
Searching and Sorting
Topics

 Sequential Search on an Unordered File
 Sequential Search on an Ordered File
 Binary Search
 Bubble Sort
 Insertion Sort

Reading

 Sections 6.6 - 6.8

Common Problems
 There are some very common problems that we use

computers to solve:
 Searching through a lot of records for a specific record or set of

records
 Placing records in order, which we call sorting

 There are numerous algorithms to perform searches and
sorts. We will briefly explore a few common ones.

Searching
 A question you should always ask when selecting a

search algorithm is “How fast does the search have to
be?” The reason is that, in general, the faster the
algorithm is, the more complex it is.

 Bottom line: you don’t always need to use or should use
the fastest algorithm.

 Let’s explore the following search algorithms, keeping
speed in mind.
 Sequential (linear) search
 Binary search

Sequential Search on an Unordered File
 Basic algorithm:

Get the search criterion (key)
Get the first record from the file
While ((record != key) and (still more records))

Get the next record
End_while

 When do we know that there wasn’t a record in
the file that matched the key?

Sequential Search on an Ordered File
 Basic algorithm:

Get the search criterion (key)
Get the first record from the file
While ((record < key) and (still more records))

Get the next record
End_while
If (record = key)

Then success
Else there is no match in the file

End_else

 When do we know that there wasn’t a record in the file
that matched the key?

Sequential Search of
Ordered vs. Unordered List
 Let’s do a comparison.
 If the order was ascending alphabetical on customer’s

last names, how would the search for John Adams on
the ordered list compare with the search on the
unordered list?
 Unordered list

 if John Adams was in the list?
 if John Adams was not in the list?

 Ordered list
 if John Adams was in the list?
 if John Adams was not in the list?

Ordered vs Unordered (cont.)
 How about George Washington?

 Unordered
 if George Washington was in the list?
 If George Washington was not in the list?

 Ordered
 if George Washington was in the list?
 If George Washington was not in the list?

 How about James Madison?

Ordered vs. Unordered (cont.)
 Observation: the search is faster on an ordered

list only when the item being searched for is not
in the list.

 Also, keep in mind that the list has to first be
placed in order for the ordered search.

 Conclusion: the efficiency of these algorithms
is roughly the same.

 So, if we need a faster search, we need a
completely different algorithm.

 How else could we search an ordered file?

Binary Search
 If we have an ordered list and we know how

many things are in the list (i.e., number of
records in a file), we can use a different strategy.

 The binary search gets its name because the
algorithm continually divides the list into two
parts.

How a Binary Search Works

 Always look at the center
value. Each time you get
to discard half of the
remaining list.

Is this fast ?

How Fast is a Binary Search?
 Worst case: 11 items in the list took 4 tries
 How about the worst case for a list with 32 items

?
 1st try - list has 16 items
 2nd try - list has 8 items
 3rd try - list has 4 items
 4th try - list has 2 items
 5th try - list has 1 item

How Fast is a Binary Search?
 List has 250 items

 1st try - 125 items
 2nd try - 63 items
 3rd try - 32 items
 4th try - 16 items
 5th try - 8 items
 6th try - 4 items
 7th try - 2 items
 8th try - 1 item

 List has 512 items

 1st try - 256 items
 2nd try - 128 items
 3rd try - 64 items
 4th try - 32 items
 5th try - 16 items
 6th try - 8 items
 7th try - 4 items
 8th try - 2 items
 9th try - 1 item

What’s the Pattern?
 List of 11 took 4 tries
 List of 32 took 5 tries
 List of 250 took 8 tries
 List of 512 took 9 tries

 32 = 25 and 512 = 29

 8 < 11 < 16 23 < 11 < 24

 128 < 250 < 256 27 < 250 < 28

A Very Fast Algorithm!
 How long (worst case) will it take to find an item

in a list 30,000 items long?

 210 = 1024 213 = 8192
 211 = 2048 214 = 16384
 212 = 4096 215 = 32768

 So, it will take only 15 tries!

Lg n Efficiency
 We say that the binary search algorithm runs in

log2 n time. (Also written as lg n)
 Lg n means the log to the base 2 of some value

of n.
 8 = 23 lg 8 = 3 16 = 24 lg 16 = 4
 There are no algorithms that run faster than lg n

time.

Sorting
 So, the binary search is a very fast search

algorithm.
 But, the list has to be sorted before we can

search it with binary search.
 To be really efficient, we also need a fast sort

algorithm.

Common Sort Algorithms
 Bubble Sort Heap Sort
 Selection Sort Merge Sort
 Insertion Sort Quick Sort

 There are many known sorting algorithms. Bubble sort
is the slowest, running in n2 time. Quick sort is the
fastest, running in n lg n time.

 As with searching, the faster the sorting algorithm, the
more complex it tends to be.

 We will examine two sorting algorithms:
 Bubble sort
 Insertion sort

Bubble Sort - Let’s Do One!

C
P
G
A
T
O
B

Bubble Sort Code
void bubbleSort (int a[] , int size)
{
 int i, j, temp;
 for (i = 0; i < size; i++) /* controls passes through the list */
 {

for (j = 0; j < size - 1; j++) /* performs adjacent comparisons */
{

if (a[j] > a[j+1]) /* determines if a swap should occur */
{

temp = a[j]; /* swap is performed */
a[j] = a[j + 1];
a[j+1] = temp;

}
}

}
}

Insertion Sort
 Insertion sort is slower than quick sort, but not

as slow as bubble sort, and it is easy to
understand.

 Insertion sort works the same way as arranging
your hand when playing cards.
 Out of the pile of unsorted cards that were dealt to

you, you pick up a card and place it in your hand in
the correct position relative to the cards you’re
already holding.

Arranging Your Hand

7

5 7

Arranging Your Hand

5 6

 75

7

5 6 7

K

5 6 7 8 K

Insertion Sort
 Unsorted - shaded
 Look at 2nd item - 5.
 Compare 5 to 7.
 5 is smaller, so move 5

 to temp, leaving
 an empty slot in
 position 2.
 Move 7 into the empty
 slot, leaving position 1
 open.

 Move 5 into the open
 position.

7

 7

57

5

7

K

5

 7 3

1

2

Insertion Sort (cont.) Look at next item - 6.
 Compare to 1st - 5.
 6 is larger, so leave 5.

 Compare to next - 7.
 6 is smaller, so move
 6 to temp, leaving an

 empty slot.
 Move 7 into the empty
 slot, leaving position 2
 open.

 Move 6 to the open
 2nd position.

 6

7

 7

5

7

5

K5

 7

 6

 7

5

 6

5

3

1

2

Insertion Sort (cont.)
 Look at next item - King.
 Compare to 1st - 5.
 King is larger, so

 leave 5 where it is.

 Compare to next - 6.
 King is larger, so
 leave 6 where it is.

 Compare to next - 7.

 King is larger, so
 leave 7 where it is.

 7 K5 6

Insertion Sort (cont.)

7

 7

5

7

5 K

5

 7

 6 7

 8

5

 6

5

 6

 6

 6

8

K 8

K

K 8

K

3

1

2

Courses at UMBC
 Data Structures - CMSC 341

 Some mathematical analysis of various algorithms,
including sorting and searching

 Design and Analysis of Algorithms - CMSC 441
 Detailed mathematical analysis of various algorithms

 Cryptology - CMSC 443
 The study of making and breaking codes

