
Relational and Logical Operators
Topics

 Relational Operators and Expressions
 The if Statement
 The if-else Statement
 Nesting of if-else Statements
 Logical Operators and Expressions
 Truth Tables

Reading

 Sections 2.6, 4.10, 4.11

Relational Operators
 < less than
 > greater than
 <= less than or equal to
 >= greater than or equal to
 == is equal to
 != is not equal to

 Relational expressions evaluate to the integer
 values 1 (true) or 0 (false).

 All of these operators are called binary operators
because they take two expressions as operands.

Practice with Relational Expressions

 int a = 1, b = 2, c = 3 ;

 Expression Value Expression Value
 a < c a + b >= c
 b <= c a + b == c
 c <= a a != b
 a > b a + b != c
 b >= c

Arithmetic Expressions: True or False

 Arithmetic expressions evaluate to
numeric values.

 An arithmetic expression that has a
value of zero is false.

 An arithmetic expression that has a
value other than zero is true.

Practice with Arithmetic Expressions
 int a = 1, b = 2, c = 3 ;
 float x = 3.33, y = 6.66 ;
 Expression Numeric Value True/False
 a + b
 b - 2 * a
 c - b - a
 c - a
 y - x
 y - 2 * x

Review: Structured Programming
 All programs can be written in terms of only

three control structures
 The sequence structure

 Unless otherwise directed, the statements are executed
in the order in which they are written.

 The selection structure
 Used to choose among alternative courses of action.

 The repetition structure
 Allows an action to be repeated while some condition

remains true.

Selection: the if statement

 if (condition)
 {
 statement(s) /* body of the if statement */
 }

 The braces are not required if the body contains only a
single statement. However, they are a good idea and
are required by the 104 C Coding Standards.

Examples
if (age >= 18)
{

 printf(“Vote!\n”) ;

}

if (value == 0)
{
 printf (“The value you entered was zero.\n”) ;
 printf (“Please try again.\n”) ;
}

Good Programming Practice
 Always place braces around the body

of an if statement.
 Advantages:

 Easier to read
 Will not forget to add the braces if you go

back and add a second statement to the
body

 Less likely to make a semantic error
 Indent the body of the if statement 3 to

5 spaces -- be consistent!

Selection: the if-else statement
 if (condition)
 {
 statement(s) /* the if clause */
 }
 else
 {
 statement(s) /* the else clause */
 }

Example

if (age >= 18)
{
 printf(“Vote!\n”) ;
}
else
{
 printf(“Maybe next time!\n”) ;
}

Example
 if (value == 0)
 {
 printf (“The value you entered was zero.\n”) ;
 printf(“Please try again.\n”) ;
 }
 else
 {
 printf (“Value = %d.\n”, value) ;
 }

Good Programming Practice
 Always place braces around the bodies

of the if and else clauses of an if-else
statement.

 Advantages:
 Easier to read
 Will not forget to add the braces if you go

back and add a second statement to the
clause

 Less likely to make a semantic error
 Indent the bodies of the if and else

clauses 3 to 5 spaces -- be consistent!

Nesting of if-else Statements

 if (condition1)
 {
 statement(s)
 }
 else if (condition2)
 {
 statement(s)
 }
 . . . /* more else clauses may be here */
 else
 {
 statement(s) /* the default case */
 }

Example
 if (value == 0)
 {
 printf (“The value you entered was zero.\n”) ;
 }
 else if (value < 0)
 {
 printf (“%d is negative.\n”, value) ;
 }
 else
 {
 printf (“%d is positive.\n”, value) ;
 }

Gotcha! “=” Versus “= =”
int a = 2 ;

if (a = 1) /* semantic (logic) error! */
{
 printf (“a is one\n”) ;
}
else if (a == 2)
{
 printf (“a is two\n”) ;
}
else
{
 printf (“a is %d\n”, a) ;
}

Gotcha (con’t)
 The statement if (a = 1) is syntactically correct, so

no error message will be produced. (Some
compilers will produce a warning.) However, a
semantic (logic) error will occur.

 An assignment expression has a value -- the value
being assigned. In this case the value being
assigned is 1, which is true.

 If the value being assigned was 0, then the
expression would evaluate to 0, which is false.

 This is a VERY common error. So, if your if-else
structure always executes the same, look for this
typographical error.

Logical Operators
 So far we have seen only simple conditions.

if (count > 10) . . .

 Sometimes we need to test multiple conditions in order
to make a decision.

 Logical operators are used for combining simple
conditions to make complex conditions.

&& is ANDif (x > 5 && y < 6)

|| is OR if (z == 0 || x > 10)

! is NOTif (! (bob > 42))

Example Use of &&

if (age < 1 && gender == ‘m’)
{
 printf (“Infant boy\n”) ;
}

Truth Table for &&
Exp1 Exp2 Exp1 && Exp2

 0 0 0

 0 nonzero 0

 nonzero 0 0

 nonzero nonzero 1

Exp1 && Exp2 && … && Expn will evaluate to 1
(true) only if ALL subconditions are true.

Example Use of ||

if (grade == ‘D’ || grade == ‘F’)
{

printf (“See you next semester!\n”) ;
}

Truth Table for ||
Exp1 Exp2 Exp1 && Exp2

 0 0 0

 0 nonzero 1

 nonzero 0 1

 nonzero nonzero 1

Exp1 && Exp2 && … && Expn will evaluate to 1
(true) if only ONE subcondition is true.

Example Use of !
if (! (x == 2)) /* same as (x != 2) */

{

 printf(“x is not equal to 2.\n”) ;

}

Truth Table for !
Expression ! Expression

0 1

nonzero 0

Operator Precedence and Associativity

Precedence Associativity

() left to right/inside-out
++ -- ! + (unary) - (unary) (type) right to left
* / % left to right
+ (addition) - (subtraction) left to right
< <= > >= left ot right
== != left to right
&& left to right
|| left to right
= += -= *= /= %= right to left
, (comma) right to left

Some Practice Expressions
int a = 1, b = 0, c = 7;
Expression Numeric Value True/False
a
b
c
a + b
a && b
a || b
!c
!!c
a && !b
a < b && b < c
a > b && b < c
a >= b || b > c

More Practice
Given

int a = 5, b = 7, c = 17 ;

evaluate each expression as True or False.

1. c / b == 2
2. c % b <= a % b
3. b + c / a != c - a
4. (b < c) && (c == 7)
5. (c + 1 - b == 0) || (b = 5)

