## CMSC 341 Data Structures Hashing Review

## October 26, 2010

- 1. What is a hash function? Name two desirable properties of a hash function.
- 2. Define **collision** in a hash table.
- 3. What is the **clustering** problem in hash tables?
- 4. Describe the division method for generating hash values.
- 5. Describe the multiplication method for generating hash values.
- 6. Define Fibonacci hashing.
- 7. Describe the **separate chaining** collision resolution method.
- 8. Describe the open addressing collision resolution method.
- 9. Given a hash table of size 13, show the contents of your hash table after inserting the values  $\{8, 2, 7, 18, 15, 19, 13, 23, 15, 20, 16\}$  using open addressing with linear probing (f(i) = i) for collision resolution.
- 10. Repeat question 9, using open addressing with quadratic probing (  $f(i)=i^2$  ) for collision resolution.
- 11. Repeat question 9 using separate chaining for collision resolution.
- 12. The average time performance of the insertion and searching operations on a hash table are O(1), which is much better than the performance of a binary search tree for the same operations. Given this wonderful performance of hash tables as compared to binary search trees, when would you want to use a binary search tree instead of a hash table?

13. In a hash table using open addressing with linear probing, the average number of probes for successful search , S, and unsuccessful search (or insertion), U, are

$$\begin{split} S &\approx \frac{1}{2} \left( 1 + \frac{1}{1 - \lambda} \right) \\ U &\approx \frac{1}{2} \left( 1 + \frac{1}{(1 - \lambda)^2} \right) \end{split}$$

where  $\lambda$  is the load factor of the table.

Suppose you want a hash table that can hold at least 1000 elements. You want successful searches to take no more than 4 probes on average.

- (a) What is the maximum load factor you can tolerate in your hash table?
- (b) If the table size must be prime, what is the smallest table size you can use?
- (c) Based on your answers to (a) and (b), what is the average number of probes to perform an insertion?