
An Introduction to Ant

Overview

•  What is Ant?
•  Installing Ant
•  Anatomy of a build file

–  Projects
–  Properties
–  Targets
–  Tasks

•  Example build file
•  Running a build file

What is Ant?

•  Ant is a Java based tool for automating the build
process

•  Similar to make but implemented using Java
–  Platform independent commands (works on Windows,

Mac & Unix)
•  XML based format

–  Avoids the dreaded tab issue in make files

•  Easily extendable using Java classes
•  Ant is an open source (free) Apache project

Automating the Build (C & make)

•  The goal is to automate the build process
a.out: driver.o foo.o bar.o
 gcc driver.o foo.o bar.o
driver.o: driver.c foo.h bar.h
 gcc -c driver.c
foo.o: foo.c foo.h
 gcc -c foo.c
bar.o:
 gcc -c bar.c

linux3[1]% make
gcc -c driver.c
gcc -c foo.c
gcc -c bar.c
gcc driver.o foo.o bar.o
linux3[2]%

foo.c foo.h bar.h bar.c driver.c

foo.o bar.o driver.o

a.out

gcc -c foo.c gcc -c bar.c gcc -c driver.c

gcc driver.o foo.o bar.o

Installing Ant

•  Ant can be downloaded from…
– http://ant.apache.org/

•  Ant comes bundled as a zip file or a tarball
•  Simply unwrap the file to some directory

where you want to store the executables
–  I typically unwrap the zip file into C:\Program

Files, and rename to C:\Program Files\ant\
– This directory is known as ANT_HOME

Ant Setup

•  Set the ANT_HOME environment variable to
where you installed Ant

•  Add the ANT_HOME/bin directory to your path
•  Set the JAVA_HOME environment variable to

the location where you installed Java
•  Setting environment variables

–  Windows: right click My Computer  Properties 
Advanced  Environment Variables

–  UNIX: shell specific settings

Project Organization

•  The following example assumes that your
workspace will be organized like so…

build.xml

Project Directory

src

*.java

bin

*.class

doc

*.html

Anatomy of a Build File

•  Ant’s build files are written in XML
–  Convention is to call file build.xml

•  Each build file contains
–  A project
–  At least 1 target

•  Targets are composed of some number of tasks
•  Build files may also contain properties

–  Like macros in a make file

•  Comments are within <!-- --> blocks

Projects

•  The project tag is used to define the
project you wish to work with

•  Projects tags typically contain 3 attributes
– name – a logical name for the project
– default – the default target to execute
– basedir – the base directory for which all

operations are done relative to
•  Additionally, a description for the project

can be specified from within the project tag

Build File
<project name="Sample Project" default="compile" basedir=".">

 <description>
 A sample build file for this project
 </description>

</project>

Properties

•  Build files may contain constants (known
as properties) to assign a value to a
variable which can then be used
throughout the project
– Makes maintaining large build files more

manageable
•  Projects can have a set of properties
•  Property tags consist of a name/value pair

– Analogous to macros from make

Build File with Properties
<project name="Sample Project" default="compile" basedir=".">

 <description>
 A sample build file for this project
 </description>

 <!-- global properties for this build file -->
 <property name="source.dir" location="src"/>
 <property name="build.dir" location="bin"/>
 <property name="doc.dir" location="doc"/>

</project>

Targets
•  The target tag has the following required attribute

–  name – the logical name for a target
•  Targets may also have optional attributes such as

–  depends – a list of other target names for which this task is
dependant upon, the specified task(s) get executed first

–  description – a description of what a target does
•  Like make files, targets in Ant can depend on some

number of other targets
–  For example, we might have a target to create a jarfile, which

first depends upon another target to compile the code
•  A build file may additionally specify a default target

Build File with Targets
<project name="Sample Project" default="compile" basedir=".">

 ...

 <!-- set up some directories used by this project -->
 <target name="init" description="setup project directories">
 </target>

 <!-- Compile the java code in src dir into build dir -->
 <target name="compile" depends="init" description="compile java sources">
 </target>

 <!-- Generate javadocs for current project into docs dir -->
 <target name="doc" depends="init" description="generate documentation">
 </target>

 <!-- Delete the build & doc directories and Emacs backup (*~) files -->
 <target name="clean" description="tidy up the workspace">
 </target>

</project>

Tasks
•  A task represents an action that needs execution
•  Tasks have a variable number of attributes which are

task dependant
•  There are a number of build-in tasks, most of which are

things which you would typically do as part of a build
process
–  Create a directory
–  Compile java source code
–  Run the javadoc tool over some files
–  Create a jar file from a set of files
–  Remove files/directories
–  And many, many others…

•  For a full list see: http://ant.apache.org/manual/coretasklist.html

Initialization Target & Tasks

•  Our initialization target creates the build
and documentation directories
– The mkdir task creates a directory

<project name="Sample Project" default="compile" basedir=".">

 ...

 <!-- set up some directories used by this project -->
 <target name="init" description="setup project directories">
 <mkdir dir="${build.dir}"/>
 <mkdir dir="${doc.dir}"/>
 </target>

 ...

</project>

Compilation Target & Tasks

•  Our compilation target will compile all java
files in the source directory
– The javac task compiles sources into classes
– Note the dependence on the init task

<project name="Sample Project" default="compile" basedir=".">

 ...

 <!-- Compile the java code in ${src.dir} into ${build.dir} -->
 <target name="compile" depends="init" description="compile java sources">
 <javac srcdir="${source.dir}" destdir="${build.dir}"/>
 </target>

 ...

</project>

Javadoc Target & Tasks

•  Our documentation target will create the
HTML documentation
– The javadoc task generates HTML

documentation for all sources
<project name="Sample Project" default="compile" basedir=".">

 ...

 <!-- Generate javadocs for current project into ${doc.dir} -->
 <target name="doc" depends="init" description="generate documentation">
 <javadoc sourcepath="${source.dir}" destdir="${doc.dir}"/>
 </target>

 ...

</project>

Cleanup Target & Tasks

•  We can also use ant to tidy up our
workspace
– The delete task removes files/directories from

the file system
<project name="Sample Project" default="compile" basedir=".">
 ...
 <!-- Delete the build & doc directories and Emacs backup (*~) files -->
 <target name="clean" description="tidy up the workspace">
 <delete dir="${build.dir}"/>
 <delete dir="${doc.dir}"/>
 <delete>
 <fileset defaultexcludes="no" dir="${source.dir}" includes="**/*~"/>
 </delete>
 </target>
 ...
</project>

Completed Build File (1 of 2)
<project name="Sample Project" default="compile" basedir=".">

 <description>
 A sample build file for this project
 </description>

 <!-- global properties for this build file -->
 <property name="source.dir" location="src"/>
 <property name="build.dir" location="bin"/>
 <property name="doc.dir" location="doc"/>

 <!-- set up some directories used by this project -->
 <target name="init" description="setup project directories">
 <mkdir dir="${build.dir}"/>
 <mkdir dir="${doc.dir}"/>
 </target>

 <!-- Compile the java code in ${src.dir} into ${build.dir} -->
 <target name="compile" depends="init" description="compile java sources">
 <javac srcdir="${source.dir}" destdir="${build.dir}"/>
 </target>

Completed Build File (2 of 2)
 <!-- Generate javadocs for current project into ${doc.dir} -->
 <target name="doc" depends="init" description="generate documentation">
 <javadoc sourcepath="${source.dir}" destdir="${doc.dir}"/>
 </target>

 <!-- Delete the build & doc directories and Emacs backup (*~) files -->
 <target name="clean" description="tidy up the workspace">
 <delete dir="${build.dir}"/>
 <delete dir="${doc.dir}"/>
 <delete>
 <fileset defaultexcludes="no" dir="${source.dir}" includes="**/*~"/>
 </delete>
 </target>

</project>

Running Ant – Command Line

•  Simply cd into the directory with the build.xml file
and type ant to run the project default target

•  Or, type ant followed by the name of a target

Running Ant – Eclipse

•  Eclipse comes with out of the
box support for Ant
– No need to separately

download and configure Ant
•  Eclipse provides an Ant view

– Window  Show View  Ant
•  Simply drag and drop a build

file into the Ant view, then
double click the target to run

