
Arithmetic Operators

Topics

 Arithmetic Operators
 Operator Precedence
 Evaluating Arithmetic Expressions
 In-class Project
 Incremental Programming

Reading

 Section 2.5

Arithmetic Operators in C

 Name Operator Example

 Addition + num1 + num2

 Subtraction - initial - spent

 Multiplication * fathoms * 6

 Division / sum / count

 Modulus % m % n

Division
 If both operands of a division expression

are integers, you will get an integer
answer. The fractional portion is
thrown away.

 Examples : 17 / 5 = 3
 4 / 3 = 1
 35 / 9 = 3

Division (con’t)
 Division where at least one operand is a

floating point number will produce a
floating point answer.

 Examples : 17.0 / 5 = 3.4
 4 / 3.2 = 1.25
 35.2 / 9.1 = 3.86813
 What happens? The integer operand is

temporarily converted to a floating point,
then the division is performed.

Division By Zero

 Division by zero is mathematically
undefined.

 If you allow division by zero in a
program, it will cause a fatal
error. Your program will
terminate execution and give an
error message.

 Non-fatal errors do not cause
program termination, just produce
incorrect results.

Modulus
 The expression m % n yields the integer

remainder after m is divided by n.
 Modulus is an integer operation -- both

operands MUST be integers.
 Examples : 17 % 5 = 2
 6 % 3 = 0
 9 % 2 = 1
 5 % 8 = 5

 Used to determine if an integer value is even or
odd

 5 % 2 = 1 odd 4 % 2 = 0 even

 If you take the modulus by 2 of an integer, a
result of 1 means the number is odd and a result
of 0 means the number is even.

 The Euclid’s GCD Algorithm (done earlier)

 Uses for Modulus

Arithmetic Operators
Rules of Operator Precedence

Evaluated third. If there are several, evaluated
left to right.+ -

Evaluated last, right to left.=

Evaluated second. If there are several,
evaluated left to right* / %

Evaluated first. If nested (embedded),
innermost first. If on same level, left to right.()

Precedence & AssociativityOperator(s)

Using Parentheses
 Use parentheses to change the order in which an

expression is evaluated.

 a + b * c Would multiply b * c first, then add a to
the result.

 If you really want the sum of a and b to be
multiplied by c, use parentheses to force the
evaluation to be done in the order you want.

 (a + b) * c
 Also use parentheses to clarify a complex

expression.

Practice With Evaluating Expressions

 Given integer variables a, b, c, d, and e,
where a = 1, b = 2, c = 3, d = 4,

 evaluate the following expressions:

 a + b - c + d
 a * b / c
 1 + a * b % c
 a + d % b - c
 e = b = d + c / b - a

 Let’s write a program that computes and
displays the volume and surface area of a
cube.

 Procedure:
 Use the pseudocode that we developed in

“Algorithms, Part 3 of 3”
 Convert the algorithm to code
 Clean up the code (spacing, indentation,

commenting)

A Sample Project

The Box - Pseudocode

Display “Enter the height: “
Read <height>
While (<height> <= 0)
 Display “The height must be > 0”
 Display “Enter the height: “
 Read <height>
End_while

The Box - Pseudocode (con’t)

Display “Enter the width: “
Read <width>
While (<width> <= 0)
 Display “The width must be > 0”
 Display “Enter the width: “
 Read <width>
End_while

The Box - Pseudocode (con’t)

Display “Enter the depth: “
Read <depth>
While (<depth> <= 0)
 Display “The depth must be > 0”
 Display “Enter the depth: “
 Read <depth>
End_while

The Box - Pseudocode (con’t)
<volume> = <height> X <width> X <depth>

<surface1> = <height> X <width>
<surface2> = <width> X <depth>
<surface3> = <height> X <depth>
<surface area> = 2 X (<surface1> + <surface2> + <surface3>)

The Box - Pseudocode (con’t)

Display “Height = “, <height>

Display “Width = “, <width>

Display “Depth = “, <depth>

Display “Volume = “, <volume>

Display “Surface Area = “, <surface area>

Good Programming Practice
 It is best not to take the “big bang” approach to

coding.
 Use an incremental approach by writing your

code in incomplete, yet working, pieces.
 For example, for your projects,

 Don’t write the whole program at once.
 Just write enough to display the user prompt

on the screen.
 Get that part working first (compile and run).
 Next, write the part that gets the value from the

user, and then just print it out.

Always have a working
version of your program!

Good Programming Practice
 Get that working (compile and run).
 Next, change the code so that you use the

value in a calculation and print out the answer.
 Get that working (compile and run).
 Continue this process until you have the final

version.
 Get the final version working.

Using the Incremental Approach
 Let’s think about how we could have developed

the volume and surface area program
incrementally.

