
A Framework for Cooperative Intrusion Detection

Deborah Frincke Don Tobin Jesse McConnell

Jamie Marconi Dean Polla

Center for Secure and Dependable Software
Department of Computer Science

University of Idaho

Moscow, ID 83844-1010

Abstract

The trend towards a strong interdependence among networks has serious security
implications. Not only does the compromise of one network adversely a�ect resources
needed by others, but the compromised network may be part of a multi-network attack
targeting other systems. The task of



2 A Framework for Cooperative Intrusion Detection

In this section we discuss principles for a cooperative intrusion detection system framework,
where information sharing takes place both between distinct domains and within domains.
Domains may have varying or even con
icting policies, and will not necessarily have the same
mechanisms in place to identify system misuse.

We have found it useful to consider these principles with respect to the relation between
participant pairs, and have identi�ed the following primary relationships:

Peer: a relationship of equals between hosts, typically in di�erent policy domains. Neither
host controls the other, although they may send requests or information between themselves.
Peers do not necessarily trust one another, and the level of trust is not necessarily identical.

Manager: a manager is a host that provides instructions regarding which data is to be
collected, when warnings should be issued, etc. to a set of dependent hosts. Managers set a
central policy for a group of hosts, generally within the same policy domain. Managers need
not trust their subordinate hosts.

Subordinate/Managed Host: a host that receives some or all of its data collection and
transmission policy from outside. Managed hosts may modify or add to this policy, and may
themselves manage other hosts. Managed hosts must fully trust their managers, and will
usually be within the same policy domain.

Slave Host: a host that receives all of its data collection and transmission policy from
outside. Slave hosts may not modify or add to this policy, although they may themselves
manage other hosts. Slave hosts must fully trust their managers, and will always be within
the same policy domain.

Friend: a relationship of equals between hosts. Neither host controls the other, although
they may send requests or information between themselves. Friends always trust one another,
and the level of trust is identical. Friends should be within the same domain.

Symbiote: a relationship of interdependent hosts. Neither host controls the other, although
they may send requests or information between themselves. Hosts with this relationship are
expected to be `identical' in terms of policies and security labels.

Since space does not permit a detailed discussion of the rules for each relationship, we
have chosen to focus on the peer relationship. The peer relationship is appropriate between
domains having di�erent policies, or where domains do not fully trust one another, or a
controlling relationship between them is undesirable.

We have identi�ed the following principles as important in the development of a framework
for cooperation between domains:



1. Local control over policy decisions must be maintained.

2. Data collection should be autonomous but cooperative.

3. Actions based on data obtained elsewhere should include a local trust factor, since
incoming data may not be reliable.

4. The enforcement of policy and the identi�cation of policy violations should be separate
issues.

5. Transactions should be validated.

6. Structure information is shared both horizontally and vertically.

7. Data collectors should be layered, overlapping, and provide both data reduction and
sanitization.

8. Audit tool management and visualization systems should be integrated.

Local Policy Control We believe that local control over policy decisions is one of the
most important facets of cooperative intrusion detection systems. Cooperating domains may
not fully trust one another and will be highly unlikely to grant any outsider the right to
change their internal methods of misuse data collection or information 
ow. The local host
should always determine whether a given interaction should take place based on its own local
policies. Even for hierarchical relationships such as master/slave, the slaved host should have
facilities for checking its own policies before reacting to the incoming message.

Autonomous, but cooperative data collection: Although the data collected and shared
is determined locally, hosts and domains should share relevant information. This may involve
collecting and sharing data which is irrelevant to the source host's own security policy but
is needed by a peer or manager. However, even when hosts are obtaining data needed to
identify policy violations for external domains, the decision regarding whether to collect and
transmit this data is local, and should include the realization that the recipient will `own' the
data once transmitted and may decide to disseminate it further.

Data reliability: Actions based on data obtained elsewhere should include a local trust
factor, since incoming data may not be reliable. For example, the source host may have
been compromised and be unknowingly transmitting misleading data. Thus, the intrusion
detection system using data obtained via the cooperative framework should employ a method
which takes into account the local host's trust in the authenticity and the integrity of the
data.

Policy enforcement and identi�cation: The enforcement of policy and the identi�cation
of policy violations should be separate issues. Hosts may be identifying policy violations for
another domain than their own, but they should not be responsible for enforcing those policies.



Validated Transactions: It will be necessary to perform authentication of some kind
between cooperating hosts. This authentication might involve digitally signed messages, for
instance.

Structure of sharing: Information sharing may be both horizontal and vertical. For
example, a manager and its subordinates may perform vertical sharing, where subordinates
transmit data \upwards" to the manager and managers transmit commands \downwards."
The trust relationships between participants are likely to be strong in the downward direction
(subordinates trust their manager) and weaker in the opposite direction (managers may not
fully trust their subordinates). Between peers, sharing should be horizontal, due to the more
collaborative nature of their relationship.

Data collectors: Data collectors should be overlapping and provide both data reduction
and sanitization. Overlapping data collectors are needed whenever one data collector might
be subverted or become unavailable. Data reduction is important to reduce the extraneous
data transmitted between sharing partners. Data sanitization is needed to eliminate host
and network speci�c attributes of the data. This is important since such data might cause a
security risk to the transmitting host.

Integrated audit tool management and visualization systems: As data collection
systems become more complex and handle more and more systems, manual con�guration of
audit tools becomes impossible. Further, examination of voluminous textual information for
potential violations is di�cult; humans are far better at processing and identifying oddities
in graphical forms while systems produce faster initial response. Thus, any data management
system should include methods for managing sets of audit tools and providing graphical views
of examining such data.

2.1 Policy Sharing Issues

When managing data between cooperating domains, it does not appear to be realistic to
require an `overall' policy encompassing all participants. Instead, each host should let its
local policy and local ratings govern its interactions. This permits domains to cooperate even
when they disagree on some policy issues. We divide policy into three components: access
control, integrity, and cooperation, where requests are handled as in Figure 1(A). Policies
are checked using local assessment of integrity, trust relationships, and the status of ongoing
data collection activities. These policies interact. One possible interaction is shown in Figure
1(B): the transmitting host relies on its cooperation and access control policies to determine
which data it will send, and the receiving host relies on its integrity policy to determine how
(and whether) the data will be used. Other combinations are possible as well.

The access control policy is used to determine whether a subject (in the context of the
evaluation domain) has su�cient clearance to perform a given operation on a particular
object. The integrity policy is used to determine whether information should be allowed to



Request

Integrity Policy

Cooperation Policy

Access Control
Policy

Trust

Integrity

Auth

Collection
Status

DataResponse

A. Handling Information Requests

Access
Control

Integrity
Policy

Cooperation
Policy

Communication
Media

Source of the data;
provides based on local
information/access control
and cooperation policies.

Destination of the data;
accepts based on local
integrity policies.

B. Peer Information Exchange Policies with Weak-
ened Bell-LaPadula and Biba

Figure 1: Information Exchange patterns

be modi�ed or added to a system. The cooperation policy determines whether data which
the access control policy permits to be shared will in fact be shared. Providing a separate
cooperation policy allows the choice to share to be handled separately from the legality of
sharing. The cooperation policy is somewhat reminiscent of a discretionary access policy, since
decisions to cooperate are based on the relationship between hosts and should be made on
an individual basis. However, cooperation requires expenditure of resources to collect, store,
and transmit data, and to manage incoming requests, and sharing of data opens the risk of
releasing data which may increase a participant's own vulnerability. Thus, we believe that
the cooperation policy should be developed separately. Sample policies may base cooperation
on a reciprocal agreement, the di�culty of obtaining the desired information, or on the likely
bene�t to an individual host. If one host relies on another for some critical functionality,
then it is to the bene�t of the �rst host to improve the second's security. If the second
host does not provide any critical functionality to the �rst, then there may be no bene�t to
collaboration.

2.2 Data Filtering

Our �ltering model is drawn from existing technologies such as �ltering routers and from
sensitivity downgrading issues [Smi92]. Filtering is needed for data reduction and to protect
sensitive internal resources. We consider �ltering to be a useful mechanism for enforcing
aspects of the access control policy as well as an important performance measure. Filtering
includes both data reduction and data sanitization. Data reduction bene�ts the `requesting'
host, since it reduces the transmission of extraneous information. Although the source host
must perform additional data processing, communication costs should be reduced for it as
well. Data sanitization bene�ts the source host by removing potentially sensitive information
which might induce or expose a vulnerability.

Filtering may be performed during transmission, data collection, and/or storage. Data
transmission �ltering is done with respect to the speci�c target, can be host speci�c, and



has a �ne granularity. Collection/storage �ltering is done with respect to a general policy
regarding what will be stored, is less speci�c, and will tend to result in either a generally
lower level of sensitivity of data being transmitted (since the data will be highly sanitized)
or a reduced amount of information being transmitted (since fewer hosts will be allowed to
read the data).

3 Hummingbird System

The HMMR protocol has been designed to address the requirements needed to permit net-
work sites to share security relevant data while still retaining local control of data gathering
activities, deciding locally how much trust to place in data received from outside sites, and de-
termining how much data to share with outside sites. An early version is described in [FEA96].
Small-scale models of this protocol have been developed [NCD97][ILL97][Auc94][Eva95] and
combined in a prototype Hummingbird System. This system is being used as a testbed for
exploring practical issues in sharing data between sites, such as how much reliance to place
on o�site intruder alerts and misuse data, how data may be shared safely, which collected
data makes a quanti�able contribution to intruder identi�cation, and so on.

Hummingbird is formulated as a distributed system for managing misuse data. Hum-
mingbird employs a set of Hummer agents, each assigned to a single host or host set. Each
Hummer interacts with others in the system through manager, subordinate, and peer re-
lationships. Managers may transmit commands to subordinates; such commands include
requirements to gather/stop gathering data, to forward/stop forwarding data, and the like.
Peers may send requests for data forwarding/gathering/receiving to peers; the peer decides
whether to honor such requests. Subordinates may send requests to their managers as well.
Con�guration is performed using the interface shown in Figure 3. Kerberos [NT94] is used for
authentication and encryption of communication between hummers and for authentication
between Hummers and their associated database. Individual Hummers share data based on
their own locally controlled and set policies regarding trust, information 
ow, and coopera-
tion. Simple �ltering is also performed by each host.

The prototype Hummers use POSTGRES, an SQL-compliant database, for storing misuse
data. By using an SQL database, it is possible to easily obtain subsets of data to: generate
reports, generate information for an intrusion detection system, and data for the visualization
system (Section 3.2), and supply data to the feature selection routines (under development).
The POSTGRES database in the prototype system can supply this information either in text
format or as an HTML table.

Audit tools run either individually under each Hummer's control or else as a suite through
the Audit Tool Manager (Section 3.1). These audit tools collect security relevant data from
system log �les, by running system utilities, or by running specialized auditing processes.
Each Hummer's con�guration includes information about the audit tools it is running, so
that if a Hummer is stopped and restarted, it can regain control over the tools or start them
up again if necessary. Alert tools are a special case of audit tools, since they only examine
a Hummer's own log �les. These alert tools perform simple security assessments by looking



Figure 2: Hummingbird component interaction. Not shown: audit management and feature
selection tools.



Figure 3: Main Con�guration Window for Individual Hummer: set peers, managers, sub-
ordinates; assign behavior for handling alerts and alarm situations; handle data �ltering;
etc



Figure 4: Filter Con�guration

for indications that an intrusion may be in process. Reports from the data collected by
a Hummer may be obtained either directly from the POSTGRES database or through the
visualization tool (Section 3.2).

3.1 Audit Tool Manager

The audit tool manager, Atom, is a front end for managing Hummingbird audit tools based
on the perceived level of threat to the network (Figure 5). It implements a graphical user
interface that allows the user to manage audit tools on a network or a single host. Atom
is integrated with the Hummingbird system to improve the management of audit tools and
increase specialized data collection.

Each audit tool must be registered with Atom. Registration information includes the name
of the audit tool, a security classi�cation level, parameters of the tool, textual description,
tool classi�cation type, directory where the tool is located, and the default execution of the
tool. The default execution is the command used to start the audit tool on the host.

The primary purposes of Atom is to increase and ease the task of performing specialized
data collection. This is accomplished by assigning a security classi�cation level (SCL) to
a suite of audit tools. The framework for a SCL is a descriptive classi�cation level name
determined by the user and assigned to one or more audit tools. Typical SCLs for a network
may be none, possible intrusion, and ongoing intrusion. Using this as a scenario, the classi-



Figure 5: Audit Tool Management: main and tool options interface.

�cation level none is considered to be the default, or normal level of data collection on the
network. When potential security risks develop, the system administrator can switch to the
possible intrusion or ongoing intrusion SCLs, increasing the data collection by recon�guring
the operating set of audit tools.

One of Atom's more important capabilities is the ability to start or stop a suite of data
collection tools on a host or network with the click of a single button. These suites of audit
tools allow Hummingbird to be tailored to collect information important in the detection
and/or prevention of speci�c network-based attacks, or to increase the level of auditing when
an attack is thought to be underway. Suites of tools which are often used together may be
developed and managed under a single name. This also permits easy \upgrading" of system
auditing when the perceived level of system threat increases, and an easy way to decrease
system auditing when the perceivedeasy dataorkF



choice if desired.
In addition to tool suites, Atom provides several advantages. First, all the tools are

now managed by one central manager, making it easy to identify the security mechanisms
available to perform intrusion detection or auditing. Since each tool is registered with the
manager and has a tool classi�cation type, the user can easily identify and launch tools with
particular characteristics, such as login monitoring tools. The parameters and the default
execution command of the audit tool are registered providing e�cient information about the
tool without searching the system for it. In addition, scripts that are developed and used
with Hummingbird can be registered and managed by Atom. Finally and most importantly,
it creates a more secure and integrated system with Hummingbird for handling audit data.

3.2 Visualization

Visualization is a useful part of any intrusion detection system, since presenting information
graphically to the system security o�cer can greatly ease the task of identifying intrusions by
making use of human ability to more rapidly perform pattern matching with graphical data
than with raw text. Figure 2 shows a block diagram of the data
ow and interfaces between
components in the Hummingbird System, including visualization. We have developed a simple
visualization tool which allows subsets of data obtained from the POSTGRES database to
be viewed as a histogram. Details about the audit records used to generate the histogram
may be obtained by clicking on individual entries. We are continuing to examine alternative
forms of data visualization.

4 Related Systems

Earlier studies indicate that detection of certain attacks required data from multiple hosts
on a network, and that networks under centralized control could e�ectively combine data
sources to minimize damage. University of California, Davis' Distributed Intrusion Detection
(DIDS) system[SB+91] addressed system attacks across a network. Attacks such as doorknob,
chaining, and loopback could be detected when data from hosts within a given network was
combined1. Without data combination, threshold-based intrusion identi�cation schemes are
easily subverted by reducing the volume of attacks directed at a particular host to avoid
detection. DIDS combined data from hosts within a network under centralized control, but
clever attackers could still subvert DIDS by reducing the volume of attacks for a given network.
Data sharing as proposed in this project should prove to be a useful way to detect such attacks.

A smaller-scale prototype system for Hummingbird [FEA96] permitted di�erent trust
levels between \neighborhoods of networks", and these networks were not assumed to fall

1Doorknob attack is considered to be an attempt to break into a system by testing one or more passwords|
i.e., rattling the door|on a system. Chaining refers to an intruder's attempt to hide his/her origin by logging
in through a sequence of hosts, and a loopback attack is one in which an intruder combines chaining with a
visit to an earlier host in the sequence (often with a di�erent login name).



under any central jurisdiction. However, this prototype did not explicitly distinguish between
policy decisions based on information 
ow, trust, or cooperation levels.

In contrast, the EMERALD system (SRI International), is intended to address intru-
sions within very large networks [PN97]. EMERALD also considers separate administrative
domains. Although these domains are assumed to lie within a single corporate structure,
EMERALD includes features for handling di�erent levels of trust between the domains from
the standpoint of a centralized system: individual monitors are deployed in a distributed
fashion, but still contribute to a high-level event-analysis system. EMERALD appears to
scale well to very large domains.

Another network-based intrusion detection system, GrIDS, uses graphing techniques to
detect coordinated network attacks [SC+96]. This is done by representing the data col-
lected from hosts and networks as activity graphs. These graphs are then analyzed to detect
potential violations. Graph reduction techniques are used to reduce the volume of data repre-
sented in the graphs. If these reduction techniques are successful, they should permit scaling
of GrIDS to large-scale systems.

5 Ongoing E�orts

At present, Hummingbird implementations run under HP/UX, Solaris, and Linux. An NT
port is underway and expected to be complete by August 1998. The underlying model is
expected to require some additions. Experiments are being conducted to determine whether
the overall policy governing data sharing should be augmented by an availability policy to
indicate requirements for timely responses to requests for data, etc. An availability policy
could be used to re�ne cooperation policies that 
uctuate depending on a host's ability
and willingness to provide the information requested at the desired rate. We are presently
developing both feature selection tools and machine learning tools which will be integrated
with Hummingbird (initial completion expected Fall 1998) to provide a means for assessing
the e�ectiveness and e�ciency of our system in identify intrusions.

We have deliberately excluded a \true" intrusion identi�cation component from our dis-
cussion of our framework for cooperative detection, preferring instead to concentrate on the
issues involved in data sharing. However, the issue of trust in decision making warrants
further examination. In the context of data sharing, we identify three facets of trust in a
message: authentication (Who sent the message?), reliability (Is the data accurate?), and
integrity (Is the received message what was sent?) If newly arrived data is sent from an
untrusted source, then it may not be safe to use it in making decisions. Also, if the data
purports to be from a trusted source but this cannot be authenticated, then it may be wiser
to ignore it. Considerable work remains to be done in the development of intrusion detection
systems that handle data with varying degrees of reliability.



References

[Auc94] D. Aucutt. Hummingbird Communication Protocol. Technical report, University
of Idaho, 1994.

[Dep97] Wheeling Police Department. Neighborhood watch program. Technical report,
http://nsn.nslsilus.org/wgkhome/WHLPOLIC/neighbor.html, 1997.

[Eva95] J. Evans. Hummingbird Trust System. Technical report, University of Idaho, 1995.

[FEA96] D. Frincke, J. Evans, and D. Aucutt. Hierarchical management of misuse reports.
Journal Computing Informatics, 1996.

[ILL97] J. Ingalls, T. Lawrence, and E. Lustig. Hummingbird Team B. Technical report,
University of Idaho, 1997.

[Isr94] United States Information Service Israel. Israel-
jordan peace treaty (26 oct 94). Technical report,
http://www.usis-israel.org.il/publish/peace/annex3.htm, 1994.

[NCD97] P. Neisen, C. Coltrin, and J. Dowding. Hummingbird Team A. Technical report,
University of Idaho, 1997.

[NT94] B. Neuman and T. Ts'o. Kerberos: An Authentication Service for
Computer Networks. IEEE Communications, 32(9):33 { 38, Sept 1994.
http://nii.isi.edu/publications/kerberos-neuman-tso.html.

[PN97] P. Porras and P. Neumann. EMERALD: Event Monitoring Enabling Responses to
Anomalous Live Disturbances. Proceedings of the 1997 National Computer Security

Systems Conference, pages 719{729, 1997.

[SB+91] S. Snapp, J. Brentano, et al. DIDS (Distributed Intrusion Detection System){
Motivation, Architecture and An Early Prototype. Proceedings of the 1991 National

Computer Security Conference, 1991.

[SC+96] S. Staniford-Chen, S. Cheung, et al. GrIDS{A Graph-Based Intrusion Detection
System for Large Netw0 TD

(Detection)Tj

457.0002 0 TD

(SysuT420.9999999999999999esed)Tj
Tj

86 y40.0002 hun,


	A Framework for Cooperative Intrusion Detection
	1 Introduction
	2 A Framework for Cooperative Intrusion Detection
	3 Hummingbird System
	4 Related Systems
	5 Ongoing E orts
	References

	Table of Contents

