adds a 10-15% overhead to the WAM [13], while [10] reports that
the additional overhead for the evaluation of �xed-order strati�ed programs is less
than 1%. The full version of this paper also measures the cost that the additions
for Well-Founded Semantics add to previous generations of engines, and �nds that
this overhead is minimal as well. In other words, the ability to compute the Well-
Founded Semantics adds about 15% to Prolog execution (mostly for mechanisms to
support tabling for de�nite programs), and adds about 2% overhead to the tabling
engine for de�nite programs.

Performance of Tabled Negation To our knowledge, the win/1 program is still
the only standard benchmark in the well-founded semantics literature. Its SLG
and SLD versions, are shown below. SLD resolution is su�cient for acyclic move/2
graphs (like chains and trees). In this case the well-founded model is two-valued.

win(X) :- move(X,Y), tnot(Y). win(X) :- move(X,Y), not(Y).

Figure 8 contains timing results (in seconds) for executing 50 iterations of the
query ?- win(1), fail. over di�erent data structures. For chains and trees, each
subgoal has at most one answer. For the case of the chain, the performance of SLG is
comparable to SLDNF (less than 2 times slower). In the case of the complete binary
tree, however, SLG is much slower. This is because tabled negation has to fully
evaluate negative literals before completing them, and consequently, it traverses
the entire search space which is exponential in the height of the tree (see [9]).

0

10

20

30

40

50

60

70

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

C
P

U
 T

im
e

(in
 s

ec
s)

Tuples of move/2 relation

SLD chain
SLG chain

SLD tree
SLG tree

SLG cycle

Figure 8: Performance of the win/1 program over di�erent data-structures.

The SLD version of win/1 will not terminate if move/2 contains cycles. Under the
WFS, all answers of win/1 over a cyclic data structure are unde�ned. The evaluation
of the tabled version of win/1 over a cyclic data structure requires the loop checking
mechanism described in Section 2, and exact SCC detection to decide whether

delaying is needed. All answers are conditional and contain one element in their
delay list; these elements and delay lists are interned and stored in global tables.
Since delaying is always needed and no simplification is possible, performing
exact SCC detection and interning information to support simpli�cation, imposes
an unnecessary overhead to the evaluation of this program.

6 Discussion
Tabling radically expands the practical uses of logic programming, even for de�-
nite programs. Indeed, many new uses have already been demonstrated. It has
been shown in [3] that simple Horn representations of logic and functional program
analysis methods, as executed by the SLG-WAM, can compete with or even sur-
pass, special-purpose program analysis routines written in C. Furthermore, initial
experiments indicate that, under the reduction to Horn clauses speci�ed in [15], the
SLG-WAM can e�ciently perform model checking in the modal �-calculus.

These applications concern de�nite programs only. We believe that the recent
expansion of the SLG-WAM to compute the well-founded semantics will serve as
a computational basis for applications in non-monotonic reasoning. For instance,
the well-founded semantics, (perhaps expanded to include explicit negation) has
been shown to be expressive for reasoning using non-monotonic inheritance, for
diagnosis, for reasoning about actions [5], and as underpinnings for the behavior of
collaborative agents [4]. The practical implementation of applications such as these
forms the next avenue of research for tabling in logic programming.

References
[1] R. Bol and L. Degerstedt. Tabulated resolution for well founded semantics. In Pro-

ceedings of the International Symposium on Logic Programming, pages 199{219, 1993.
[2] W. Chen and D. S. Warren. Tabled Evaluation with Delaying for General Logic

Programs. JACM, 43(1):20{74, 1996.
[3] S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practical program analysis using

general purpose logic programming systems | a case study. In ACM PLDI, 1996.
[4] P. M. Dung. An Argumentation Semantics for Logic Programming with Explicit

Negation. In Proceedings of the 10th ICLP, pages 616{630, 1993.
[5] L. M. Pereira, J. N. Apar��cio, and J. J. Alferes. Non-monotonic reasoning with logic

programming. JLP, 17(2, 3, and 4):227{263, 1993.
[6] T. C. Przymusinski. Every logic program has a natural strati�cation and an iterated

least �xed point model. In Proceedings of the 8th ACM PODS, pages 11{21, 1989.
[7] I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S. Warren. E�cient tabling

mechanisms for logic programs. In Proceedings of the 12th ICLP, pages 687{711, 1995.
[8] K. A. Ross. A procedural semantics for well-founded negation in logic programs. JLP,

13(1):1{22, 1992.
[9] K. Sagonas, T. Swift, and D. S. Warren. XSB as an e�cient deductive database

engine. In Proceedings of the ACM SIGMOD Conference, pages 442{453, 1994.
[10] K. Sagonas, T. Swift, and D. S. Warren. An Abstract Machine for Fixed-Order

Dynamically Strati�ed Programs. In Proceedings of the 13th CADE, LNAI, 1996.
[11] K. Sagonas, T. Swift, and D. S. Warren. The Limits of Fixed-Order Computation. In

Proceedings of the First International Workshop on Logic in Databases, LNCS, 1996.
[12] P. J. Stuckey and S. Sudarshan. Well-Founded Ordered Search. In Proceedings of

13th Conference on FST-TCS, LNCS, pages 161{171, 1993.
[13] T. Swift and D. S. Warren. An abstract machine for SLG resolution: De�nite Pro-

grams. In Proceedings of the ILPS, pages 633{652, 1994.
[14] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general

logic programs. JACM, 38(3):620{650, 1991.
[15] S. Zhang, S. A. Smolka, and O. Sokolsky. On the parallel complexity of model checking

in the modal mu-calculus. In Proceedings of LICS'94, pages 154{163. 1994.

