
331Midterm Exam 01 November 2010

Page 1 of 7

1 40/
2 30/
3 45/
4 30/
5 30/
6 30/
7 20/

225/

 CMSC 331 Midterm Exam, Fall 2010 a

Name: _________________________________

UMBC username:_____________________________

You will have seventy-five (75) minutes to complete this closed book/notes exam. Use the backs of
these pages if you need more room for your answers. Describe any assumptions you make in solv-
ing a problem. We reserve the right to assign partial credit, and to deduct points for answers that
are needlessly wordy.

1. True/False [40]

For each of the following questions, circle T (true) or F (false).

T F 1.1 COBOL was designed as a programming language for scientific and engineering applica-

tions. FALSE
T F 1.2 The procedural programming paradigm treats procedures as first class objects. FALSE
T F 1.3 The “Von Neumann” computer architecture is still used as the basis for most computers

today. TRUE
T F 1.4 One of the advantages of interpreted over compiled languages is that they tend to offer

more run time debugging support. TRUE
T F 1.5 Any finite language can be defined by a regular expression. TRUE
T F 1.6 Attribute grammars can specify languages that can not be specified using a context free

grammar. TRUE
T F 1.7 A recursive descent parser can not directly use a grammar that has right recursive rules.

FALSE
T F 1.8 The lexical structure of complex programming languages like Java can not be defined using

regular expressions. FALSE
T F 1.9 A non-deterministic finite automaton for a regular language is generally easier to write than

a deterministic one, but harder to apply to a string to see if it matches. TRUE
T F 1.10 If the grammar for a language is unambiguous, then there is only one way to parse each

valid sentence in that language. TRUE
T F 1.11 A BNF grammar can not contain both left-recursive and right-recursive rules. FALSE
T F 1.12 The EBNF notation allows one to define grammars that can not be defined using the sim-

pler BNF notation. FALSE
T F 1.13 The order of production rules in a grammar is not significant, i.e., two grammars with

identical rules but given in different order will always define the same language. TRUE
T F 1.14 An operator’s precedence determines whether it associates to the left or right. FALSE
T F 1.15 Specifying how else clauses match with the right if keyword is done by adjusting the

precedence of the if, then and else operators. FALSE
T F 1.16 Scheme’s simple grammar eliminates the need to define operator precedence. TRUE
T F 1.17 The idea behind axiomatic semantics is to define the meaning of statements in a pro-

gramming language by translating them into statements in another language. FALSE
T F 1.18 In Scheme, evaluating a symbol requires looking up the value assigned to it as a variable.

TRUE
T F 1.19 In Scheme, a predicate always returns either #t or #f. FALSE
T F 1.20 Scheme uses dynamic scoping to resolve the value of a free (i.e., non-local) variable.

FALSE

331Midterm Exam 01 November 2010

Page 2 of 7

2. General multiple-choice questions [30]

Circle all of the correct answers and only the correct answers.

2.1 Which of the following is considered an object-oriented programming language? (a) ML; (b)
Haskell; (c) Smalltalk; (d) Scheme; (e) C# (f) Java (g) Algol (C, E, F)

2.2 Left factoring is a technique that can be used to (a) prepare a grammar for use in a recursive de-
scent parser; (b) produce a left most derivation of a string from a grammar; (c) remove left recursion
from a grammar; (d) factor out left associative operators; (e) eliminate a non-terminal from the left
side of a grammar rule; (f) all of the previous answers; (g) none of the previous answers. (A,C)

2.3 A LL(1) parser (a) processes the input symbols from left to right; (b) produces a left-most deri-
vation; (c) looks ahead at most one input symbol before knowing what action to take; (d) takes time
proportional to the cube of the number of input symbols (A, B, C)

2.4 Attribute grammars are used to (a) model the basic syntax of a programming language; (b) spec-
ify non-finite state machines; (c) specify the static semantics of a programming language; (d) spec-
ify the dynamic semantics of a programming language; (e) create parsing tables for LR(k) parsers.
(C)

2.5 Which of the following parsing algorithms use a bottom up approach as opposed to a top-down
one: (a) recursive descent; (b) LL(k); (c) LR(k). (C)

2.6 In Scheme, a tail-recursive algorithm is generally better than a non-tail recursive algorithm be-
cause (a) it can be run without growing the stack; (b) it is easier to understand; (c) it has no side-
effects; (d) all of the above. (A)

2.7 Tail-call optimization (a) is done in all programming languages; (b) turns recursion into itera-
tion; (c) can speed up program execution; (d) can introduce exceptions; (d) can prevent stack over-
flow. (B, C, D)

2.8 In Scheme, a free variable in a function is looked up in (a) the global environment; (b) the envi-
ronment in which the function was defined; (c) the environment from which the function was
called; (d) all active environments. (B)

2.9 Which of the following Scheme expressions would be interpreted as false when evaluated: (a) 0;
(b) -1; (c) null; (d) #f; (e) (lambda () #f); (f) (not -1); (g) ((lambda () #f)) (D, F, G)

2.10 In Scheme, evaluating a lambda expression always returns an (a) environment; (b) variable
type; (c) function; (d) conditional; (e) pair. (C)

331Midterm Exam 01 November 2010

Page 3 of 7

3. Operators [45]

Given the following BNF grammar for a language with two infix operators represented by # and $.

 <bar> ::= <baz>

 <foo> ::= <bar> $ <foo>

 <baz> ::= (<foo>)

 <bar> ::= <bar> # <baz>

 <baz> ::= x | y

 <foo> ::= <bar>

a) [5] Which operator has higher precedence: (i) $; (ii) #; (iii) neither; (iv) both (ii)

b) [5] What is the associativity of the $ operator: (i) left; (ii) right; (iii) neither (ii)

c) [5] What is the associativity of the # operator: (i) left; (ii) right; (iii) neither (i)

d) [5] Assuming that the start symbol is <foo>, does this grammar define a finite or infinite lan-
guage? infinite

e) [5] Assuming that the start symbol is <foo>, is this grammar: (i) ambiguous or (ii) unambiguous?
(ii)

f) [20] Give a parse tree for the following string:

x $ x # y # (y $ x)

to be supplied

331Midterm Exam 01 November 2010

Page 4 of 7

4. Regular expressions [30]

The UMBC registrar uses a code for courses consisting of three parts:
• A four letter upper-case program abbreviation (e.g., CMSC,

CMPE, HIST)
• A three digit course number that can’t begin with a zero or a nine

(e.g., 331, 104)
• An optional upper or lower case letter (e.g., H, A, w)

Examples of legal codes are CMSC331H and CMSC491 and of ille-
gal codes are CS331 and CMSC001.

(a) [15] Draw a deterministic finite automaton (DFA) for this language. Feel free to define a class of charac-
ters using a notation like the following, which represents a letter and a single digit and to put such a class
name on an arc in your DFA.

LET: [a-zA-Z]
DIG: [0-9]

(c) [15] Write an equivalent regular expression for your DFA. Use a notation in which a ‘*’ indicates any
number of repetitions, ‘+’ indicates one or more repetitions, ‘?’ means zero or one repetitions, parentheses
group things, a vertical bar separates alternatives, etc., as in the following example.

LET: [a-zA-Z]
((mr|mrs|ms|dr)\.\t+)? LET+ (\t+ LET+)*

UC: [A-Z]
LET: [a-zA-Z]
D1: [1-8]
D2: [0-9]

UC UC UC UC D1 D2 D2 LET?

DFA to be supplied

This example shows a DFA for the regular
expression 0?[12]

331Midterm Exam 01 November 2010

Page 5 of 7

5. Constructing s-expressions [30]

Consider the Scheme data Structure that when printed looks like ((1 (2) 3))

5.1 [5] Give a Scheme expression using only the cons function that will create this list. Use the
variable null for the empty list.

(cons (cons 1 (cons (cons 2 null) (cons 3 null))) null)

5.2 [5] Give a Scheme expression using only the list function that will create this list. Use null for
the empty list.

(list (list 1 (list 2) 3))

5.3 [10] Assuming that we’ve done (define x '((1 (2) 3))) give a Scheme expression
using only the functions car and cdr and variable x that returns the three symbols in the list.

symbol s-expression to return the symbol
1 (car (car x))

2 (car (car (cdr (car x))))

3 (car (cdr (cdr (car x))))

5.4 [10] Draw a “box and pointer” diagram showing how the list ((1 (2)
3))) is represented in pairs. The figure to the right shows an example of the
diagram format you should use. This example represents the list (1 (2)).

331Midterm Exam 01 November 2010

Page 6 of 7

6. Scheme I [30]

Common Lisp has a built-in function mapcan. The Scheme counterpart could be defined as fol-
lows:

(define (mapcan f l)
 (if (null? l)
 null
 (append (f (car l))
 (mapcan f (cdr l)))))

(a) [10] What will (mapcan list '(1 2 3 4 5 6)) return?

(1 2 3 4 5 6)

(b) [10] What will (mapcan (lambda (x) (if (even? x) (list x) null)) '(1 2 3 4 5 6)) return?

(2 4 6)

(c) [10] Redefine mapcan in Scheme without using recursion by using the apply, append and
map functions.

(define (mapcan f l) (apply append (map f l)))

331Midterm Exam 01 November 2010

Page 7 of 7

7. Scheme II [20]

Consider a function insert with three arguments: an arbitrary s-expression, a proper list, and a posi-
tive integer. The function returns a new list that is the result of inserting the expression into the list
at the position specified by the third argument. Note that positions begin with zero. For example,

> (insert 'X '(a b c) 3)
(a b c X d)
> (insert '(X) '(a b c) 1)
(a (X) b c)
> insert 'X '(a b c) 0)
(X a b c)

Here is an incomplete definition of the function. Give code expressions for <S1>, <S2> and <S3>
that will complete it.

(define (insert expr lst pos)
 ;; Returns a list like proper list lst but with expr inserted at
 ;; the position given by positive integer pos. e.g.: (insert 'X
 ;; '(a b c) 2) => (a b X c)
 (cond (<S1> (cons expr lst))
 ((null? lst) <S2>)
 (else <S3>)))

<S1>
(= pos 0) or (< pos 1) or (eq? pos 0) oe (equal? pos 0) or

equivalent

<S2> (cons expr null) or (list expr)

<S3>
(cons (car lst) (insert expr (cdr lst) (- pos 1))) or

equivalent

