
Introduction to CVS

Portions adapted from A Visual Guide to Version Control

Outline

• Introduction to Source Code Management & CVS
• CVS Terminology & Setup
• Basic commands

– Checkout, Add, Commit, Diff, Update, Remove, Log, Revert
• Other CVS items of interest

– Handling conflicts
– Ignoring certain resources
– Creating your own repositories
– Adding modules to a repository

• Popular clients
– TortoiseCVS
– Eclipse
– UNIX shell over SSH

What is Source Code Management

• A source code management (SCM)
system handles the management of
revisions of resources
– Typically, though not always source code

• So, why should you use one?

The “I’ll Roll My Own” Approach

• You’ve probably seen (or perhaps created)
messes like this…

• So, what exactly is in Foo.java.bak.bak?

[Dan@icarus grocery-list]$ ls Foo*
Foo.java Foo.java.DAN Foo.java.bak.bak
Foo.java.1030am Foo.java.Sep-2-1030am Foo.j ava.old
Foo.java.10am Foo.java.WORKING_AS_OF_11am
Foo.java.BROKEN Foo.java.bak
[Dan@icarus grocery-list]$

The “Shared Drive” Approach

• Can’t we just write to a directory on the shared
drive?

• Where’s the eggs developer A added?
– Problem gets worse as number of developers grows

Developer A Developer B

Milk

Milk
Juice

Milk
Eggs

Milk

Milk
Juice

Milk

Milk
Eggs

open open

save

save

Use in Industry

• Many development shops make use of some
type of SCM system where there is a need for
more discipline and management of source code
– Can you check to see if class Foo exhibits a particular

bug in that release A.B.C from last spring, we made
for customer X, for Linux, specifically the i686 build,
and if so, what other releases are also affected?

• Though there are many different SCM systems
out there, the concepts remain pretty similar
– CVS, Subversion, Git, ClearCase, SourceSafe, etc…

What is CVS?

• Concurrent Versioning System (CVS) is one of
the earlier SCM systems which gained wide
adoption
– Open source
– Easy to install and use
– Simple command line client
– Wide integration in a lot of development tools

• For good introduction on version control and
CVS see the following book…
– Pragmatic Version Control using CVS

CVS Terminology

• Repository – the place where resources
are stored

• Server – the computer hosting the
repository

• Client – the computer connecting to the
repository

• Working Set/Copy – your local copy of
resources housed in the repository

CVS Terminology

• Checkout – pull down resources from the
repository and create a working copy

• Checkin/Commit – place resources from your
working copy into the repository

• Add – place a resource under version control
• Remove – delete a resource from version

control
• Update – pull down changes from the repository

into your working copy
• Revert – overwrite resources in your working

copy with what is in the repository

CVS Setup

• The following setup/examples assume that you
are using a standard CVS command line client
and that the repository is accessible directly
through the file system

• You need to specify where the repository
resides, this is typically specified as an
environment variable
– bash shell

• export CVSROOT=/path/to/repo
– [t]csh shell

• setenv CVSROOT /path/to/repo

• Alternatively, you can specify the path to the
repository with the “-d” flag when needed

CVS Command

• The general form of CVS commands is:

– All CVS commands start out with “cvs”
– The cvs command must also have a command

specified to execute such as “checkout” or “commit”
– Commands may also have flags and/or arguments

which modify their behavior

• For a more help…
– General help: cvs --help
– List of commands: cvs --help-commands

cvs [cvs-options] command [command-options-and-argum ents]

CVS Checkout Command

• The “cvs checkout” command is used to
checkout code from the repository

• The last argument is the name of the
module you want to check out

[Dan@icarus code]$ cvs checkout grocery-list
cvs checkout: Updating grocery-list
[Dan@icarus code]$ ls
grocery-list
[Dan@icarus code]$ ls grocery-list/
CVS
[Dan@icarus code]$

CVS Directory

• You will note a CVS directory when you
check code out

• This is a directory that is utilized and
managed by the CVS client
– You should not mess with any files within it

– Doing so may cause issues with the CVS
client

[Dan@icarus code]$ ls grocery-list/
CVS
[Dan@icarus code]$

Creating Directories and Files

• Create directories and edit files using
whatever means you want…

[Dan@icarus grocery-list]$ mkdir -p src/edu/umbc/dhoo d2
[Dan@icarus grocery-list]$ emacs src/edu/umbc/dhood2/ GroceryList.java
[Dan@icarus grocery-list]$

Our Example Java File

[Dan@icarus grocery-list]$ cat src/edu/umbc/dhood2/G roceryList.java
package edu.umbc.dhood2;

import java.util.LinkedList;
import java.util.List;

public class GroceryList {

public static void main(String[] args) {

List<String> list = new LinkedList<String>();
list.add("Milk");

for(String item : list) {
System.out.println(item);

}
}

}
[Dan@icarus grocery-list]$

Checking Working Copy Status

• You can check the status of your working copy
at any time by issuing the “cvs -q update”
command…

• Here the “?” character means that this is
something that is in your working copy, but not
under version control

[Dan@icarus grocery-list]$ cvs -q update
? src
[Dan@icarus grocery-list]$ cvs add src/
Directory /srv/cvs/grocery-list/src added to the rep ository
[Dan@icarus grocery-list]$

Adding Directories to Source Control

• To add a directory to source control issue the
“cvs add” command

• Checking the status now reveals that the “edu”
subdirectory under “src” is unknown
– “src” has been added to the repository
– Need to repeat for subdirectories

[Dan@icarus grocery-list]$ cvs add src/
Directory /srv/cvs/grocery-list/src added to the rep ository
[Dan@icarus grocery-list]$

[Dan@icarus grocery-list]$ cvs -q update
? src/edu
[Dan@icarus grocery-list]$

Adding Files to the Repository

• First, you need to register the file as being under
version control by using “cvs add” command…

• You can verify that it has been added by
performing a “cvs -q update”
– The “A” means that it has been added

[Dan@icarus grocery-list]$ cvs add src/edu/umbc/dhood 2/GroceryList.java
cvs add: scheduling file `src/edu/umbc/dhood2/Grocer yList.java' for addition
cvs add: use 'cvs commit' to add this file permanentl y
[Dan@icarus grocery-list]$

[Dan@icarus grocery-list]$ cvs -q update
A src/edu/umbc/dhood2/GroceryList.java
[Dan@icarus grocery-list]$

Committing Changes

• Files that have been added your working copy can be
committed to the repository with “cvs commit”…
– The “-m” flag can be used to enter a message, otherwise the

editor specified with the CVSEDITOR environment variable is
used to author a message (or a default editor is used)

[Dan@icarus grocery-list]$ cvs commit -m 'initial lis t'
cvs commit: Examining .
cvs commit: Examining src
cvs commit: Examining src/edu
cvs commit: Examining src/edu/umbc
cvs commit: Examining src/edu/umbc/dhood2
RCS file: /srv/cvs/grocery-list/src/edu/umbc/dhood2 /GroceryList.java,v
done
Checking in src/edu/umbc/dhood2/GroceryList.java;
/srv/cvs/grocery-list/src/edu/umbc/dhood2/GroceryLi st.java,v <-- GroceryList.java
initial revision: 1.1
done
[Dan@icarus grocery-list]$

Diffing Files Against the Repository

• You can easily check what changes have been made to
a file by using the “cvs diff -u” command…
– Here another line of code (marked with a “+” has been added)

[Dan@icarus grocery-list]$ cvs diff -u src/edu/umbc/d hood2/GroceryList.java
Index: src/edu/umbc/dhood2/GroceryList.java
=== ================
RCS file: /srv/cvs/grocery-list/src/edu/umbc/dhood2 /GroceryList.java,v
retrieving revision 1.1
diff -u -r1.1 GroceryList.java
--- src/edu/umbc/dhood2/GroceryList.java 26 A ug 2008 14:15:45 -0000 1.1
+++ src/edu/umbc/dhood2/GroceryList.java 26 Aug 2008 14:21:02 -0000
@@ -9,6 +9,7 @@

List<String> list = new LinkedList<String>();
list.add("Milk");

+ list.add("Eggs");

for(String item : list) {
System.out.println(item);

[Dan@icarus grocery-list]$

Committing Changes to Existing Files

• Committing updates you have made to
files in your working copy (already added
to the repository) is very easy, just perform
another commit…

[Dan@icarus grocery-list]$ cvs commit -m 'added eggs to list'
cvs commit: Examining .
cvs commit: Examining src
cvs commit: Examining src/edu
cvs commit: Examining src/edu/umbc
cvs commit: Examining src/edu/umbc/dhood2
Checking in src/edu/umbc/dhood2/GroceryList.java;
/srv/cvs/grocery-list/src/edu/umbc/dhood2/GroceryLi st.java,v <-- GroceryList.java
new revision: 1.2; previous revision: 1.1
done
[Dan@icarus grocery-list]$

Getting Updates

• If updates have been committed to the
repository and you need to pull them down
into your working copy, issue a “cvs
update -d” command…
– The “U” indicates that the file has been

updated
[Dan@daedalus grocery-list]$ cvs update
cvs update: Updating .
cvs update: Updating src
cvs update: Updating src/edu
cvs update: Updating src/edu/umbc
cvs update: Updating src/edu/umbc/dhood2
U src/edu/umbc/dhood2/GroceryList.java
[Dan@daedalus grocery-list]$

Inadvertent Adds

• If you inadvertently add a file using a “cvs add”
and have not committed that file to the repository
it can simply be removed via a “cvs remove -f”
command…
– The “-f” flag deletes the file as well

[Dan@icarus grocery-list]$ cvs add src/edu/umbc/dhood 2/*
cvs add: cannot add a `CVS' directory
cvs add: src/edu/umbc/dhood2/GroceryList.java alread y exists, with version number 1.2
cvs add: scheduling file `src/edu/umbc/dhood2/Grocer yList.java~' for addition
cvs add: use 'cvs commit' to add this file permanentl y
[Dan@icarus grocery-list]$ cvs -q update
A src/edu/umbc/dhood2/GroceryList.java~
[Dan@icarus grocery-list]$
[Dan@icarus grocery-list]$ cvs remove -f src/edu/umbc /dhood2/GroceryList.java~
cvs remove: removed `src/edu/umbc/dhood2/GroceryList .java~'
[Dan@icarus grocery-list]$ cvs -q update
[Dan@icarus grocery-list]$

Inadvertent Adds (continued)

• If you have already committed the file to the repository
you will need to perform another commit (the remove
command will let you know if you need to)…

[Dan@icarus grocery-list]$ cvs remove -f src/edu/umbc /dhood2/GroceryList.java~
cvs remove: scheduling `src/edu/umbc/dhood2/GroceryL ist.java~' for removal
cvs remove: use 'cvs commit' to remove this file perm anently
[Dan@icarus grocery-list]$ cvs commit -m 'deleted acc idental commit'
cvs commit: Examining .
cvs commit: Examining src
cvs commit: Examining src/edu
cvs commit: Examining src/edu/umbc
cvs commit: Examining src/edu/umbc/dhood2
Removing src/edu/umbc/dhood2/GroceryList.java~;
/srv/cvs/grocery-list/src/edu/umbc/dhood2/GroceryLi st.java~,v <-- GroceryList.java~
new revision: delete; previous revision: 1.1
done
[Dan@icarus grocery-list]$

Getting Information on a Resource
• If you want to see the history for a file, you can use the

“cvs log” command to get back the date/time of commits
as well as the committal messages…

[Dan@icarus grocery-list]$ cvs log src/edu/umbc/dhood 2/GroceryList.java

RCS file: /srv/cvs/grocery-list/src/edu/umbc/dhood2 /GroceryList.java,v
Working file: src/edu/umbc/dhood2/GroceryList.java
head: 1.2
branch:
locks: strict
access list:
symbolic names:
keyword substitution: kv
total revisions: 2; selected revisions: 2
description:

revision 1.2
date: 2008/08/24 14:23:25; author: Dan; state: Ex p; lines: +1 -0
added eggs to list

revision 1.1
date: 2008/08/24 14:15:45; author: Dan; state: Ex p;
initial list
=== ==========================
[Dan@icarus grocery-list]$

Abandoning Changed Files

• If you really messed up your local copy of
a file and want to have the latest version
back from the repository instead, simply
delete the file and re-update…

[Dan@icarus grocery-list]$ cvs -q update
M src/edu/umbc/dhood2/GroceryList.java
[Dan@icarus grocery-list]$ rm src/edu/umbc/dhood2/Gro ceryList.java
[Dan@icarus grocery-list]$ cvs -q update
cvs update: warning: src/edu/umbc/dhood2/GroceryList .java was lost
U src/edu/umbc/dhood2/GroceryList.java
[Dan@icarus grocery-list]$

Handling Conflicts

• What happens in our previous scenario
when developer B tried to commit?

Developer A Developer B

Milk

Milk
Juice

Milk
Eggs

Milk

Milk
Juice

Milk

Milk
Eggs

open open

save

save

Handling Conflicts (continued)

• If we try to commit these changes CVS
detects a conflict…
– Both the working copy and the repository

have changes since last update

[Dan@daedalus grocery-list]$ cvs commit -m 'added jui ce'
cvs commit: Examining .
cvs commit: Examining src
cvs commit: Examining src/edu
cvs commit: Examining src/edu/umbc
cvs commit: Examining src/edu/umbc/dhood2
cvs commit: Up-to-date check failed for `src/edu/umb c/dhood2/GroceryList.java'
cvs [commit aborted]: correct above errors first!
[Dan@daedalus grocery-list]$

Handling Conflicts (continued)

• So, we need to do an update…
[Dan@daedalus grocery-list]$ cvs update -d
cvs update: Updating .
cvs update: Updating src
cvs update: Updating src/edu
cvs update: Updating src/edu/umbc
cvs update: Updating src/edu/umbc/dhood2
RCS file: /srv/cvs/grocery-list/src/edu/umbc/dhood2 /GroceryList.java,v
retrieving revision 1.1
retrieving revision 1.2
Merging differences between 1.1 and 1.2 into Grocer yList.java
rcsmerge: warning: conflicts during merge
cvs update: conflicts found in src/edu/umbc/dhood2/G roceryList.java
C src/edu/umbc/dhood2/GroceryList.java
[Dan@daedalus grocery-list]$

Handling Conflicts (continued)

• The file then looks like, we need to fix it…
[Dan@daedalus grocery-list]$ cat src/edu/umbc/dhood2 /GroceryList.java
package edu.umbc.dhood2;

import java.util.LinkedList;
import java.util.List;

public class GroceryList {

public static void main(String[] args) {

List<String> list = new LinkedList<String>();
list.add("Milk");

<<<<<<< GroceryList.java
list.add("Juice");

=======
list.add("Eggs");

>>>>>>> 1.2

for(String item : list) {
System.out.println(item);

}
}

}
[Dan@daedalus grocery-list]$

Handling Conflicts (continued)

• Once resolved, we can then commit the
changes back to the repository…

[Dan@daedalus grocery-list]$ cvs commit -m 'added jui ce'
cvs commit: Examining .
cvs commit: Examining src
cvs commit: Examining src/edu
cvs commit: Examining src/edu/umbc
cvs commit: Examining src/edu/umbc/dhood2
Checking in src/edu/umbc/dhood2/GroceryList.java;
/srv/cvs/grocery-list/src/edu/umbc/dhood2/GroceryLi st.java,v <-- GroceryList.java
new revision: 1.3; previous revision: 1.2
done
[Dan@daedalus grocery-list]$

Ignoring Specific Resources

• Most people do not check in certain
resources such as .class files and other
generated artifacts

• We can “blacklist” them by adding the
name of the resource to ignore to a file
called “.cvsignore” in that directory

Ignoring Specific Resources (continued)

• Without a .cvsignore file (bin contains the
compiled form of the src directory)

• With a .cvsignore file…

[Dan@daedalus grocery-list]$ cvs -q update
? bin
[Dan@daedalus grocery-list]$

[Dan@daedalus grocery-list]$ cat .cvsignore
bin
[Dan@daedalus grocery-list]$ cvs -q update
? .cvsignore
[Dan@daedalus grocery-list]$

Ignoring Specific Resources (continued)

• The contents of the .cvsignore file…

• After committing…

[Dan@daedalus grocery-list]$ cat .cvsignore
bin
[Dan@daedalus grocery-list]$

[Dan@daedalus grocery-list]$ cvs add .cvsignore
cvs add: scheduling file `.cvsignore' for addition
cvs add: use 'cvs commit' to add this file permanentl y
[Dan@daedalus grocery-list]$ cvs commit -m 'added ign ores'
cvs commit: Examining .
cvs commit: Examining src
cvs commit: Examining src/edu
cvs commit: Examining src/edu/umbc
cvs commit: Examining src/edu/umbc/dhood2
RCS file: /srv/cvs/grocery-list/.cvsignore,v
done
Checking in .cvsignore;
/srv/cvs/grocery-list/.cvsignore,v <-- .cvsignore
initial revision: 1.1
done
[Dan@daedalus grocery-list]$ cvs -q update
[Dan@daedalus grocery-list]$

Creating Your Own Repository

• One reason that CVS is popular is it’s
ease of install

• If you want a repository, all you need to do
is make a directory, set the CVSROOT
environment variable and run “cvs init”

[Dan@icarus code]$ mkdir -p /srv/cvs
[Dan@icarus code]$ export CVSROOT=/srv/cvs
[Dan@icarus code]$ cvs init
[Dan@icarus code]$ ls /srv/cvs/
CVSROOT
[Dan@icarus code]$

Adding Modules to a Repository

• You can add modules to a repository via a “cvs
import” command..
– Usage is “cvs import <module name> <vendor tag>

<initial tag>”

• Note: this imports the code only – you will now
need to check it out of the repository in order to
perform cvs operations against it

[Dan@icarus code]$ cd grocery-list/
[Dan@icarus grocery-list]$ cvs import -m 'initial imp ort' grocery-list personal start

No conflicts created by this import

[Dan@icarus grocery-list]$

TortoiseCVS

• TortoiseCVS is a popular Windows based
CVS client

• TortoiseCVS integrates directly with
Windows Explorer allowing you to perform
CVS operations from context menus

• You can get it free at:
– http://www.tortoisecvs.org/

(The following directions are for a default
installation of TortoiseCVS-1.10.7.exe)

TortoiseCVS – Checkout

• Right click in Explorer and select “CVS
Checkout…” from the menu of options

TortoiseCVS – Connection Settings

• Type in the parameters to connect to the
remote repository

• For example…
– Protocol: Secure Shell
– Server: linux[123].gl.umbc.edu (1, 2 or 3)
– Repository: /afs/umbc.edu/users/o/a/oates/pub/cs341f08/Proj0
– User name: Your GL/myUMBC username
– Module: Your GL/myUMBC username

TortoiseCVS – Connection Settings

TortoiseCVS – Connecting

• When trying to connect you will be prompted for
your GL/myUMBC password

TortoiseCVS – Checkout

• In the console, you should see similar logs to that of a
text based client, if all goes well you will see “Success”

TortoiseCVS – Checked Out

• TortoiseCVS will put an icon over the resource in
Explorer to indicate the status against the repository
– As you can see, the checkout went okay…

TortoiseCVS – Modified File

• Here we’ve create a new file called foobar.txt…
– Modified files are marked with a “?” just like the text based

version does when doing an update

TortoiseCVS – Adding to CVS

• To add a resource to CVS right click and choose
“CVS Add…”

TortoiseCVS – Added to CVS

• Here you can see that the symbol has been
changed to a plus, as it’s now under control…

TortoiseCVS – Committing a Resource

• To commit a resource, again right click and
choose “CVS Commit…”

TortoiseCVS – Committing a Resource

• Here you see the build in commit editor to
comment about newly committed resources…

TortoiseCVS – File Checked In

• Once checked in TortoiseCVS will flip the icon to the green
check to let us know that it has been committed and not modified…

TortoiseCVS – Modified Files

• If you modify a file, it will be flagged with a yellow arrow
indicating that it is pending committal…

TortoiseCVS

• For help and more documentation see…
– FAQ:

• http://www.tortoisecvs.org/faq.shtml

– User’s Guide:
• http://www.tortoisecvs.org/UserGuide_en.chm

Eclipse

• Eclipse has a built-in perspective for CVS
– All of the developer downloads come with it

pre-installed

(The following directions are for the Eclipse
Ganymede Eclipse IDE for Java Developer release)

Eclipse – CVS Perspective

• To open the CVS repository perspective select
Window � Open Perspective � Other…

Eclipse – CVS Perspective

• Select CVS Repository Exploring

Eclipse – Adding a Repository

• To add a repository, right click on the CVS Repositories
pane and select New � Repository Location…

Eclipse – Connection Settings

• Type in the parameters to connect to the
remote repository

• For example…
– Host: linux.gl.umbc.edu
– Repository Path: /afs/umbc.edu/users/o/a/oates/pub/cs341f08/Proj0
– User: Your GL/myUMBC username
– Password: Your GL/myUMBC password
– Connection type: extssh

• Save the password if you wish

Eclipse – Connection Settings

Eclipse – Viewing Repositories

• You should now see the repository under the
CVS Repositories Pane

Eclipse – Checking Out

• Expand the repository, expand HEAD, select your module
(username) then right click and choose Check Out As…

Eclipse – Checking Out (continued)

• Be sure to use the New Project Wizard, click
Finish…

Eclipse – Checking Out (continued)

• Select to check out the module as a Java
Project

Eclipse – Checking Out (continued)

• Name the project and click Finish…

Eclipse – Checked Out Code

• Switch back to the Java
Perspective and you will
see the module checked
out as a project
– Note the little orange

cylinders – that indicates
that it’s under version
control

Eclipse – New Resources

• Just like with the
command line, items that
are not know to be under
CVS control are marked
with a “?” symbol
– Such as the Eclipse

generated src folder

Eclipse – Synchronizing

• To commit to or update from the repository, right click on
the project and choose Team � Synchronize with
Repository

Eclipse – Committing Resources

• Here we see an outgoing arrow indicating that this needs
to be pushed to the repository
– Commits and updates can be performed by right clicking

Eclipse – Synchronized

• If all is in sync, you should see the “No
Changes” dialog as shown below…

UNIX Shell Over SSH

• If you are connecting from a UNIX-like
machine, then you probably have
everything you need to access the
repository remotely
– Most UNIX-like OS’s come with a command

line cvs and ssh suite

– You can easily configure cvs to use ssh to
connect to a remote repository

UNIX Shell Over SSH

• The key is how 2 environment variables are setup…
– CVS_RSH – this tells CVS what protocol to use if a remote

server is specified (note this is usually the default, so you
probably do not need to explicitly set it)

• bash shell
– export CVS_RSH=ssh

• [t]csh shell
– setenv CVSROOT ssh

– CVSROOT – needs to specify a user at a remote host (similar
syntax to SCP)

• bash shell
– export CVSROOT=username@linux.gl.umbc.edu:/path/to/repo

• [t]csh shell
– setenv CVSROOT username@linux.gl.umbc.edu:/path/to/repo

UNIX Shell Over SSH (checkout)

[dan@icarus code]$ export CVS_RSH=ssh
[dan@icarus code]$ export
CVSROOT=dhood2@linux.gl.umbc.edu:/afs/umbc.edu/user s/o/a/oates/pub/cs341f08/Proj0
[dan@icarus code]$ cvs checkout -d Proj0 dhood2
WARNING: UNAUTHORIZED ACCESS to this computer is in violation of Criminal

Law Article section 8-606 and 7-302 of the Annotate d Code of MD.

NOTICE: This system is for the use of authorized u sers only.
Individuals using this computer system without auth ority, or in
excess of their authority, are subject to having al l of their
activities on this system monitored and recorded by system
personnel.

dhood2@linux.gl.umbc.edu's password:
cvs checkout: Updating Proj0
U Proj0/.cvsignore
[dan@icarus code]$

