
331Final Exam 17 December 2010

Page 1 of 11

CMSC 331 Final Exam Fall 2010

Name: _________________________________

UMBC username:_____________________________

You have two hours to complete this closed book/notes exam. Use the backs of these pages if you need more
room for your answers. Describe any assumptions you make in solving a problem. We reserve the right to
assign partial credit, and to deduct points for answers that are needlessly wordy. Skim through the entire
exam before beginning to get a sense of where best to spend your time. If you get stuck on one question, go
on to another and return to the difficult question later. Comments are not required for programming questions
but adding some might help us understand your code.

1. True/False (40 pts: 20*2)
For each of the following questions, circle T (true) or F (false).

T F Most programming languages are implemented as interpreters these days. F
T F Static type checking adds some execution-time overhead, but improves reliability of programs. F
T F A grammar G is ambiguous if there is more than one parse tree for at least one sentence in the lan-

guage defined by G. T
T F Lexical scanners are usually specified using regular expressions. T
T F Axiomatic semantics define the meaning of statements in a programming language by translating

them into statements in another programming language. F
T F While every BNF grammar can be rewritten in EBNF, not every EBNF grammar can be rewritten in

BNF. F
T F Both Scheme and python use dynamic typing. T
T F In Python, types are associated with values and not with variables. T
T F Every Python function returns a value. T
T F An advantage of static typing is that a compiler can detect many type errors. T
T F Scheme’s syntax eliminates the need for both precedence and associatively rules. T
T F Using the yield function in a Python function makes it a generator. T
T F Scheme and Python both use dynamic scoping. F
T F Since Python doesn’t optimize tail-recursive calls, a recursive function can run out of stack space. T
T F A decorator in Python allows one to write a function that can return a stream of values on demand. F
T F In a Python dictionary, all of the keys must be unique. T
T F While the number of elements in a Python tuple can not be changed, you can replace an element with

a new value. F
T F A Prolog fact is actually a rule with a trivial condition of true. T
T F Scheme’s delay special form returns a closure. T
T F Prolog uses backtracking to search for a solution to a query. T

1 40/
2 40/
3 25/
4 30/
5 36/
6 40/
7 20/
8 15/
9 50/

 296/

331Final Exam 17 December 2010

Page 2 of 11

2. Grammars I (40)

Consider the grammar to the right where uppercase letters indicate non-terminals and
lowercase letters indicate terminals. Which of the following sentences are in the
language defined by this grammar? If the sentence is in the language, show a parse
tree.

(a) acccbd

 This is not in the language.

(b) aabcdcd

S(a, S(a, S(b), c, B(d)), c, B(d))

(c) acd

This is not in the language.

(d) accc

S(a, S(A(c)), c, B(A(c)))

S -> a S c B
S -> A
S -> b
A -> c A
A -> c
B -> d
B -> A

331Final Exam 17 December 2010

Page 3 of 11

3. Deterministic finite state automaton (25)
Draw a deterministic finite automaton (DFA) that accepts a binary
fraction (BF) like "101.01" or "101" or "0.1". A BF can be a
binary integer with no fractional part or a true fraction with an
integer part (which can be zero), a decimal point and a fractional
part (which can be zero). No leading zeros are allowed, i.e., if the
BF starts with a zero, it must be immediately followed by a decimal
point and a fractional part or followed by nothing. Any number of
trailing zeros are OK. Empty integer (".01") or fractional ("10.")
parts are not allowed.

• These are legal binary fractions: 0, 1, 101, 0.0, 0.00, 1.0, 1.00, 0.101, 10.01.
• These are illegal: 010, 01.01, .101, 101. 0.

Use the conventions in the example DFA in the figure above:
• There is only one start state and it has an arc pointing to it without a node at its tail.
• There is a least one accepting state. Accepting states are marked as such by having a double circle.

This example shows a DFA for the regular
expression 0?[12]

331Final Exam 17 December 2010

Page 4 of 11

4. Python regular expressions (30 pts, 5/5/5/15)
Write regular expression patterns to match a US telephone
number. Your patterns should match an entire string, leaving
no characters unmatched. Your answers should be able to
support the sample session in the box below and to the right.
Please give your answers as assignments to variables P1, P2
and P3, e.g., P1 = “… pattern goes here…”.

(a) Write a simple Python regular expression, P1, that matches

a telephone number like “1-800-555-1212” or “410-455-
1000”, i.e., an optional “1-“ prefix, an area code of three
digits, a dash, an exchange of three digits, a dash, and four
final digits. An additional constraint is that neither the area
code nor exchange can start with a zero or a one, e.g., “123-
456-6789” and “234-055-7890’ are illegal. The other digits
are unconstrained.

(b) Write another regular expression, P2, that matches phone
numbers where the separators between the numeric groups
are optional and can be either a single space, dash or period.

(c) Write a final version, P3, that extends P2 by defining three
capturing match groups for the area code, the exchange and
the final four digits.

P1 = "(1-)?[2-9]\d\d-[2-9]\d\d-\d\d\d\d$"

P2 = "(1[\-.]?)?[2-9]\d\d[\-.]?[2-9]\d\d[\-.]?\d\d\d\d$"

P3 = "(?:1[\-.]?)?([2-9]\d\d)[\-.]?([2-9]\d\d)[\-.]?(\d\d\d\d)$"

Python RE symbols
^ beginning of the string
$ end of the string
+ one or more times
? at most one time
* zero or more time
(...) a capturing group
(?:...) a noncapturing group
{n} n times
{n, m} a range at least n and at most m
[...] a character class
. any character
\s whitespace
\S non-whitespace
\d a digit
\D a non-digit
\w an alphanumeric or underscore
| or

Example session
>>> from re import match
>>> match(P1, "410-455-0522")
<_sre.SRE_Match object at 0x1004ca990>
>>> match(P1, "410-000-3522")

>>> match(P1, "123-455-3522")
>>> match(P1, "1-410-800-3522")
<_sre.SRE_Match object at 0x1004e7558>
>>> match(P2, "1 410 800 3522")
<_sre.SRE_Match object at 0x1004ca990>
>>> match(P2, "1-8005551212")

<_sre.SRE_Match object at 0x1005213f0>
>>> match(P2, "18005551212")
<_sre.SRE_Match object at 0x1005216c0>
>>> match(P3, "1-800-555-1212").groups()
('800', '555', '1212')
>>> match(P3, "1-800.555.1212").groups()

('800', '555', '1212')
>>> match(P3, "800 555 1212").groups()
('800', '555', '1212')
>>> match(P3, "18005551212").groups()
('800', '555', '1212')

331Final Exam 17 December 2010

Page 5 of 11

(4d) Fill in the following table. For each row, assume that we evaluate the expression

mo = re.match(pattern,string)

The variable mo will be matched to the result of the match, i.e., either None if the match failed or a match
object if it succeeded. A match object has attributes and methods that can provide the details of the match.

Recall that if we evaluate m = re.match(pattern, string) then

• m will be None if pattern does not match string
• m.group(0) is the portion of string that pattern matched
• m.group(1) is the portion of string that the first “match group” in pattern matched. A match group is

part of pattern that is inside parentheses. Each of he problems below has just one match group.

Fill in the missing values for Match?, mo.group(), and mo.group(1). Enter N/A in a cell if no answer is
appropriate for it or it generates an error.

Pattern String Match? mo.group(0) mo.group(1)

a+(p)* apple Yes app p

a*(.*) aaaa Yes 'aaaa' ''

.+(a+) aaaa Yes 'aaaa' 'a'

\D*(\d+)\D.* eat 100 pies Yes ‘eat 100 pies’ '100'

.*\((.*)\).* (1 (2 3) 4) Yes '(1 (2 3) 4)' '2 3) 4'

([01]*)[01][01] 0110011100; Yes '0110011100' '01100111'

331Final Exam 17 December 2010

Page 6 of 11

5. Manipulating lists in Scheme (36 pts, 6*6)

Complete the table below. The first column shows a scheme structure made of pairs (i.e., cons cells) and in-
tegers. The second column gives a Scheme expression that when evaluated would return the structure in the
first column. The third column is a Scheme expression that would return the value 2 if the variable X is
bound to the structure in the first column. We’ve completed the first row for you,

X How to construct X using only
cons and null and integers

How to return the value 2 in X us-
ing only car and cdr

(1 2) (cons 1 (cons 2 null)) (car (cdr X))

(0 1 2) (cons 0 (cons 1 (cons 2
null))) (car (cdr (cdr X)))

((1)(2)) (cons (cons 1 null)(cons
(cons 2 null) null)) (car (car (cdr X)))

((1 2)) (cons (cons 1 (cons 2 null))
null) (car (cdr (car X)))

(1 . 2) (cons 1 2) (cdr X)

(((2)) 1) (cons (cons (cons 2 null)
null) (cons 1 null)) (car (car (car X)))

(1 ((2))) (cons 1 (cons (cons (cons 2
null) null) null)) (car (car (car (cdr X))))

331Final Exam 17 December 2010

Page 7 of 11

6. Zip and unzip in Python (40, 10/10/10/10)

(a) Write a simple two-argument version of the built-in Python function
zip that takes two lists of equal length and returns a list of tuples, where
the ith tuple is composed of the ith elements of the two lists. Use
iteration rather than recursion, map, or list comprehensions.

(b) Write the zip function using map, rather than iteration, recursion or list comprehensions. Hint: You’ll find
the function lambda x,y: (x,y) useful. It takes two args and returns a tuple of them.

>>> zip([], [])
[]
>>> zip([1], [2])
[(1, 2)]
>>> z = zip([1,2,3],[10,20,30])
>>> z
[(1, 10), (2, 20), (3, 30)]
>>> unzip(z)
([1, 2, 3], [10, 20, 30])
>>> unzip([])
([], [])

def zip (list1, list2):

 zipped = []
 for i in range(len(list1)):
 zipped.append((list1[i], list2[i]))
 return zipped

def zip (list1, list2):

 return map(lambda x,y:(x,y), list1, list2)

331Final Exam 17 December 2010

Page 8 of 11

(c) Write a function unzip that reverses the zip process, returning a tuple of
two lists comprising the first tuple elements and the second, respectively.
Use iteration rather than recursion, map, or list comprehensions.

(d) Write a function unzip that reverses the zip process, returning a tuple of two lists comprising the first tu-
ple elements and the second, respectively. Use map or list comprehensions rather than iteration or recursion.
Hint: think about how to build a list of just the first tuple elements from the list and then do the same thing
for just the second elements from the tuples in the list. If you can do both of those, then just return a tuple of
their results. For map, you’ll find something like lambda x: x[0] helpful.

def unzip (lst):

 l1 = []
 l2 = []
 for (x,y) in zipped:
 l1.append(x)
 l2.append(y)
 return (l1, l2)

>>> zip([], [])
[]
>>> zip([1], [2])
[(1, 2)]
>>> z = zip([1,2,3],[10,20,30])
>>> z
[(1, 10), (2, 20), (3, 30)]
>>> unzip(z)
([1, 2, 3], [10, 20, 30])
>>> unzip([])
([], [])

def unzip (lst):

 return map(lambda x: x[0], lst), map(lambda x: x[1], lst)

-- or –

 return [x[0] for x in lst], [x[1] for x in lst]

331Final Exam 17 December 2010

Page 9 of 11

7. Zip and unzip in Scheme (20: 10/10)

(a) Write a Scheme version of zip that takes two arguments that are
lists of equal length and returns a list of two-element lists where the
ith two-list has the ith elements of the first and second input lists.
You can do this with a recursive function or use map. Hint: The
recursive version is easy, but using map is even easier.

(b) Write a Scheme version of unzip that takes one argument that is a list of two-lists. It returns a list of two
list, the first containing all of the first elements of the input tuples and the second with all of the second ele-
ments. You can do this with a recursive function or use map. Hint: It is very, very easy if you use map. Con-
sider that (map first ‘((a 1 x) (b 2 y)(c 3 z)) returns (a b c).

> (zip '() '())
()
> (zip '(1) '(a))
((1 a))
> (zip '(1 2 3) '(10 20 30))
((1 10) (2 20) (3 30))
> (unzip '())
(() ())
> (unzip '((1 a)))
((1) (a))
> (unzip '((1 a) (2 b)))
((1 2) (a b))
> (unzip '((1 10)(2 20) (3 30)))
((1 2 3) (10 20 30))

(define (zip list1 list2)

 (if (null? list1)
 null
 (cons (list (car list1) (car list2))
 (zip (cdr list1) (cdr list2))))
-- or –
 (map list list1 list2)
-- or –
 (map (lambda (x y) (list x y)) list1 list2)
)

(define (unzip list_of_2lists)

 (list (map first list_of_2lists)
 (map second list_of_2lists))

-- or –

(list (map car list_of_2lists)
 (map cadr list_of_2lists))

)

331Final Exam 17 December 2010

Page 10 of 11

8. Explain this! (15: 10/5)

(a) Your classmate wrote the simple function shown to the
right intending that it would take a list of numbers and return
a tuple with two lists of numbers: the negative input numbers
and the positive ones. She was surprised by what it did.

>>> split([])
([], [])
>>> split([1,2,3])
([1, 2, 3], [1, 2, 3])
>>> split([1, -2, 3, -4])
([1, -2, 3, -4], [1, -2, 3, -4]

(a) Explain why the function does not work as she intended it to.

Both neg and pos refer to the same object representing an empty list. Since append is a “de-
structive” operation (i.e., it modifies the list it is called with rather than returning a new one,
any change to this list will effect both names.

(b) How can she fix the program?

Replace the line “neg = pos = []” with the two lines

 pos = []
 neg = []

def split (in_list):
 neg = pos = []
 for x in in_list:
 if x<0:
 neg.append(x)
 else:
 pos.append(x)
 return (neg, pos)

331Final Exam 17 December 2010

Page 11 of 11

9. Little functions (50: 5*10)
For each of the following functions, describe what it does in a sentence. Assuming that my_list is [1,2,3,4]
show what the function returns when called with my_list. We’ve done the first one as an example.

def f0(ints):
 # ints is a list of integers
 n = 0
 for i in range(len(ints)):
 n += ints[i]
 return n

f0 returns the sum of the integers in the
list ints. f0(my_list) returns 10.

def f1(ints):
 # ints is a list of integers
 n = 0
 for i in range(1, len(ints)):
 if ints[i] > ints[n]:
 n = i
 return ints[n]

f1 returns the largest integer in the
list ints. f1(my_list) returns 4.

def f2(ints):
 # ints is a list of integers
 for i in range(1, len(ints)):
 if ints[i] < ints[i - 1]:
 return False
 return True

f2 returns True if the integers in ints
are in ascending order and False
otherwise. f2(my_list) returns True.

def f3(ints):
 # ints is a list of integers
 flag = False
 for i in range(len(ints)):
 flag = flag or (ints[i] < 0)
 return flag

f3 returns True if any of the integers
in ints is less than zero and False
otherwise. f3(my_list) returns False.

def f4(ints):
 # ints is a list of integer
 for i in range(1, len(ints)):
 ints[i] += ints[i - 1]
 return ints

f4 returns a list where the ith ele-
ment of the list is equal to the sum of
the elements of ints to its left.
f4(my_list) returns [1,3,6,10]

def f5(ints):
 # ints is a list of integers
 n = len(ints) - 1
 for i in range(len(ints) / 2):
 ints[i], ints[n-i] = ints[n-i], ints[i]
 return ints

f5 returns a list that is the reverse of
its input. f5(my_list) returns
[4,3,2,1].

