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Roadmap

» Distributed Data Mining (DDM)

= Pervasive and Privacy-Sensitive
Applications of DDM

» Dealing with ensemble of data mining
models

» Linear representations for advanced
meta-level analysis of models

» Conclusions




Distributed Data Mining (DDM)

» Distributed resources
—data
— Computation and communication
— users

= Data mining by properly exploiting the
distributed resources

Distributed Resources and DDM

= Distributed compute nodes connected by first
communication network

— Partition data if necessary and distribute
computation

» Inherently distributed data that may not be
collected to a single site or re-partitioned
— Connected by limited bandwidth network
— Privacy-sensitive data




Pervasive Applications: UMBC Fleet
Health Monitoring

*Vehicle Health Monitoring Systems

*Collect and analyze vehicle related
information.

*On-board/in situ data analysis

*Send out interesting patterns

*Analyze data for the entire fleet

*UMBC fleet operations management

Continued...

= Onboard real-time
vehicle-mining
system over a wireless
network




Pervasive Applications: MobiMine

= MobiMine System: A
mobile data stream
mining system for
monitoring financial
data
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Mining from Distributed Privacy-
Sensitive Data

» Analyze data without moving the data
in its original form.

= Many DDM algorithms are privacy-
friendly since they minimize data
communication.

Distributed Data Mining

Site 1

Central site

Site 2




Ensemble of Classifiers and Clusters

£, (X fz(x)\ / f3(x)

Weighted
Sum

g, : weight for the i-th base classifier

f(x) = zi g; fi(x) f,(X) : output of the i-th classifier

Discrete Structures for Data Mining
Models

m Trees, in general Graphs are popular choices
for data mining models:
— Decision trees (Tree)
— Neural networks (Graph)
— Graphical models (Graph)
— Clusters (Graph, hypergraph)

» Dealing with ensembles requires an algebraic
framework.




Examples

Eigen analysis of graphs:

— Graphs can be represented using matrices

— Eigen analysis of the Laplacian of graphs (Chung,
1997).

= Wavelet, Fourier, or other representations of

discrete structures??

Decision Trees as Functions
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» Decision tree can be viewed as a numeric function.




Fourier Representation of a Decision Tree

2 . 0 =) f(X) = ZJ WJ LIJJ(X)

1 0 1 Fourier Basis Function

Fourier Basis

j» x 0{0, 1}/

j-th Fourier basis functionF#{G:9R=NENS I3t

w;, is the corresponding Fourier coefficient;

W= ;—Z f(x)¥(x)




Partitions

A partition j is an /-bit boolean string.

It can also be viewed as a subset of variables.
Example:

Partition 101 U {x,, X,} contains the features
associated with locations indicated by the 1-s in the

partition.

Order of a partition = the number 1-s in a partition.

Fourier Spectrum of a Decision Tree

» Very sparse representation; polynomial number of
non-zero coefficients. If k is the depth then all
coefficients involving more than k features are zero.

» Higher order coefficients are exponentially smaller
compared to the low order coefficients (Kushlewitz
and Mansour, 1990; Park, Kargupta, 2001).

= Can be approximated by the low order coefficients
with significant magnitude.

m Further details in [Linial, Mansour, Nisan, 89], [Park,
Ayyagari Kargupta 01°], [Kargupta et al. 2001].




Exponential Decay of FCs
(S&P 500 Index Data)
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Fourier Spectrum and Decision Trees

Decision Tree

Fourier Spectrum

= Developed efficient algorithms to

— Compute Fourier spectrum of decision tree
(IEEE TKDE, SIAM Data Mining Conf., IEEE Data Mining Conf, ACM SIGKDD
Explorations)

— Compute tree from the Fourier spectrum
(DMKD, SIGMOD 2002)

Aggregation of Multiple Decision

Trees
A & 5{%
F1(x) = Zw; I; (x) F2(x) = Zw; ); (%) F3(x) = Zw; §j; (%)

F(x) = al*F1(x) + a2*F2(x) + a3*F3(x)

AN

= Weighted average of decision trees through Fourier
analysis
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Visualization of Decision Trees

=
g=TE =

FC are color-coded in accordance to the magnitude.
» Brighter spots are more significant coefficients.

= On clicking, partition corresponding to the coefficient
is displayed.

PCA-Based Visualization of Decision Trees
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Redundancy Reduction: Orthogonal
Decision Trees

True output Matrix D
of the target
function Treel Tree2 Tree3 Tree4
1 1|1 ] 1| -1 .
1 1 1 1 1 All domain
members
-1 -1 1 -1 1
-1 1
1 -1
1 1] -1
-1 -1 -1 -1 1
1 1 -1 1

PCA-Based Redundancy Reduction

= Trees may share underlying redundancy.

» Perform PCA; the eigenvectors tell us how to
combine the trees for creating a basis set.

= Problems:
1) Impractical, D is very very large for most applications.

2) You only get the weights of the base classifiers.

= Approximating D over the training data (Merz
and Pazzani, 1999).
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Inner Product of Decision Trees and
Fourier Transformation

= Inner product between trees f1(x) and f2(x) :
< f1(x), 2(x) >= D _f1(x)f2(x)
= If W1 and W2 are the corresponding Fourier
spectra then:
< f1(x), 2(x) >=< w1, w2 >

Inner Product Matrices

(a) Between Trees (b) Between the Fourier Spectra
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The Fourier Spectra Matrix

= Consider W, where W, ; is the Fourier
coefficient of the i-th basis from the spectrum
of the tree T;.

= WTW and D™D are identical.
= W is a smaller matrix compared to D.

= S0 we can efficiently compute the
eigenvectors using WTW.

Conclusions

m Distributed data mining appears interesting
for pervasive and privacy-sensitive
applications.

m We need meta-level techniques to analyze
aggregate the data mining models:

— Stability of models/ensembles
— Detecting changes in the model distribution

— Many other issues....
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Advertisement

m IEEE Transactions on System, Men,
Cybernatics, Part B, Special Issue on
Distributed and Mobile Data Mining

= Deadline: January 1, 2003.

http://www.cs.umbc.edu/~hillol/DKD/smcb_dmdm.html
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