
Arrays, Part 1 of 2
Topics

 Definition of a Data Structure
 Definition of an Array
 Array Declaration, Initialization, and Access
 Program Example Using Arrays

Reading

 Sections 6.1 - 6.5

Data Types
 So far, we have seen only simple data types,

such as int, float, and char.
 Simple variables can hold only one value at any

time during program execution, although that
value may change.

 A data structure is a data type that can hold
multiple values at the same time. (Synonyms:
complex data type, composite data type)

 The array is one kind of data structure.

Arrays
 An array is a group of related data items that all have the

same name and the same data type.
 Arrays can be of any data type we choose.
 Arrays are static in that they remain the same size

throughout program execution.
 An array’s data items are stored contiguously in memory.
 Each of the data items is known as an element of the

array. Each element can be accessed individually.

Array Declaration and Initialization
int numbers[5] ;

 The name of this array is “numbers”.
 This declaration sets aside a chunk of memory

that is big enough to hold 5 integers.
 It does not initialize those memory locations to 0

or any other value. They contain garbage.
 Initializing an array may be done with an array

initializer, as in :
 int numbers[5] = { 5, 2, 6, 9, 3 } ;

5 2 6 9 3numbers

Accessing Array Elements
 Each element in an array has a subscript (index)

associated with it.

 Subscripts are integers and always begin at zero.
 Values of individual elements can be accessed by

indexing into the array. For example,
printf(“The third element = %d.\n”, numbers[2]);

would give the output
The third element = 6.

5 2 6 9 3numbers
0 1 2 3 4

Accessing Array Elements (cont.)
 A subscript can also be an expression that evaluates to

an integer.

numbers[(a + b) * 2] ;

 Caution! It is a logical error when a subscript evaluates
to a value that is out of range for the particular array.
Some systems will handle an out-of-range error
gracefully and some will not (including ours).

Modifying Elements
 Individual elements of an array can also be modified

using subscripts.
 numbers[4] = 20 ; /*changes the value of

 the element found at
 subscript 4 to 20 */

 Initial values may be stored in an array using indexing,
rather than using an array initializer.

numbers[0] = 5 ;
 numbers[1] = 2 ;

numbers[2] = 6 ;
numbers[3] = 9 ;
numbers[4] = 3 ;

Filling Large Arrays
 Since many arrays are quite large, using an

array initializer can be impractical.
 Large arrays are often filled using a for loop.
 for (i = 0; i < 100; i++)
 {
 values [i] = 0 ;
 }
 would set every element of the 100 element

array “values” to 0.

More Declarations
 int score [39] , gradeCount [5];

 Declares two arrays of type int.
 Neither array has been initialized.
 “score” contains 39 elements (one for each

student in a class).
 “gradeCount” contains 5 elements (one for each

possible grade, A - F).

Using #define for Array Sizes
 #define SIZE 39
 #define GRADES 5
 int main ()
 {
 int score [SIZE] ;
 int gradeCount [GRADES] ;
 }

Example Using Arrays
 Problem: Find the average test score and the

number of A’s, B’s, C’s, D’s, and F’s for a
particular class.

 Design:
Main

Print User
Instructions

Calculate
Average Score

“Clean” Example Using Arrays
 #include <stdio.h>
 #define SIZE 39 /* number of tests */
 #define GRADES 5 /* number of different grades: A, B, C, D, F */
 void printInstructions () ;
 double findAverage (double sum, int quantity) ;
 int main ()
 {
 int i ; /* loop counter */
 int total ; /* total of all scores */
 int score [SIZE] ; /* student scores */
 int gradeCount [GRADES] ; /* count of A’s, B’s, C’s, D’s, F’s */
 double average ; /* average score */

 /* Print the instructions for the user */

 printInstructions () ;

“Clean” Example Using Arrays
 /* Initialize grade counts to zero */

 for (i = 0; i < GRADES; i++)
 {
 gradeCount [i] = 0 ;
 }

 /* Fill score array with scores */

 for (i = 0; i < SIZE; i++)
 {
 printf (“Enter next score: ”) ;
 scanf (“%d “, &score [i]) ;
 }

“Clean” Example Using Arrays
 /* Calculate score total and count number of each grade */

 for (i = 0; i < SIZE; i++)
 {
 total += score [i] ;
 switch (score [i] / 10)
 {
 case 10 :
 case 9 : gradeCount [4]++ ;
 break ;
 case 8 : gradeCount [3]++ ;
 break ;
 case 7 : gradeCount [2]++ ;
 break ;
 case 6 : gradeCount [1]++ ;
 break ;
 default : gradeCount [0]++ ;
 }
 }

“Clean” Example Using Arrays

 /* Calculate the average score */

 average = findAverage (total, SIZE) ;

 /* Print the results */

 printf (“The class average is %.2f\n”, average) ;
 printf (“There were %2d As\n”, gradeCount [4]) ;
 printf (“ %2d Bs\n”, gradeCount [3]) ;
 printf (“ %2d Cs\n”, gradeCount [2]) ;
 printf (“ %2d Ds\n”, gradeCount [1]) ;
 printf (“ %2d Fs\n”, gradeCount [0]) ;

 return 0 ;

 } /* end main */

“Clean” Example Using Arrays

/***
** printInstructions - prints the user instructions
** Inputs: None
** Outputs: None
/***
void printInstructions ()
{
 printf (“This program calculates the average score\n”) ;
 printf (“for a class of 39 students. It also reports the\n”) ;
 printf (“number of A’s, B’s, C’s, D’s, and F’s. You will\n”) ;
 printf (“be asked to enter the individual scores.\n”) ;
}

“Clean” Example Using Arrays
 /***
 ** findAverage - calculates an average
 ** Inputs: sum - the sum of all values
 ** num - the number of values
 ** Outputs: the computed average
 **/
 double findAverage (double sum, int num)
 {
 double average ; /* computed average */

 if (num != 0) {
 average = sum / num ;
 }
 else {
 average = 0 ;
 }

 return average ;
 }

Improvements ?
 We’re trusting the user to enter valid grades. Let’s add

input error checking.
 If we aren’t handling our array correctly, it’s possible that

we may be evaluating garbage rather than valid scores.
We’ll handle this by adding all the cases for F’s (0 - 59)
to our switch structure and using the default case for
reporting errors.

 We still have the “magic numbers” 4, 3, 2, 1, and 0 that
are the quality points associated with grades. Let’s use
symbolic constants for these values.

Improved Program
 #include <stdio.h>
 #define SIZE 39 /* number of scores */
 #define GRADES 5 /* number of different grades: A, B, C, D, F */
 #define A 4 /* A’s position in grade count array */
 #define B 3 /* B’s position in grade count array */
 #define C 2 /* C’s position in grade count array */
 #define D 1 /* D’s position in grade count array */
 #define F 0 /* F’s position in grade count array */
 #define MAX 100 /* maximum valid score */
 #define MIN 0 /* minimum valid score */
 void printInstructions () ;
 double findAverage (double sum, int quantity) ;
 int main ()
 {
 int i ; /* loop counter */
 int total ; /* total of all scores */
 int score [SIZE] ; /* student scores */
 int gradeCount [GRADES] ; /* count of A’s, B’s, C’s, D’s, F’s */
 double average ; /* average score */

Improved Program (cont.)

/* Print the instructions for the user */

 printInstructions () ;

/* Initialize grade counts to zero */

 for (i = 0; i < GRADES; i++)
 {
 gradeCount [i] = 0 ;
 }

Improved Program (cont.)
/* Fill array with valid scores */

 for (i = 0; i < SIZE; i++)
 {
 printf (“Enter next score : ”) ;
 scanf (“%d “, &score [i]) ;
 while ((score [i] < MIN) || (score [i] > MAX))
 {
 printf (“Scores must be between”) ;
 printf (“ %d and %d\n”, MIN, MAX) ;
 printf (“Enter next score : ”) ;
 scanf (“%d “, &score [i]) ;
 }
 }

Improved Program (cont.)
 /* Calculate score total and count number of each grade */
 for (i = 0 ; i < SIZE ; i++)
 {
 total += score [i] ;
 switch (score [i] / 10)
 {
 case 10 :
 case 9 : gradeCount [A]++ ;
 break ;
 case 8 : gradeCount [B]++ ;
 break ;
 case 7 : gradeCount [C]++ ;
 break ;
 case 6 : gradeCount [D]++ ;
 break ;
 case 5 : case 4 : case 3 : case 2 : case 1 : case 0 :
 gradeCount [F]++ ;
 break;;
 default : printf(“Error in score.\n”) ;
 }
 }

Improved Program (cont.)
 /* Calculate the average score */

 average = findAverage (total, SIZE) ;

 /* Print the results */

 printf (“The class average is %.2f\n”, average) ;
 printf (“There were %2d As\n”, gradeCount [4]) ;
 printf (“ %2d Bs\n”, gradeCount [3]) ;
 printf (“ %2d Cs\n”, gradeCount [2]) ;
 printf (“ %2d Ds\n”, gradeCount [1]) ;
 printf (“ %2d Fs\n”, gradeCount [0]) ;

 return 0 ;

 } /* end main */

Other Improvements?
 Why is main so large?
 Couldn’t we write functions to:

 Initialize an array to hold all 0s?
 Fill an array with values entered by the user?
 Count the grades and find the class average?
 Print the results?

 Yes, we can as soon as we learn about passing arrays
as parameters to functions in the next lecture.

