

MARSHALLING EVIDENCE THROUGH DATA MINING

Daniel Barbará
James J. Nolan
David Schum
Arun Sood
George Mason University

Problem

- ◆ Lots of disparate, heterogeneous pieces of evidence.
- ♦ How do we make sense of it all?
- How do people investigate: making hypothesis. Two solutions:
 - A system that can make automatic hypothesis,
 through the use of models.
 - A system that supports hypothesis ``testing.''

Trifles?

You know my method.

It is founded upon the observation of trifles...

Sherlock Holmes

"The Boscombe Valley Mystery"

Two approaches

- Automatic generation of hypothesis:
 - + Less labor intensive
 - Rigid (constrained by the previously-built models. E.g.: Bayesian Networks)
 - ⇒Fails to adapt to new situations
- Human-in-the-loop (generating hypothesis)
 - + Humans have great capacity for discovering new patterns
 - Laborious

Our approach: human-in-the-loop + Heavy support for hypothesis testing.

Hypothesis testing?

- ♦ By supporting:
 - Query answering
 - Linkage of evidence by data mining methods.

The architecture

Trifles \Rightarrow I-XML pages

Trifle address

Source

Date

Time

Location

Individuals

Assesment

Text

Image characteristics

Some tags

Queries, queries everywhere...

Durability:

- Standing (continuous) queries
- Ad-hoc queries

Complexity

- Unformatted (query-by-example: take a trifle and use it as a query)
- Formatted: list-of-keywords (or I-XML tags)
- Richer queries (data mining): e.g., ``is there a change in the trend of money transfers to a certain group of individuals?'' HYPOTHESIS can be formulated by richer queries.

Richer queries

- Only limited by the implemented tasks in our system. E.g.,:
 - Frequent episodes,
 - Time-series outliers
 - Trend shifs

Grouping and querying trifles

- Supervised learning (text, and other media classification)
 - Trifle parsing into I-XML
 - Dimensionality reduction
 - Classifier building:
 - Unlabeled sets: clustering
 - Record linkage
 - T. Mitchell's work

Trifles grouped by class

Clustering

Challenges

- Unsupervised learning
 - Absence or limited availability of a training corpus of trifles
 - Dynamic nature of the trifles
 - Large volume of trifles
- Clustering
 - Large dimensional space
 - Lots of missing values
 - Large volume of trifles
- Richer queries
 - Scalable methods in a distributed environment

Extra links

- Some important trifles may be missed by similarity comparison
- ♦ Linking trifles is a way to avoid this. E.g.:
 - Ti and Tj are target for SQ1, Tj and Tk are target for SQ2: Ti and Tk may be linked
 - Ti and Tj have words in common, but they are not classified (or clustered) together.
- ◆ The "small worlds" principle (the Kevin Bacon Game)

The value of "extra links"

Trifle: Strange shootings in backyard of house in WA (early in the investigation; regarded low priority)

Trifle: House tenants Ids.

Trifle: Gunman leaves note, instructing to wire \$10M to acc xxx (Saturday, Oct.19)

Trifle: ATM card of acc xxx had been used recently in WA

On the shoulders of AIGA http://aiga.cs.gmu.edu/

- ◆ Agent-based Imagery and Geospatial Architecture (AIGA)
- ◆ To-date Achievements
 - AIGA Architecture
 - Publications
 - Prototype

Agent Architecture

Agents

- Perform specified function
- Imagery, geospatial, Info. Retrieval (Google), Natural Language Processing (Annie), Data Mining.

Locations

- Provide places for agents to execute
- Communication Space
 - Allow agents to pass messages, data, objects to one another
 - Asynchronous communication
 - Knowledge repository
- Data Repositories
 - Provide access to imagery, geospatial, and other data

rchitectural View Geo Library Clustering Agent (Imagery Agent) Data Agent Loc. Loc. Info. Retrieval Agent Name Server **I-XML Page Space** Geospatial Agen Loc. Loc. Data Agent Loc. Classf., Agent Client Image Library

Example scenario

- 1 Trifle 1: Shoulder fired anti-aircraft missiles stolen from a US Army base by member of a militia group in USA
- 2 Hypothesis: The militia group has shoulder-fired AA missiles
- 3 Trifle 2: Phone conversation between X and a member of the militia group.
- 4 Hypothesis: The conversation involved the sale of stolen weapons.
- 5 Trifle 3: X is a Saudi national known to have been in Afghanistan in January, 2001
- 6 Hypothesis: X has obtained shoulder-fired AA missiles from the militia group.
- Hypothesis: The shoulder-fired AA missiles that will be delivered to the L. A. area.
- 8 Trifle 4: Photo of X at an ATM at LAX.
- 9 Hypothesis: X is now in LA area.
- Hypothesis: Al Qaeda sleepers in the USA are planning attacks on civilian airliners landing and taking off at LAX.

9

Example scenario

Summary

- ◆ A flexible architecture to support hypothesis testing via query evaluation
- ◆ AIGA provides the distributed agents framework
- System can be incrementally enriched by adding query capabilities (through agents)
- ◆ A test bed for intelligence management techniques