
Variables in C
Topics

 Naming Variables
 Declaring Variables
 Using Variables
 The Assignment Statement

Reading

 Sections 2.3 - 2.4

What Are Variables in C?
 Variables in C have the same meaning as

variables in algebra. That is, they represent
some unknown, or variable, value.

x = a + b
z + 2 = 3(y - 5)

 Remember that variables in algebra are
represented by a single alphabetic character.

Naming Variables
 Variables in C may be given

representations containing multiple
characters. But there are rules for these
representations.

 Variable names (identifiers) in C
 May only consist of letters, digits, and

underscores
 May be as long as you like, but only the first

31 characters are significant
 May not begin with a digit
 May not be a C reserved word (keyword)

Reserved Words (Keywords) in C

 auto break
 case char
 const continue
 default do
 double else
 enum extern
 float for
 goto if

 int long
 register return
 short signed
 sizeof static
 struct switch
 typedef union
 unsigned void
 volatile while

 C programmers generally agree on the following
conventions for naming variables.
 Begin variable names with lowercase letters

 Use meaningful
 identifiers

 Separate “words” within identifiers with underscores or
mixed upper and lower case.

 Examples: surfaceArea surface_Area
 surface_area

 Be consistent!

Naming Conventions

Naming Conventions (con’t)
 Use all uppercase for symbolic constants

(used in #define preprocessor directives).
 Note: symbolic constants are not variables,

but make the program easier to read.
 Examples:

 #define PI 3.14159
 #define AGE 52

Case Sensitivity
 C is case sensitive

 It matters whether an identifier, such as a
variable name, is uppercase or lowercase.

 Example:
area
Area
AREA
ArEa

are all seen as different variables by the
compiler.

Which Are Legal Identifiers?
 AREA area_under_the_curve
 3D num45
 Last-Chance #values
 x_yt3 pi
 num$ %done
 lucky***

Declaring Variables
 Before using a variable, you must give the

compiler some information about the variable;
i.e., you must declare it.

 The declaration statement includes the data
type of the variable.

 Examples of variable declarations:
 int meatballs ;
 float area ;

Declaring Variables (con’t)
 When we declare a variable

 Space is set aside in memory to hold a value of the
specified data type

 That space is associated with the variable name
 That space is associated with a unique address

 Visualization of the declaration
 int meatballs ;

meatballs

FE07

garbage

 int

More About Variables
C has three basic predefined data types:

 Integers (whole numbers)
 int, long int, short int, unsigned int

 Floating point (real numbers)
 float, double

 Characters
 char

 At this point, you need only be concerned with
the data types that are bolded.

Notes About Variables
 You must not use a variable

until you somehow give it a
value.

 You can not assume that the
variable will have a value
before you give it one.
 Some compilers do, others do

not! This is the source of many
errors that are difficult to find.

Using Variables: Initialization
 Variables may be be given initial values, or

initialized, when declared. Examples:

int length = 7 ;

float diameter = 5.9 ;

char initial = ‘A’ ;

7

5.9

‘A’

length

diameter

initial

Using Variables: Initialization
 Do not “hide” the initialization

 put initialized variables on a separate line
 a comment is always a good idea
 Example:

int height ; /* rectangle height */
int width = 6 ; /* rectangle width */
int area ; /* rectangle area */

 NOT int height, width = 6, area ;

 Variables may have values assigned to them
through the use of an assignment statement.

 Such a statement uses the assignment operator
=

 This operator does not denote equality. It assigns
the value of the right-hand side of the statement
(the expression) to the variable on the left-hand
side.

 Examples:
diameter = 5.9 ;
area = length * width ;

Note that only single variables may appear on the
left-hand side of the assignment operator.

Using Variables: Assignment

Functions
 It is necessary for us to use some functions to write our

first programs, but we are not going to explain functions
in great detail at this time.

Functions are parts of programs that perform a certain
task and we have to give them some information so the
function can do the task.

 We will show you how to use the functions as we go
through the course and later on will show you how to
create your own.

Displaying Variables
 Variables hold values that we occasionally want

to show the person using the program.
 We have a function called printf() that will allow

us to do that.
 The function printf needs two pieces of

information to display things.
 How to display it
 What to display

 printf(“%f\n”, diameter);

printf(“%f\n”, diameter);
 The name of the function is “printf”.
 Inside the parentheses are:

 print specification, where we are going to display:
 a floating point value (“%f”)
 We want to have the next thing started on a new line (“\n”).

 We want to display the contents of the variable
diameter.

 printf() has many other capabilities.

Example: Declarations and Assignments

 #include <stdio.h>
 int main(void)
 {
 int inches, feet, fathoms ;

inches

feet

fathoms

42

7

garbage

504

fathoms
garbage

feet

garbage

inches

fathoms = 7 ;

feet = 6 * fathoms ;

inches = 12 * feet ;

Example: Declarations and Assignments

 printf (“Its depth at sea: \n”) ;
 printf (“ %d fathoms \n”, fathoms) ;
 printf (“ %d feet \n”, feet) ;
 printf (“ %d inches \n”, inches) ;

 return 0 ;
 }

Enhancing Our Example
 What if the depth were really 5.75

fathoms? Our program, as it is, couldn’t
handle it.

 Unlike integers, floating point numbers
can contain decimal portions. So, let’s
use floating point, rather than integer.

 Let’s also ask the user to enter the
number of fathoms, rather than
“hard-coding” it in by using the scanf(
) function.

Enhanced Program
#include <stdio.h>
int main (void)
{
 float inches, feet, fathoms ;

 printf (“Enter the depth in fathoms : ”) ;
 scanf (“%f”, &fathoms) ;
 feet = 6 * fathoms ;
 inches = 12 * feet ;
 printf (“Its depth at sea: \n”) ;
 printf (“ %f fathoms \n”, fathoms) ;
 printf (“ %f feet \n”, feet) ;
 printf (“ %f inches \n”, inches) ;
 return 0 ;
}

scanf (“%f”, &fathoms) ;
 The scanf() function also needs two items:

 The input specification “%f”. (Never put a “\n”
into the input specification.)

 The address of where to store the information.
(We can input more than one item at a time if
we wish, as long as we specify it correctly.)

 Notice the “&” in front of the variable name.
It says to use the address of the variable to
hold the information that the user enters.

Note About Input and Output
 Whenever we wish to display values or get

values from the user, we have a format problem.
 We can only input characters, not values.
 We can only display characters, not values.
 The computer stores values in numeric

variables.
 printf() and scan() will automatically convert

things for us correctly.

Final “Clean” Program
#include <stdio.h>

#define FEET_PER_FATHOM 6
#define INCHES_PER_FOOT 12

int main(void)
{
 float inches ; /* number of inches deep */
 float feet ; /* number of feet deep */
 float fathoms ; /* number of fathoms deep */

 /* Get the depth in fathoms from the user */

 printf (“Enter the depth in fathoms : ”) ;
 scanf (“%f”, &fathoms) ;

Final “Clean” Program
 /* Convert the depth to inches */

 feet = FEET_PER_FATHOM * fathoms ;
 inches = INCHES_PER_FOOT * feet ;

 /* Display the results */

 printf (“Its depth at sea: \n”) ;
 printf (“ %f fathoms \n”, fathoms) ;
 printf (“ %f feet \n”, feet);
 printf (“ %f inches \n”, inches);

 return 0 ;
}

Good Programming Practices
 Place each variable declaration on its own line

with a descriptive comment.
 Place a comment before each logical “chunk”

of code describing what it does.
 Do not place a comment on the same line as

code (with the exception of variable
declarations).

 Use spaces around all arithmetic and
assignment operators.

 Use blank lines to enhance readability.

Good Programming Practices
 Place a blank line between the last variable

declaration and the first executable statement of
the program.

 Indent the body of the program 3 to 5 spaces --
be consistent!

 Comments should explain why you are doing
something, not what you are doing it.
a = a + 1 /* add one to a */ /* WRONG */
 /* count new student */ /* RIGHT*/

Another Sample Program
#include <stdio.h>

#define PI 3.14159

int main (void)
{
 float radius = 3.0;
 float area;

 area = PI * radius * radius;
 printf(“The area is %f.\n”, area);
 return 0 ;
}

