
The switch Statement
Topics

 Multiple Selection
 switch Statement
 char Data Type and getchar( )
 EOF constant

 Reading

 Section 4.7, 4.12

Multiple Selection
 So far, we have only seen binary selection.

if ( age >= 18 )

{

    printf(“Vote!\n”) ;

}

if ( age >= 18 )

{

    printf(“Vote!\n”) ;

}

else

{

    printf(“Maybe next time!\n”) ;

}

Multiple Selection (cont.)
 Sometimes it is necessary to branch in more

than two directions.
 We do this via multiple selection.
 The multiple selection mechanism in C is the

switch statement.



Multiple Selection with if
if (day == 0 ) {
    printf (“Sunday”) ;
}
if (day == 1 ) {
    printf (“Monday”) ;
}
if (day == 2) {
    printf (“Tuesday”) ;
}
if (day == 3) {
    printf (“Wednesday”) ;
}

       (continued)

if (day == 4) {
    printf (“Thursday”) ;
}
if (day == 5) {
    printf (“Friday”) ;
}
if (day == 6) {
    printf (“Saturday”) ;
}
if ((day < 0) || (day > 6)) {
    printf(“Error - invalid day.\n”) ;
}

Multiple Selection with if-else
if (day == 0 ) {
    printf (“Sunday”) ;
} else if (day == 1 ) {
    printf (“Monday”) ;
} else if (day == 2) {
    printf (“Tuesday”) ;
} else if (day == 3) {
    printf (“Wednesday”) ;
} else if (day == 4) {
    printf (“Thursday”) ;
} else if (day == 5) {
    printf (“Friday”) ;
} else if (day = 6) {
    printf (“Saturday”) ;
} else {
    printf (“Error - invalid day.\n”) ;
}

This if-else structure is more
efficient than the corresponding
if structure.  Why?

The switch Multiple-Selection
Structure
switch ( integer expression )
{

case constant1 :
statement(s)

        break ;
case constant2 :

statement(s)
break ;

. . .
default: :

statement(s)
break ;

}



 The last statement of each case in the switch
should almost always be a break.

 The break causes program control to jump to the
closing brace of the switch structure.

 Without the break, the code flows into the next
case.  This is almost never what you want.

 A switch statement will compile without a default
case, but always consider using one.

switch Statement Details

Good Programming Practices
 Include a default case to catch invalid data.
 Inform the user of the type of error that has

occurred (e.g., “Error - invalid day.”).
 If appropriate, display the invalid value.
 If appropriate, terminate program execution

(discussed in CMSC 201).

switch Example
switch ( day )
{

case 0:  printf (“Sunday\n”) ;
  break ;

case 1:  printf (“Monday\n”) ;
  break ;

case 2:  printf (“Tuesday\n”) ;
  break ;

case 3:  printf (“Wednesday\n”) ;
  break ;

case 4:  printf (“Thursday\n”) ;
  break ;

case 5:  printf (“Friday\n”) ;
  break ;

case 6:  printf (“Saturday\n”) ;
  break ;

default:  printf (“Error -- invalid day.\n”) ;
  break ;

}

Is this structure more
efficient than the
equivalent nested if-else
structure?



Why Use a switch Statement?

 A switch statement can be more efficient than an
if-else.

 A switch statement may also be easier to read.
 Also, it is easier to add new cases to a switch

statement than to a nested if-else structure.

The char Data Type
 The char data type holds a single character.

 char ch;
 Example assignments:

char grade, symbol;

grade = ‘B’;
symbol = ‘$’;

 The char is held as a one-byte integer in memory.  The
ASCII code is what is actually stored, so we can use
them as characters or integers, depending on our need.

The char Data Type (cont.)
 Use

 scanf (“%c”, &ch) ;

    to read a single character into the variable ch.  (Note that
the variable does not have to be called “ch”.”)

 Use
printf(“%c”, ch) ;

to display the value of a character variable.



char Example
#include <stdio.h>
int main ( )
{

char ch ;

printf (“Enter a character: “) ;
scanf (“%c”, &ch) ;
printf (“The value of %c is %d.\n”, ch, ch) ;

     return 0 ;
}

If the user entered an A, the output would be:

The value of A is 65.

The getchar ( ) Function
 The getchar( ) function is found in the stdio

library.
 The getchar( ) function reads one character from

stdin (the standard input buffer) and returns
that character’s ASCII value.

 The value can be stored in either a character
variable or an integer variable.

getchar ( ) Example
#include <stdio.h>
int main ( )
{

char ch ;     /* int ch  would also work! */

printf (“Enter a character: “) ;
     ch = getchar( ) ;

printf (“The value of %c is %d.\n”, ch, ch) ;
     return 0 ;
}

If the user entered an A, the output would be:

The value of A is 65.



Problems with Reading Characters
 When getting characters, whether using scanf( ) or

getchar( ), realize that you are reading only one
character.

 What will the user actually type?  The character he/she
wants to enter, followed by pressing ENTER.

 So, the user is actually entering two characters, his/her
response and the newline character.

 Unless you handle this, the newline character will remain
in the stdin stream causing problems the next time you
want to read a character.  Another call to scanf() or
getchar( ) will remove it.

Improved getchar( ) Example
#include <stdio.h>
int main ( )
{
     char ch, newline ;

     printf (“Enter a character: “) ;
     ch = getchar( ) ;
     newline = getchar( ) ;    /* could also use  scanf(“%c”, &newline)

; */
     printf (“The value of %c is %d.\n”, ch, ch) ;
     return 0 ;
}

If the user entered an A, the output would be:
The value of A is 65.

Additional Concerns with Garbage in
stdin
 When we were reading integers using scanf( ), we didn’t

seem to have problems with the newline character, even
though the user was typing ENTER after the integer.

 That is because scanf( ) was looking for the next integer
and ignored the newline (whitespace).

 If we use scanf (“%d”, &num); to get an integer, the
newline is still stuck in the input stream.

 If the next item we want to get is a character, whether we
use scanf( ) or getchar( ), we will get the newline.

 We have to take this into account and remove it.



EOF Predefined Constant
 getchar( ) is usually used to get characters from

a file until the end of the file is reached.
 The value used to indicate the end of file varies

from system to system.  It is system
dependent.

 But, regardless of the system you are using,
there is a #define in the stdio library for a
symbolic integer constant called EOF.

 EOF holds the value of the end-of-file marker for
the system that you are using.

getchar( ) Example Using EOF
#include <stdio.h>
int main ()
{

int grade, aCount, bCount, cCount, dCount, fCount ;
aCount = bCount = cCount = dCount = fCount = 0 ;
while (  (grade = getchar( ) )  !=  EOF ) {
    switch ( grade ) {

case ‘A’:  aCount++;  break ;
case ‘B’:  bCount++;  break ;
case ‘C’ : cCount++;  break ;
case ‘D’:  dCount++; break ;
case ‘F’:  fCount++;  break ;
default :  break ;

   }
    }
    return 0 ;
}


