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Abstract

The \Naive Physics Manifesto" of Pat Hayes (1978) proposes a large-scale project of develop-
ing a formal theory encompassing the entire knowledge of physics of naive reasoners, expressed
in a declarative symbolic form. The theory is organized in clusters of closely interconnected con-
cepts and axioms. More recent work in the representation of commonsense physical knowledge
has followed a somewhat di�erent methodology. The goal has been to develop a competence
theory powerful enough to justify commonsense physical inferences, and the research is orga-
nized in microworlds, each microworld covering a small range of physical phenomena. In this
paper we compare the advantages and disadvantages of the two approaches.

Common sense is a wild thing, savage, and beyond rules.
| G. K. Chesterton, Charles Dickens: A Critical Study

Three Scenarios

Consider the following scenario:

Scenario 1:

A gardener who has a valuable plant with a long delicate stem protects it against the
wind by staking it; that is, by plunging a stake into the ground near the plant and
attaching it to the stake with string. (Figure 1.)

We might not all manage to think up this contrivance, faced with this problem, but we can all
understand how it works. This understanding is manifested in a number of di�erent abilities:

We can give an explanation of the problem and the solution. That is, we can generate a text
along the following lines: \The wind may bend the plant; the fragile stem, bent too far, may snap,
killing the plant. But if the plant is staked, then the string holds it in place, preventing any extreme
bending. The string, in turn, is held in place by the stake, which, being comparatively sti�, is not
bent either by the wind or by the force of the wind against the plant as transmitted through the
string, and, being stuck in the ground, remains upright."

We can carry out the plan, which involves both hand-eye coordination and also the reasoning
ability to �ll in implicit steps of the plan. For example, the string must be looped around the stake
and the plant and tied. Since the plan, as given above, does not specify this step, the reasoner must
infer it.

We can adapt this solution to other problems, or adapt it to give alternative solutions to this
same problem. For example, plants are sometimes staked to prevent their breaking under their own
weight. An alternative to staking may be to encircle the plant with a metal frame.
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Figure 1: Staking a Plant

We can answer questions about variants of the plan. What would happen: If the stake is only
placed upright on the ground, not stuck into the ground? If the string were attached only to the
plant, not to the stake? To the stake, but not to the plant? If the plant is growing out of rock? Or
in water? If, instead of string, you use a rubber band? Or a wire twist-tie? Or a light chain? Or a
metal ring? Or a cobweb? If, instead of tying the ends of the string, you twist them together? Or
glue them? Or place them side by side? If you use a large rock rather than a stake? If the stake is
very much shorter than the plant? If the string is very much longer, or very much shorter, than the
distance from the stake to the plant? If the distance from the stake to the plant is large as compared
to the height of the plant? If the stake is also made out of string? Trees are sometimes blown over
in heavy storms; can they be staked against this?

It would seem that the depth and power of our understanding is most readily exhibited by this
last-mentioned ability of exploring variants. Over a limited class of plans, explanations and execution
sequences can be canned, or generated by very narrow special-purpose techniques. Moreover, the
di�culties in writing an adaptable text generator or plan executor are mostly those of natural
language and of robotics, respectively; in practice, these issues swamp the problems of representation
and reasoning. Adaptation and alternative application of plans certainly shows understanding, but
may require a level of ingenuity that is not always reasonable to expect. But anyone with an
understanding of the scenario should certainly be able to say something about how things change or
stay the same under small changes of the situation or the plan; and, conversely, so many di�erent
variations can be hypothesized that intelligent answers can only be attained with some large degree
of understanding.

Let us broaden our view by considering two more scenarios, with variants.

Scenario 2: (due to Leora Morgenstern (private communication))
In baking cookies, once you have the cookie dough prepared, you �rst lightly spread our
over a large at surface; then roll out the dough on the surface with a rolling pin; then
cut out cookie shapes with a cookie cutter; then put the separated cookies separately
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onto a cookie sheet and bake.

What happens if: You do not our the surface? You use too much our? You do not roll out the
dough, but cut the cookies from the original mass? You roll out the dough but don't cut it? You
cut the dough but don't separate the pieces?

What happens if the surface is covered with sand? Or covered with sandpaper? If the rolling
pin has bumps? or cavities? or is square? If the cookie cutter does not �t within the dough? What
happens if you use the rolling pin just in the middle of the dough and leave the edges alone? If,
rather than roll, you pick up the rolling pin and press it down into the dough in various spots?
Ordinarily the cutting part of the cookie cutter is a thin vertical wall above a simple closed curve
in the plane; suppose it is not thin? or not vertical? or not closed? or a multiple curve? If the cuts
with the cutter overlap?

Does the dough end up thinner or thicker if you exert more force on the rolling pin? If you roll
it out more times? If you roll the pin faster or slower? Do you get more or fewer cookies if the
dough is rolled thinner? If a larger cookie cutter is used? If there is more dough? If the cuts with
the cutter are spread further apart?

Scenario 3:

The following experiment is described in (Shakhashiri 1985) for estimating absolute zero
using household objects. Prepare a pot of boiling water and a pot of ice water. Take
an empty graduated baby bottle, complete with nipple attached, and submerge it (using
tongs) in the boiling water. After a few minutes, when it has stopped bubbling, remove
it and plunge it rapidly under the ice water. Water will then stream into the baby bottle
through the nipple, as the gas contracts. (Actually, the nipple collapses; to allow the
ow of water, you have to manipulate the nipple.) When the ow of water stops, the
volume of the water that has entered the bottle may be measured by holding the bottle
right-side up; the �nal volume of the gas at 0� C may be measured by holding the bottle
upside down. The initial volume of the gas at 100� C is the sum of the �nal volume of
the gas plus the volume of the water. By doing a linear extrapolation between these two
values to the point where the volume of the gas would be zero, one can �nd the value of
absolute zero.1 (Figure 2).

What would happen: If the bottle is immersed only very briey in the hot water? Or only very
briey in the cold water? If it is laid on top of the pots of water rather than immersed in them? If
the bottle is left in the outside air for a long time between being in the hot water and being in the
ice water? If the bottle has an open end with no nipple? If the nipple has no hole? If the bottle
has other holes besides this nipple? If the bottle is opaque? If you use containers with air at 100�

and 0� rather than water? If the quantity of ice water in the second pot is very small? very large?
or if the quantity of hot water in the �rst pot is very small or very large? If the bottle is coated
with styrofoam? If the bottle is opaque? If the bottle is not graduated? Why is the following not a
reasonable experiment: \Take a volume of gas in your hands; cool it; and see how much it shrinks."

Additional problems of this avor in commonsense reasoning can be found in (Miller and Mor-
genstern 1998).

1I tried this experiment three times. Twice, the entire baby bottle collapsed under the pressure in the cold water.
The one time it ran successfully, it gave a value of �300� C for absolute zero, the true value being �273� C | not
bad, for a baby-bottle experiment.
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Figure 2: Determining Absolute Zero

Commonsense Physics

These three scenarios above exhibit a number of characteristic properties:

They rely almost entirely on commonsense knowledge; that is, knowledge acquired informally
at an early age, rather than explicitly taught. Scenario 3 requires an understanding of the thermal
expansion of gasses, which is usually \book learning". All other aspects of this scenario, and all
aspects of scenarios 1 and 2 are commonsensical. A naive subject who has been introduced to
thermal expansion should be able to answer almost all the variant questions.

Quantitative relations are important; recall such questions as, \What happens if the string is
much shorter than the distance from the stake to the plant?" or \What happens if the quantity of
cold water is very small?" However, precise quantitative values are rare and textbook style equations
are practically non-existent, with the exceptions, again, of the values 0�C and 100�C and the linear
equation of thermal expansion.

Similarly, geometric properties and relations are important: The string must encircle the stake
and the plant. The bottle must not have holes other than the nipple and must be immersed in the
water. But no precise geometric descriptions are given or needed.

Each scenario involves a range of types of materials and processes. Scenario 1 involves the
somewhat exible plant, the gaseous wind, the rigid stake, the very exible string, and the penetrable
earth. Scenario 2 involves the malleable cookie dough and the rigid rolling pin, cookie cutter, and
surface. Scenario 3 involves the solid baby bottle, the liquid water, and the gaseous air.

All three scenarios involve the manipulatory powers of an agent. Scenario 3, though not scenarios
1 and 2, also involves perceptual powers. The facts that the experimenter cannot simply cool a
volume of gas that he holds in his hands, or that he cannot easily measure quantities in an opaque
or ungraduated bottle, must be understood for these alternative experimental designs to be rejected.
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All three scenarios lie outside the range of current automated reasoners. Since I have in the
past (Tuttle 1993) been accused of giving an overly rosy impression of the state of the theory of
automated commonsense reasoning, let me stress this point: As far as I know, no one currently

knows how to automate these inferences nor how to represent the knowledge used in them. I do not

believe that this will be known any time in the near future. The purpose of these three example
scenarios is to indicate a direction for study and an ultimate goal, not to illustrate the capacities of
existing programs or theories.

The Naive Physics Manifesto

Commonsense physical reasoning was �rst and most famously promoted as a domain for AI research
by Pat Hayes (1978) in the \Naive Physics Manifesto".2 That paper advocated a research programme
of developing a formalization of naive physics satisfying the following four criteria:

Thoroughness. \It should cover the whole range of everyday physical phenomena."

Fidelity. \It should be reasonably detailed."

Density. \The ratio of facts to concepts should be fairly high." A dense formalization is
necessary \to capture the richness of conceptual linking." \Formalizations that are not dense in this
way . . . are unsatisfactory since they do not pin down exactly enough the meanings of the tokens
they contain."

Uniformity. \There should be a common formal framework for the whole formalization." Hayes
expresses a preference for �rst-order logic or some extension thereof, but does not insist on it. What
is critical, in his view, is that the representation have a clear interpretation.

All considerations of implementation, application, or inference strategy are to be deferred until
the formalization is largely complete. \It is not proposed to make a computer program which can
`use' the formalism in some sense. For example, a problem-solving program or a natural language
comprehension system with the representation as target. [Such programs] have several . . . dangerous
e�ects. It is perilously easy to conclude that because one have a program that works (in some sense),
its representation of its knowledge must be more or less correct (in some sense). Regrettably, the
little compromises and simpli�cations needed in order to get the program to work in a reasonable
space or in a reasonable time can often make the representation even less satisfactory that it might
have been." Hayes further remarks \The decision to postpone details of implementation ocan be
taken as an implicit claim that the representation content of a large formalisation can be separated
fairly cleanly from the implementation decision; this is by no means absolutely obvious, although I
believe it to be substantially true." This last point, of course, is a central point of attack by such
critics as McDermott (1987).

The large theory of naive physics is structured in terms of clusters, a cluster being a nexus of
concepts tightly related by a rich collection of axioms. Hayes gives the following examples of clusters:
\measuring scales", \shape, orientation, and direction", \inside and outside", \histories", \energy
and e�ort", \assemblies", \support", \substances and physical states," \forces and movements",
and \liquids". A large part of the paper is devoted to preliminary analysis of these various clusters.
The companion paper \Ontology for Liquids" (Hayes 1985b) is an in-depth analysis of the \liquids"
cluster.

The question of �nding the proper organization into clusters is considered one of the key issues

2All quotations in this section are taken from (Hayes 1978). The published version of this is always cited as (Hayes
1979); however, I have never actually set eyes on this, and I don't know what changes may have been made before
publication. The later version (Hayes 1985a) is a substantially di�erent paper.
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in the enterprise:

Identifying these clusters [of tightly associated concepts] is both one of the most impor-
tant and one of the most di�cult methodological tasks in developing a naive physics
. . . The symptom of having got it wrong is that it seems hard to say anything very useful
about the concepts one has proposed . . . But this can also be because of having chosen
one's concepts badly, lack of imagination, or any of several other reasons. It is easier,
fortunately, to recognize when one is in a cluster: assertions suggest themselves faster
than one can write them down.

(I must confess that I personally have never attained the state of grace described in the last sentence
above. In my experience, formalization is always a slow and delicate process, and a great deal of
care is needed to avoid inconsistencies, unintended consequences, and gaps.)

Hayes proposes that the research programme be carried out by a committee. Each member of
the committee will be assigned a particular cluster to formalize. The committee will meet from time
to time in order to integrate their various e�orts into a larger theory. This integration will no doubt
require that formalizations of clusters be reworked, that new clusters be investigated, and that old
ideas for clusters that prove to be useless be discarded.

One issue that Hayes discusses very little, rather curiously, is the choice of naive physics as a
domain for study. He does say that \One of the good reasons for choosing naive physics to tackle
�rst is that there seems to be a greater measure of interpersonal agreement here than in many �elds,"
but he does not indicate what the other reasons might be. To my mind, the chief other advantages
of naive physics as contrasted with, say, folk psychology or naive social science are:

� The power of \real" physics, the paradigm of a theory that is comprehensive, exact, and correct.
The metatheoretic, mathematical, and logical structures have been extensively studied. Vast
amounts of software carrying one or another type of computation in this domain have been
implemented. Of course, naive physics is quite di�erent from real physics; still, this give us an
immense body of reliable knowledge on which to draw.

� Problems of intensionality and self-reference do not arise. Physics is a purely extensional
theory.

� A broad range of practical applications.

Hayes' proposal derived in many key aspects from earlier proposals of John McCarthy's (1968). In
particular, the choice of commonsense knowledge as subject matter, the idea of developing knowledge
representations independently of implementation, and the choice of �rst-order logic as a representa-
tion language are all taken from McCarthy's previous work. What is chiey new in Hayes' manifesto
is the proposal to restrict the focus to naive physics, as opposed to other commonsense domains.

Two Common Misconceptions

There are two common misimpressions of Hayes' proposal. The �rst is an understandable confusion.
Seeing that the Naive Physics Manifesto and the Ontology for Liquids are full of formulas written in
�rst-order logic and formal proofs, many readers have gotten the false idea that Hayes is proposing
that a reasoning program should explicitly manipulate logical formulas using some general purpose
theorem-proving method. Now, various people (e.g. (Moore 1982), (Kowalski 1979)) do indeed
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advocate this view, but Hayes does not, at least not in these papers.3 He is, in fact, entirely agnostic
as to how the knowledge should be implemented as data structures or what procedures should
manipulate it. Hayes' proposal is to analyze naive physical reasoning at the knowledge level (Newell
1980), in terms that are independent of the particular computing architecture, algorithms, and data
structure. First-order logic is chosen as a language to describe the knowledge level, precisely because
it is a neutral one, that does not presuppose any particular form of implementation.

The intended relation between a logical domain theory and a reasoning program is similar to the
relation between a programming language semantics and a compiler. The semantics speci�es what
the compiler should do; a compiler is correct if the semantics of the output code is compatible with
the semantics of the source code. But one does not necessarily expect a compiler to be written in the
abstruse formalisms of programming language semanticists. Similarly, the desired relation between
a logical domain theory and a reasoning program is that the theory should characterize or justify
the actions of the program, in the sense that some signi�cant part of the results computed by the
program corresponds to, or approximates, valid conclusions in the theory. But the internals of the
program need not contain anything that looks like the theory.

For example, STRIPS-style planners can be characterized in terms of the situation calculus, in
the following sense: Given a collection of actions in the STRIPS representation, you can construct a
situation calculus theory de�ning the domain such that any plan output by the planner can be proven
correct in the theory (Lifschitz 1986). Another example: A simulator that calculates solutions to
gravitational motion by numerically solving the di�erential equations can be characterized in terms
of a formal theory containing Euclidean space, real-valued time, and Newton's law of gravitation,
in the sense that the output of the program approximates the conclusions of the theory. (De�ning
this sense of \approximates" exactly is a substantial undertaking, of course.)

One major di�erence between compilers, STRIPS, and gravitational calculation, on the one
hand, and a general commonsense reasoner, on the other, is that the former programs are doing
inference in a single direction with complete information or a narrow range of partial information,
whereas a general reasoner, as we have discussed, should do reasoning in many di�erent directions
using whatever partial information it has. Therefore, it is therefore more critical in a commonsense
reasoner to use a widely expressive and declarative representation and a exible inference mechanism;
hence, the interest in logical representations and symbolic deduction for implementing reasoning
systems. But these considerations are largely irrelevant to Hayes' argument. Note that the success
of formal programming-language semantics shows that logical analysis can be valuable even when
the task being studied is narrowly focussed.

The second common misconception is a little more peculiar. There is a widespread misimpres-
sion that if geometric information is represented in �rst-order logic, then the primitives used must
correspond to basic spatial terms in natural language. For example, people4 will assert that the only
logical representations of the situation in �gure 3 are something like

left-of(a,b). left-of(b,c). left-of(c,d).
red(a). white(b). red(c). blue(d).

People sometimes go so far as to conclude from this supposition that retrieving the fact that the
leftmost object is left of the rightmost, or retrieving the fact that block E is not in this line, will
take time at least linear in the number of objects.

There is, of course, not the slightest truth in this. The following are all valid logical sentences,

3Even in the paper \In Defense of Logic" (Hayes 1977), the argument is just that a representation should have a
well-de�ned semantics, and that many of the \alternatives" to logic-based representations being touted at the time
did not.

4I have recently heard precisely this statement made in a public talk by a distinguished researcher in spatial
reasoning.
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Figure 3: Blocks to be represented

given a suitable semantics: (Take the origin to be the lower-left hand corner of block A and the unit
to be the side of that block, with axes aligned as usual.)

place(c) = rectangle(point(3,0), point(5,0), point(5,1), point(3,1)).
red-pixel(pixel(4,0)).
empty(rectangle(point(1,0), point(2,0), point(2,1), point(1,1)).
8X block(X) ) 9Y red(Y ) ^ distance(X;Y ) < 2.

In fact, with the exception of probabilistic distributions and \fuzzy" distributions over space,
every representation of spatial or geometric information that I have ever seen can be straightfor-
wardly expressed in a �rst-order logic over a universe of simple geometric entities. Indeed, in the
great majority of representations in use, the ontology can be taken to be Euclidean space, and the
language can be restricted to a constraint logic.5 In particular, all of the representations of spatial
information that are considered \diagrammatic" (Glasgow, Narayanan, and Chandrasekaran 1995)
can be straightforwardly expressed in �rst-order logic over Euclidean geometry; and and all of the
inferences considered in (Fleck 1996) can be justi�ed in a Euclidean geometry, given a suitable
statement of the physical axioms. I'm not claiming, of course, that there is necessarily anything
to be gained from translating non-logical representations into logical representations, merely that
these alternative representations do not express any kind of information that can't be expressed in
�rst-order logic. There are types of non-spatial information that are impossible or extremely awk-
ward to express in �rst-order logic, such as uncertain knowledge, meta-knowledge, and propositional
attitudes. But very, very few declarative representations of spatial information involve any of these
problem. (Non-declarative representations, such as procedural representations, or representations in
terms of the state of a neural network, do not, of course, translate well into �rst-order logic.)

Di�culties with the Manifesto

Hayes' Manifesto was much admired and widely discussed, but it was hardly followed. The committee
never met, the theories were never codi�ed. There has, of course, been a great deal of work in
\qualitative physics" but this has a quite di�erent avor from Hayes' proposal; it is algorithmic
rather than declarative, and is increasingly concerned with specialized applications rather than
commonsense reasoning (Weld and de Kleer 1989), (Iwasaki 1997). Even interpreting the manifesto
fairly broadly, it would be di�cult to think of more than a dozen AI researchers who have done
the kind of work in physical reasoning that Hayes has in mind, while interpreting it narrowly, one
could certainly argue that the manifesto and the Ontology for Liquids are the only two papers ever
written that �t into Hayes' programme.6

No doubt the main reason for this neglect is simply that life is short, the project is large, and
researchers have had other things to do that seemed more pressing. But, besides this, the project

5A constraint logic is the conjunction of atomic ground sentences, without negation, disjunction, or quanti�cation.
6(Schmolze, 1986) should also be mentioned.
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as Hayes outlines it has fundamental di�culties in its conception, and researchers who try to follow
in Hayes' footsteps soon �nd themselves head to head with these obstacles.

It is not really clear what, precisely, Hayes means by \naive physics". The Naive Physics Mani-
festo is for the most part written as if \naive physics" were a clearly de�ned body of knowledge |
comprehensive in scope, universal across people, consistent, and essentially uninuenced by science.
More than once, Hayes claims that some speci�c concept or distinction is or is not a part of \naive
physics", apparently in an absolute sense:

Naive physics is pre-Galilean. I can still vividly remember the intellectual shock of being
taught Newtonian \laws of motion" at the age of 11. It is interesting to read Galileo"s
\Dialogue Concerning the Principal Systems of the World" (1632) where he argues very
convincingly, from everyday experiences, that Newton's �rst law must hold. But it takes
a great deal of careful argument . . . (Hayes 1978)

I have deliberately not distinguished between mass and volume. I believe the distinction
to be fairly sophisticated. (Hayes 1985a)

In making predictions, there is a distinction which seems crucial between events that
\just happen" (such as fallings) and events which require some e�ort or expenditure of
energy (such as rocks ying through the air). . . . Such a distinction runs counter to the
law of conservation of energy, and I think quite correctly so for naive physics (or we
could say merely that the intuitive notion of \e�ort" does not exactly correspond to the
physical notion of \work".) (Hayes 1978)

Now, Hayes does not, of course, actually believe in such an absolute, monolithic theory. He
speci�cally acknowledges and discusses individual di�erences in the system of naive physics beliefs.
Further, the �rst quote above at least implicitly acknowledges that an individual's beliefs may be
inconsistent. (If Newton's �rst law can be derived by Socratic argument and Gedanken experiments
from memories of everyday experience, but is also explicitly denied in naive physics, then the closure
of the individual's beliefs under \reasonable argument" is inconsistent.)

Trying to de�ne an absolute \Naive Physics" raises many di�culties. First, naive physics is
supposed to be what naive subjects believe about the physical world. But, as is well known, the
concept of \belief" is ambiguous and slippery, with many di�erent possible interpretations. \A
believes �" may mean that A will spontaneously assert �; that A will immediately assent to �; that
A will assent to � after Socratic interrogation; that A will assent to statements that logically entail
�; that the best explanations of A's actions at the knowledge level involve the assumption that A
is using � in the course of reasoning; or that A's actions are more sensible given that � is true than
given that it is false. Which is intended here?

Second, the problem of de�ning \belief" is made more di�cult by the constraint that we are
interested only in \naive" beliefs, not in beliefs that are formally taught, but that the most readily
available subjects | the researchers themselves | tend to be people with substantial training in
formal science and mathematics. It is not clear how we can tease out a true \naive physics" from
later accretions of formal physics.

Third, physical reasoning depends critically on spatial knowledge and spatial reasoning that is
di�cult or impossible to express in ordinary language. For instance, we all know how a screw is
shaped, and we all have some understanding of the relation between the shape of a screw and its
functions. (This understanding is most easily demonstrated through the methods of considering
variants. For instance, it is easy to see that a small pit in the surface of the screw will probably have
little e�ect on its behavior, whereas a small bump is likely to be much more troublesome.) However,
it is not easy to describe verbally the shape of a screw or to explain verbally the connection between
its shape and its behavior, without using a technical vocabulary unintelligible to most naive subjects.
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This is probably the chief disadvantage of physics as opposed to other commonsense domains as a
testbed for studying commonsense reasoning.

Fourth, \naive physics" probably varies substantially between people (though Hayes may well
be right that it di�ers less than other branches of commonsense knowledge). Due to the vagueness
in de�ning \naive belief", it is di�cult to be very precise about this. But one can certainly see it in
cross-cultural comparisons. For instance, many people in various times and places have attributed
intentions and mental states to inanimate objects. In modern Western culture, this is not part of
even a \naive" system of beliefs.

One can try to work around this di�culty by observing that people's beliefs are at least close
enough to enable them to communicate, and de�ning the \naive physics" we are looking for as the
beliefs that are common knowledge within the community. For instance, a subject who believes that
one sees an object using reected light and another subject who believes that one sees an object
using emanations from the eyes will nonetheless agree that one cannot see through an opaque object.
Therefore, if the community contains large numbers of believers in both theories, the naive physics
would contain the belief that one cannot see through an opaque object, but would exclude both the
theory of reected light and the theory of ocular emanations as speculative theory. Is it possible to
develop a naive physics rich enough to support commonsense inferences on the basis of this kind of
common knowledge? The question is important, but very di�cult. Certainly, the central role played
by inarticulable spatial knowledge makes this problem more di�cult.

Finally, it is not clear that an individual's beliefs are consistent. It depends in part, of course,
on how \belief" is de�ned. An inconsistent belief set cannot be expressed in a single theory in any
standard logic (or indeed in most non-monotonic logics).

The result of this unclarity is that the researcher really has no way of determining whether a
given concept, distinction, or rule is to be considered a legitimate element of \naive physics." Does
the concept \surface area" exist in naive physics? Or the concept of an object being \awkward
to handle"? Or the distinction between heat and temperature? How is one to judge? Pat Hayes
(personal communication) tells a story of engaging in a two hour debate over whether a picture
hanging on the wall of a room can be said to be \in" the room. Such minutiae are essentially
unavoidable in this approach to formalization.

A particularly di�cult issue to judge is the appropriate level of generality. Consider the rule in
the cookie-baking domain, \The thinner you roll the dough, the more cookies you get." Now, this
fact can be expressed directly in this form. Alternatively it can be derived from the considerations
that

1. The volume of the cookie dough is �xed. In particular, it is not a�ected by rolling it out.

2. The volume of a region is equal to its area times its average thickness.

3. The number of regions of �xed shape A that can be placed disjointly within a region R tends
to increase with the area of R. (Note that this is a plausible inference, rather than a sound
rule.)

4. In cutting cookies out of rolled-out dough, each cookie is a cross-section of the dough on a
vertical axis, and no two cookies overlap.

Or one can use rules at an intermediate level of generality (e.g. replace (2) by the more speci�c
rule, \For a �xed quantity of malleable stu�, the thinner it is spread on a surface, the larger the
area it covers"), or at a higher level of generality (e.g. derive (3) from a de�nition of volume as an
integral.) Using the more general formulation usually has the advantages of covering more physical
situations, and clarifying the relations between them, but each level of generality seems less and less
\naive". How do we choose among them?

10



Some will argue that terms like \volume", \average" and \cross-section", which are used in our
second set of rules above, are formally learned in school and therefore are not part of a naive theory.
Now, certainly the more speci�c rule, \The thinner you roll the dough, the more cookies you get,"
may be one that a child learns �rst, before any more general formulation, and it may be a rule
of thumb that someone baking cookies regularly calls upon, without doing deeper thought. But
it seems to me that an intelligent person will soon see the connection between this fact and the
facts that, if you want to cover a table top with books, you will do better to lay them at and
not to stack them; that a can of paint will cover a small area more thickly than a large area; and,
at a further remove, that the more people are sharing a pie, the smaller each person's piece. To
express the general rules that underlie these particular instances, you will almost certainly have to
call on concepts that are so close to the standard ones of \volume", \average", and so on, that
the distinction is hardly worth making. (Quite likely, the naive reasoner is reasoning by analogy or
using case-based reasoning, rather than using an explicit generalization, but in that case these same
concepts will be needed to �nd the dimensions of similarity between the cases. Thus the necessary
expressivity of the object language is largely independent of the mode of reasoning.) Therefore,
despite the association of these terms with the classroom and textbook, it seems di�cult to me to
justify automatically excluding these concepts from a naive understanding. I should say, rather,
that teaching these in the classroom is, or should be, mostly a matter of putting concepts that are
already understood at the commonsense level into a rigorous setting.

Microworlds: A modi�ed methodology

One way out of these di�culties begins by arguing as follows: Whatever the actual content of
people's individual theories, they will almost all come up with the same or similar answers over
a large collection of commonsense problems. A program will achieve common sense if it gives the
same answers to the same problems. Therefore, any theory that allows commonsense problems to
be stated and solved will do. In other words, we are looking for a competence theory for solving
commonsense problems. Note that we have substantially shifted our ultimate goal. Before, we were
talking about expressing a body of knowledge; now we are talking about justifying a collection of
inferences.

The second change that we will make is to focus on de�ning a model7 rather than stating an
axiomatic theory. The argument for this change is as follows: As discussed above, our main goal
in formalizing theories is to characterize or justify the actions of reasoning programs, rather than
to be implemented directly as a rule base. But the relation of \justifying" a particular inference or
\characterizing" a particular program is a property of a model, not of a speci�c axiomatization of
that model. If a model can be axiomatized in two equivalent ways, the two axiomatizations support
the same inferences. Therefore, our primary concern will be de�ning a model, and thus determining
the class of true statements and valid inferences in the model. Secondarily, we are interested in
de�ning a formal language, which delimits expressive range, the class of facts that can be expressed.
In this approach, axiomatizations are only of subsidiary interest; they help clarify the model and
they are useful in verifying that a given inference is indeed supported by the model.

A third change is in the way in which the project is divided into parts. Hayes' goal is to express
a theory, so a natural subset of the project is a coherent subset of the theory; that is, a cluster of
concepts and axioms. The new goal is to characterize inferences, so a natural subset of the project
is a microworld: an abstraction of a small part of physical interactions, su�cient to support some

7I will generally use \model" in this paper in the sense common in physical reasoning research: A model is an
abstract structure that mirrors some of the signi�cant properties of a physical microworld. This is somewhat di�erent
from the meaning of the term in metalogic. When I need the term from metalogic, I will say so speci�cally.
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interesting collection of inferences.8

A few examples of microworlds:

1. The roller coaster world (de Kleer 1977). The world consists of a point object and a one-
dimensional track in a vertical plane. The state of the world is either the position and velocity
of the object along the track, or the distinguished state \FELL-OFF". The motion of the
object is governed by Newton's law, with gravity and inertia. The microworlds of (Forbus
1980) and (Sandewall 1989) are similar.

2. Component-based electronics (de Kleer and Brown 1985). The world consists of resistors,
capacitors, inductors, power sources, etc. connected in a circuit. The state of the world at any
moment is the voltage at every node and the current through every arc. The world changes
dynamically following component characteristics.

3. Rigid object kinematics. The world consisting of solid, rigid objects, constrained by the rules
that the shape of an object is �xed, that it moves continuously and that two objects do not
overlap.

4. Rigid object dynamics. The world consisting of medium-sized solid, rigid objects, moving in a
uniform graviational �eld, and interacting through normal forces, friction, and impacts, above
a �xed ground.

5. Kinematics of solid objects and a liquid. The world consisting of solid objects and some
quantity of a liquid. The solid objects are constrained by the rules that their shape is �xed,
they do not overlap, and their motion is continuous. The liquid is constrained by the rule that
its volume is constant, it moves continuously, and it does not overlap the solid objects.

Note the di�erence from clusters. Of Hayes' clusters, only \liquids" is close to being a microworld,
and even this would almost certainly have to be changed to \liquids and solids" (under some speci�ed
set of physical laws), as there are very few commonsense inferences that involve only liquids with
no solid boundaries.

We may also contrast microworlds with reasoning architectures, such as QP (Forbus 1985) or
ENVISION (de Kleer and Brown 1985). QP and ENVISION do not incorporate any particular
physical theory. Rather, each such architecture provides a collection of basic ontological sorts, a
restricted language in which physical theories of certain types can be stated, and an algorithm for
carrying out certain types of inference. For instance, the basic sorts in QP include time instants,
time intervals, parameters, and processes. The QP language supplies primitives symbols for \direct
inuence" and \indirect inuence", which have a �xed interpretation. The algorithm carries out
qualitative envisionment.

Thus, the development of this kind of program is orthogonal to the microworlds methodology.
The microworlds approach focusses on developing speci�c physical theories; programs such as QP
and ENVISION focus on developing techniques that apply across a range of physical theories.

Another change from Hayes' project is in the attitude toward beliefs that are commonsensical
but false. These can be divided into three categories:

1. Beliefs that are approximately correct in everyday contexts. For example, the belief that a
moving object will come to a halt if no force is applied. This rule, which contradicts Newton's
�rst law, holds for most objects in most terrestrial circumstances.

8The term \microworlds" goes back in AI research at least as far as the early 70's (Minsky and Papert 1970).
These microworlds, however, had a quite di�erent purpose; they were simpli�ed testbeds for exploring such issues as
inference, search, planning, learning and so on. CYC, in its later versions (Lenat and Guha 1993), is the most notable
recent exemplar of the use of microtheories. These are axiom-based, rather than model-based.
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2. Logical consequences of rules in (1). For example, the belief that if a torque is applied to a
gyroscope, the gyroscope will rotate along the axis of the torque. This is just a special case of
the general rule, \If a torque is applied to an object, then the object rotates along the axis of
the torque," which holds for most objects but not gyroscopes.

3. Beliefs that are just plain wrong, without either of the above justi�cations. For instance the
belief that an object that has been moving along a circular track will continue to move in a
circle once it is free of the track (McCloskey 1983).

A competence theory of commonsense reasoning system may well include beliefs of category (1);
indeed, at some level it must, unless we plan to base it on relativistic quantum mechanics. This
is justi�ed as a trade-o� of accuracy for speed and simplicity. We are therefore also likely to get
beliefs of category (2), unless we can block them all using quali�cation conditions, which is unlikely.
The question is whether there is any point in including beliefs of category (3). For Hayes' project,
where the ultimate aim is a cognitive model of a naive reasoner, presumably they should be included.
Likewise, if we were studying the process of learning physical theories, we would have to expect that
sometimes the theories being considered are entirely o�-base. In a competence theory of reasoning,
however, since these add nothing to competence, they should be excluded. For this reason, in the
new approach we speak of \commonsense physics" rather than \naive" physics.

Putting all this together, we arrive at a methodology along the following lines9 (Figure 4)

1. Select a microworld: a well-de�ned, fairly small, range of physical behaviors.

2. Collect a corpus of inferences in the domain that are both physically correct and would be
broadly agreed upon as commonsensically obvious.

3. Develop

a. A formal model of the domain.

b. A language of primitives with semantics de�ned in the model.

c. An axiomatization of the model expressed in the language.

4. Demonstrate that many of the inferences in (2) can be expressed in the language (3.b) and
justi�ed in the model (3.a). A formal proof from the axiomatization (3.c) may be helpful here.

5. Develop algorithms or programs that can be justi�ed in terms of this model, and show that
some signi�cant class of commonsense inferences can be carried out e�ciently.

6. Work toward broadening theories and merging multiple theories together.10

Two recent projects of a similar avor should be mentioned. Ken Forbus (1998) presents a char-
acteristically ambitious proposal to construct a library of foundational qualitative domain theories,
containing on the order of 10,000{100,000 axioms, encoded in �rst-order logic, I have not been able
to get detailed accounts of these domains, and so have not been able to make comparisons with the
issues discussed here. In a di�erent direction, a recent triad of papers (Lifschitz 1997), (Morgenstern

9The methodology described here is my own personal view (Davis 1990); however, little if any of this is original
to me. Particularly signi�cant discussions of this kind of methodology in this direction, besides (Hayes 1978), include
(McCarthy 1968), (McCarthy and Hayes 1969), (McDermott 1978), (Newell 1980), and (Charniak and McDermott
1985). (Halpern and Vardi 1991) similarly argues from a shift from an axiomatic to a model-based analysis in
automated reasoning.

10John Tsotsos pointed out to me that this list should have an additional item of developing techniques to learn or
acquire this knowledge. This is undoubtedly correct, but I �nd the idea of trying to learn this material automatically
too terrifying to contemplate.
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1997b), (Shanahan 1997) dealing with the \egg-cracking" problem attempts a new method for ad-
vancing the state of the art in commonsense reasoning. A complex but narrowly de�ned inference,
like those used in our original three scenarios, is put forward; separate researchers work indepen-
denly on developing their own theories for justifying this particular inference; and then hopefully
the insights gained from this example can be combined and applied to the next example.

A sample microworld: the kinematics of cutting solid objects

At this point, it may be helpful to give a rather detailed description of one microworld, for illustration.
The example I will use is a kinematic theory of cutting solid objects (Davis 1993). Relative to the
state of the art in formalizing physical theories, this is a fairly complex and sophisticated example.

Microworld

The microworld is the kinematics of cutting rigid solid objects. That is, the world consists of solid
objects moving continuously through space on arbitrary paths. The shape of any object is constant
except when the objects is being cut. Objects are not created or destroyed except at the moment
when one object is sliced through.

The process of cutting is modelled as if the blade annihilates the material of the target as it
penetrates. When the annihilation of material leaves the target disconnected, it falls into two or
more new objects (Figure 5.) This model is rich enough to support many manners of cutting: slicing
through, stabbing through, �ling down, or carving a cavity.

The model does not support the intuitive distinction between \cutting a small piece o� of object
A," where the identity of A survives in a smaller shape; and \slicing object A into objects B and
C" where A ceases to exist and B and C come into existence. All cases where an object is split are
considered in the second category, no matter how small the piece being split o�.

The model does not support any theory of dynamics, in the sense of forces, energy, and such.
For that reason, it does not incorporate any shape constraints on the blade, such as that it be
sharp or serrated, or on the motion, such as that it involve sawing back and forth, as these would
be arbitrary and inadequate in the absence of a dynamic theory. Similarly, the model does not
incorporate the deformation of material that generally takes place in actual cutting; material is
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simply and irreversibly vaporized.

Ontology

In developing an ontology, we begin by constructing a model of time and space. We model time
as the real line. A situation is an single instant of time. A uent (McCarthy and Hayes 1969) is
an entity whose value changes through time. For example, \the President of the United States"
is a uent whose value in 1791 was George Washington, and in 1998 is Bill Clinton. We model
space as three-dimensional Euclidean space. Other models of space and time might be possible,
if they support the following concepts with suitable properties: earlier/later times, spatial regions,
connectivity, rigid motions, continuous rigid motions, set di�erence of regions, and overlap of regions.

We can now formulate two alternative construals of the above model of cutting. The �rst, more
straightforward, approach construes the world in terms of objects, as above. The shape of an object
O is a uent that changes through time as O is cut and material is removed. When the shape of
O become disconnected, O ceases to be \present" and becomes a \ghost"; and two new objects O1
and O2 cease to be \ghosts" and become \present." Thus, each object can undergo three types of
change during its lifetime: It is originally created by being sliced o� some parent object; then its
shape is gradually modi�ed as it is cut away; then it is destroyed when its shape is split.

The second construal focusses on chunks of material. A \chunk" is a physically connected piece
of material; it is the part of an object that �lls some connected, topologically open region. At
any given moment, an object has one chunk that is \top-level", meaning that its shape is exactly
the shape of the object, and many chunks that are \latent", meaning that their shape is a proper
subset of the shape of the object. The latent chunks are, so to speak, waiting for a suitable cutting
process to carve them out and make them top-level for their moment in the sun. A chunk of a target
is \destroyed" as soon as it is penetrated by the blade. Thus the process of cutting involves the
continual destruction of an in�nitude of chunks which now have some of their material annihilated.
At most instants, a single new chunk becomes top-level for an instance; occasionally, at the instants
when the object is split, two new chunks become separately top-level. The shape of a chunk is
constant. Thus, in this theory there is only one kind of change: an active chunk (i.e. one that is
either top-level or latent) becomes a ghost. (Figure 6.)

The advantage of the chunk approach is that there is now only one type of change: the annihila-
tion of material, formalized as the destruction of chunks. Sometimes this annihilation leaves a single

16



Figure 7: Carving one object or two?

top-level chunk, sometimes more than one, but the two essentially \look the same" from the point of
view of the model. This can be useful in cases like that illustrated in �gure 7. A sculptor is carving
away at a pair of stone pieces, of which he can see only the nearer parts. In the object theory, this
situation is di�cult to describe, because he cannot know whether this is in fact one object or two; it
depends on whether the two pieces are connected, which he cannot see. Worse, the two pieces may
originally be a single object and then become two, when someone splits the connection behind the
scene. However, assuming that the structure is �xed, it should make no di�erence to the sculptor
whether the two pieces are connected, and in the chunk theory it doesn't. The chunks in the area
visible to the sculptor are the same whether or not they are connected behind.

These two theories can be proven to be equivalent, under certain minor regularity conditions
(Davis 1993). (These exclude scenarios in which an object is sliced in�nitely many times in a �nite
time interval, and other such outr�e and non-physical possibilities.)

We can then de�ne the process of cutting: Object A is cutting object B at time T if, for every
previous time T 0, there was material in B at T 0 that A overlaps in T . (This is a minor improvement
on the de�nition in (Davis 1993).) Somewhat more arbitrarily, we can individuate a cutting event:
A cutting event of B by A occurs over time interval I if A is cutting B throughout I but not
throughout any proper superinterval of I .

Language and Axiomatics

Tables 1 and 2 display languages su�cient to express the basic concepts of the two theories, and
tables 3 and 4 show the basic physical axioms of the two theories. Basic geometric and temporal
primitives, such as \image", \<", \continuous", and so on, are de�ned relative to Euclidean space
and real-valued time, as indicated in table 2. The axioms are written in a sorted �rst-order logic. To
shorten the notation, we use uent functions as predicates with an additional situational argument.
Thus, for instance, the statement \ObjectO is material in situation S," can be expressed equivalently
either in the form \holds(S,material(O))" or \material(O;S)".
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Sort Letter
Point X

Spatial regions (set of points) R

Rigid mappings M

Temporal situations S

Fluents F

Objects O

Chunks C

Either object or chunk Q

Table 1: Logical Sorts

Temporal:
holds(S; F ) | Predicate. Boolean uent F holds in situation S.
value in(S; F ) | Function. Value of uent F in situation S.
S1 < S2 | Predicate. Situation S1 precedes S2.
just before(S; F ) | Predicate. Boolean uent F holds in an open interval ending in S.

Spatial:
X 2 R | Predicate. Point X is in region R.
R1 � R2 | Predicate. Region R1 is a proper subset of R2.
R1�R2 | Function. The interior of the set di�erence of R1 and R2.
intersect(R1; R2) | Predicate. Region R1 intersects R2.
; | Constant. The empty region.
good shape(R) | Predicate. Region R is non-empty, open, bounded, connected,

and equal to the interior of its closure.
image(M;R) | Function. The image of region R under mapping M .
continuous(F; S) | Predicate. F is a continuous function of time at situation S.

F is a uent whose value in each situation is a rigid mapping.
connected component(R1; R2) | Region R1 is a connected component of R2.

Physical: Primitive Symbols
material(Q) | Function. The uent of object or chunk Q being material.
placement(Q) | Function. The uent of the mapping from the shape of Q

to the place of Q.
shape(O) | Function. The uent of the point set occupied by O in a standard orientation.
cshape(C) | Function. The time-invariant shape of chunk C.

Physical: De�ned Symbols
ghost(Q) | Function. The uent of Q being a ghost.
place(Q) | Function. The uent of the region occupied by Q in situation S.
blade swath(S1; S2; O) | Function. The swath cut by blades between situations S1 and

S2, relative to the coordinate system attached to object O.
destroyed(S;O) | Function. Object O is destroyed at time S.
top level(C) | Function. The uent of chunk C being top-level.
sub chunk(C1; C2) | Predicate. Chunk C1 is (non-strictly) a sub-chunk of C2.

Table 2: Non-logical primitives
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De�nitions of Object Theory

OD.1 ghost(O;S) , :material(O;S).
(De�nition of ghost: An object is a ghost i� it is not material.)

OD.2 place(O;S) = image(placement(O;S), shape(O;S)).
(De�nition of place: The region occupied by O in S is the image of its shape under its
placement.)

OD.3 X 2blade swath(S1; S2; O) ,
9S3;OB S1 � S3 � S2 ^ OB 6= O ^ image(placement(O;S3),X) 2 place(OB;S3).
(De�nition of blade-swath: The blade-swath between S1 and S2, relative to O, is the region
swept out by all blades between S1 and S2, as measured from a coordinate system attached
to O.)

OD.4 destroyed(S;O) , [just before(S,material(O)) ^ :good shape(shape(O;S))]
(An object is destroyed at S if it existed up to S, but became disconnected or null at S.)

Axioms of Object Theory

OB.1 [material(O1; S) ^ material(O2; S) ^ O1 6= O2] )
:intersect(place(O1; S), place(O2; S)).
(Two material objects do not overlap.)

OB.2 [S1 < S2 < S3 ^ material(O;S1) ^ material(O;S3) ] ) material(O;S2).
(Objects do not change from material to ghost to material.)

OB.3 material(O;S) ) good shape(shape(O;S)).
(Material objects have good shapes.)

OB.4 8S;O shape(O;S) 6= ; ) continuous(placement(O),S).
(The placement of object O is continuous in any situation S where the shape of O is non-null.)

OB.5 [S1 < S2 ^ material(O;S1) ^ just before(S2,material(O))] )
shape(O;S2)= shape(O;S1) � blade swath(S1; S2; O)
(The material removed from O between S1 and S2 is the blade-swath between S1 and S2
relative to O, plus boundary points.)

OB.6 [destroyed(S;O) ^ connected component(R,shape(O;S))] )
9OR shape(OR;S)=R ^ placement(OR;S) = placement(O;S) ^

just before(S,ghost(OR)) ^ material(OR;S).
(If O becomes disconnected or null at S, then each of its connected components become
material.)

OB.7 [material(O;S1) ^ ghost(O;S2) ^ S1 < S2] ) 9S32(S1;S2] destroyed(S3; O)
(An object turns from material to ghost only if it is destroyed in the sense of OD.4.)

OB.8 [ghost(O;S1) ^ material(O;S2) ^ S1 < S2] )
9S3;O3 destroyed(S3; O3) ^ S1 < S3 � S2 ^

connected component(place(O;S3), place(O3; S3)).
(An object can come into existence between S1 and S2 only if it is a connected component of
some object O3 that is destroyed at some S3 2 (S1; S2].)

Table 3: The \mutable objects" theory.
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De�nitions in Chunk Theory

CD.1 ghost(C; S) , :material(C; S).
(De�nition of ghost: A chunk is a ghost i� it is not material.)

CD.2 place(C; S) = image(placement(C; S), cshape(C))
(De�nition of place: The region occupied by C in S is the image of its shape under its
placement.)

CD.3 sub chunk(C1; C2) ,
9S material(C2; S) ^ place(C1; S) � place(C2; S).
(De�nition of sub-chunk: C1 is a sub-chunk of C2 i� C1 occupies a subset of C2 in some
situation where C2 is material.)

CD.4 top level(C; S) ,
[material(C; S) ^ 8C1 [material(C1; S) ^ sub chunk(C;C1)] ) C1 = C].
(A top-level chunk is a maximal material chunk relative to the sub-chunk relation.)

Axioms of Chunk Theory

CH.1 good shape(cshape(C)).
(Chunks have a good shape.)

CH.2 [good shape(R1) ^ R1 �cshape(C2)] )
91C1 R1=cshape(C1) ^ sub chunk(C1; C2).
(Every reasonably-shaped subregion of a chunk is a chunk.)

CH.3 continuous(placement(C), S).
(The placement of chunk C is continuous in every situation.)

CH.4 [sub chunk(C1; C2) ^ material(C2; S)] ) material(C1; S).
(A sub-chunk of a material chunk is itself material.)

CH.5 [sub chunk(C1; C2) ^ material(C2; S)] )
placement(C1; S) = placement(C2; S).
(A sub-chunk of a material chunk has the same placement.)

CH.6 material(C; S) ) 9C1 top level(C1; S) ^ sub chunk(C;C1).
(Every material chunk is a sub-chunk of a top-level chunk (possibly itself).)

CH.7. [material(C1; S1) ^ ghost(C1; S2)] )
[S1 < S2 ^
9S3;C2 S1 < S3 � S2 ^ :sub chunk(C1; C2) ^ top level(C2; S3) ^
intersect(place(C1; S3), place(C2; S3))].

(A material chunk C1 can only turn into a ghost if its interior is penetrated by a top-level
chunk.)

CH.8 [top level(C1; S) ^ top level(C2; S) ^ C1 6= C2] )
:intersect(place(C1; S), place(C2; S)).
(Two top-level chunks cannot intersect.)

Table 4: Chunk Theory
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Inferences

The model supports exact predictions: given the positions and shapes of all the objects at the start
of a time interval, and given the motions of all the objects throughout the interval, predict the
identity and shapes of the �nal objects at the end of the interval. This is the kind of prediction that
is carried out in CAM machining programs (Ji and Marefat 1997).

It also supports kinematic inferences of other kinds. For example, (Davis 1993) gives the proofs
of the following statements:

� A blade that starts outside the target cannot carve a purely internal cavity inside the target.

� If a convex blade is restricted to linear motions, then carving out a k-face convex polyhedron
requires at least k separate cutting operations.

In our original scenario 2, of the cookie dough, this model supports most of the inferences one would
want to make about cutting the dough with cookie cutters, assuming that the dough is otherwise
rigid during the cutting process. For instance, one can conclude that, if the dough is cut in the
center by a cutter that is a simple, non-closed, curve, then no cookie has been separated out. One
can conclude that, if the horizontal projections of two cuts with ordinary cutters overlap, then the
cookies cut out are the connected components of the intersection and the set di�erences of the two
regions within the cutters.

Observations

The strongest aspects of this formalization are, �rst, its generality, the fact that slicing, stabbing,
and �ling can all be treated together; and, second, its clarity; potential confusions are almost entirely
resolved. If you try just to write down everything you know about \cutting", you are apt to �nd
that there are a large number of issues to resolve, and that it is di�cult to ensure that you are
resolving them all consistently. This approach takes care of all these.

Moreover, these models seem cognitively plausible as far as they go. It seem very natural to
think about individuated objects being gradually shaved away by a cutting process; it seems almost
as natural to think about chunks of material, particularly when the extent of the object is either
unknown, as in �gure 7, or is very much larger than the region being operated on. The theories
are certainly rather abstract and bloodless, mostly, I suspect, due to the absence of any dynamic
theory. A lot of one's experience of cutting has to do with the forces and motions involved in sawing,
stabbing, and so on, and these have all been abstracted away in this microworld.

Advantages of microworlds

In this section and the next, we discuss the strengths and aws of this approach of constructing
microworlds to formulate a competence theory. Regrettably, the distinction between strengths and
aws is not as clear-cut as one might like. Some apparent strengths may actually be aws; some
apparent aws may actually be just hard problems that would be encountered in any methodology.

The �rst and foremost advantage of the competence theory approach is that it takes us away
from the painfully vague problem, \Is concept / distinction / fact X part of naive physics?" and
replaces it by the much more hard-edged, pragmatic, bottom-line, engineering-type question, \Is X
useful over a given class of inference?" For instance,

21



� Is an elastic collision between solid objects an instantaneous event, involving an instant change
in velocity, or is it a prolonged process, involving an extended period of contact, a continuous
change in velocity, and a deformation of the objects involved?

� Can a physical object be truly a point, or a curve, or a surface?

It is di�cult to justify or even to assign meaning to a claim that one or the other of these is the
\true" naive view. It is much easier to say that one or the other is an adequate model over a given
class of inferences. Discussions such as that mentioned above about whether a painting on the wall
is in the room can be avoided. What is actually going on, geometrically and physically, is quite clear
enough and easily described. How you choose to de�ne \in", whether you want to de�ne the spatial
extent of the \room" to include the walls, and whether you want to de�ne the \walls" to include the
painting (is the painting part of the wall or merely attached to it?) are comparatively unimportant
and arbitrary decisions about the symbols \in", \room" and \wall".

This freedom from worrying about whether concepts are truly naive comes about primarily
because, while Hayes' project requires that naive conclusions be drawn from naive premises, our
project require only that naive conclusions be derivable; the premises need not be formulated in
naive terms. Therefore, whereas Hayes' project requires that every concept be examined for its
true naivity, and rejected if it is not genuinely naive, for us it su�ces to have a large collection of
naive conclusions. To carry out our project, in other words, it su�ces to be able to generate a large
collection of inferences that are unquestionably commonsensical; we never have to decide of a given
inference that it is not commonsensical.

The problem of �nding an appropriate level of generality, which we considered above, is likewise
considerably clari�ed in the new approach. To attain maximal inferential power, one always goes
to the highest level of generality that has any justi�cation within the scope of the microworld. For
example, in the cookie-cutter example, one can derive the rule from a very general theory of volume
of regions together with the physical rule that the volume of the dough remains nearly constant while
being rolled out. This general theory of volume will serve for many other inferences that involve
reshaping of malleable, incompressible material, so it is advantageous to do this at a general level.
On the other hand, there is probably nothing to be gained from abstracting further to the general
notion of a Lebesgue integral in a general measure space; within commonsense physics, there will be
no interesting generalizations to be obtained from this more abstract notion.

Once we are using microworlds in a competence theory, it becomes almost irresistibly tempting
to consider competence over particularly interesting limited classes of inferences as a �nal goals in
themselves. One can therefore contemplate the possibility of using multiple, mutually inconsistent,
microworlds for the same phenomena, depending on the scope of inferences being considered and the
precision required. For instance, there are many di�erent theories that describe solid objects with
varying degrees of accuracy: pure kinematics, quasi-statics, Newtonian dynamics of rigid objects,
elastic solid objects, and so on. Each of these theories is useful under suitable circumstances. This
is more di�cult to justify in the project of expressing \naive physics", where we are presumably
looking for a coherent universal theory.

This ability to consider microworlds for limited purposes has a number of advantages. First, it
makes the analysis much easier; we can focus in on getting some particular class of inferences to work
without worrying how these will �t with all the rest of naive physics. Second, it allows much closer
ties to practical applications. Most practical AI physical reasoning programs work within a quite
limited scope. For instance, many of the programs that do mechanical reasoning (Joskowicz and
Sacks 1991), (Faltings 1987) work within the microworld of solid object kinematics or some small
extension of it. As we shall argue further below, this tie to practical applications is very valuable for
a number of reasons. Third, as the work on automated modelling (Nayak 1994) has shown, there
can be considerable computational advantage to being able to choose, for a given problem, models of

22



the correct level of precision and detail, so that correct answers can be reached without unnecessary
excess computation. The study of alternative microworlds connects directly to this kind of study.

Focussing on the model rather than the axiomatization has the usual advantages of making it
much easier to ensure consistency and to avoid unintended consequences. As discussed earlier, a
concrete extensional model is necessary consistent and precisely de�ned, and so avoids much of the
conceptual inconsistency and incoherence that can arise in the axiomatic approach.

Dangers and di�culties of microworlds

This revised approach does not, however, take us out of the woods and cure all of our methodological
di�culties. On the contrary, though some di�culties are alleviated from Hayes' original formulation,
many are no lighter, and some are worse.

The chief problems are these:

� Commonsense reasoning is not an autonomous task domain.

� It is hard to �nd natural sources for commonsense inferences in a single microworld.

� The number of potential microworlds is vast, and the methodology provides no guidance for
choosing between them.

� The focus on microworlds rather than axioms encourages (a) excessive speci�city; (b) overem-
phasis on mathematical abstraction and elegance; (c) overemphasis on deductive reasoning.

� There is no easy way to extend or integrate microworlds.

� The method involves a great deal of hairsplitting of essentially vacuous issues.

We will elaborate on each of these individually.

Not a task domain

The central objective in the new approach is to develop a competence theory for commonsense
physical reasoning. But a competence theory must describe competence in some particular task,
and \commonsense reasoning" is not, in itself, a task.11 That is to say, it is not a cognitive activity
that takes place by itself in people, or that would be of any value taking place by itself in a computer;
it is an aspect of other cognitive tasks, such as planning actions, natural language understanding,
expert systems, and so on. Moreover, the connection to commonsense reasoning is the most poorly
understood aspect of these tasks, and at the current stage of understanding, such systems are very
rarely improved by any attempt to incorporate commonsense reasoning.

Commonsense inference is thus an ill-understood module of a much larger task. It is therefore
very di�cult to be sure what the inputs and outputs of this module should be; that is, to decide how
a commonsense inference should be formulated in order to serve the purposes of these larger tasks.
In considering commonsense inference for a natural language processor, for example, it is di�cult to
know which aspects of the inference are part of the purely linguistic component and which parts are

11It is noteworthy that in the paradigmatic case of a competence theory, natural language syntax, the Chomskian
linguists have felt obliged to focus on a very narrow and arti�cial task, that of judging grammaticality, rather than
think about more ecologically valid tasks, such as producing or comprehending natural language. It might be worth
considering whether some analogous task could be found in our domain.
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part of the commonsense reasoner. It is also di�cult to know what is involved in \understanding"
a given text.

For instance, consider the text, \Use a rolling pin to roll out the cookie dough on a at surface
that has been covered with our. Then cut it into pieces with a cookie cutter." Interpreting this text
involves making the inference that \it" refers to the dough rather than the rolling pin, the surface,
or the our. This inference requires a combination of linguistic rules and commonsense reasoning.
But it is not easy to tell what commonsense inference, precisely, is involved here. Do we want to
infer that it is di�cult to cut a rolling pin, or that it is unusual to do so, or that doing so will
serve no purpose in the recipe? In the same way, it is di�cult to know what is needed to achieve
\understanding" of the text. Does the task of natural language understanding, as such, require
inferring that the surface is horizontal? or that the cutter is moved downward through the dough to
the surface? (Translation of a text into another language often does require this kind of knowledge,
in order to choose the proper spatial terms.) In short, the problems of what the representation of a
text should be and of how world knowledge can be used in linguistic analysis are very obscure, and
therefore it is di�cult to get guidance for commonsense reasoning and representation from linguistic
examples. ((Bloom et al. 1996) is a fascinating survey of work in cognitive science on the connection
between language and spatial reasoning.)

Similar ambiguities appear in relating commonsense reasoning to robotics. Here they take the
form of the uncertainty of knowing what a high-level plan looks like, and how it relates to low-level
robot programming. Suppose we want to build a robotic system that can carry out the cookie
dough plan. Then the system e�ectively infers the statement \If program P is carried out on robot
R in situation S, then the goal of having cookies will probably be achieved." This is not, in itself, a
statement analyzable within a commonsense physical theory, as P mostly consists of a lot of low-level
robot-speci�c instructions governing manipulation, vision, and hand-eye coordination. It is not at
all clear what high-level plan should be the subject of commonsense reasoning, or what statements
should be inferred about such a plan. The general issue here is the problem of determining what
issues should be addressed in high-level planning and what is the form of a high-level plan. Again,
these di�culties make it hard to use robotic programming as a guide to commonsense reasoning.

Let me clarify the problem here by contrasting commonsense reasoning with two other hard
tasks. Automatic dictation, from voice to manuscript, is hard, but at least we know the form of
the input (an acoustic string) and the output (a sequence of characters) and we have an unlimited
collection of examples where we know that a correctly working program will produce output O for
input I . Fluid ow analysis for rocket testing is a hard module to build, but again we know that
the input should be the boundary conditions for the relevant PDE and a speci�cation of the desired
precision, and that the output needed is a �eld of uid ow of that precision. The di�culty with
commonsense reasoning is that there are very few instances where we can be really sure what the
input and the output should be.

That recent research in knowledge representation tends to su�er from its disconnection from
to practical research has been argued by numerous researchers, including Morgenstern (1997a) and
Etherington (1997).

No natural sources for single microworlds

Once we have chosen a microworld, we have to �nd a collection of inferences within that microworld
as a testbed. It is important that the collection should well represent the range of commonsense
inferences in the domain, in terms of the physical phenomena considered, the types of partial knowl-
edge, and the directions of inference. If the collection of inferences is too narrow, then it is likely
that the model developed from them will be too weak or the language too inexpressive.
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The problem then is, how does one assemble a suitably broad collection of commonsensical
inferences within a given microworld? The best way would be to choose a task that is easily carried
out by naive subjects, such as vision or language interpretation, and collect the commonsensical
inferences within this microworld involved in that task.12 But this is hard to do, as discussed in the
previous section. Reasoning for expert systems, or processing of specialized natural language text,
or planning for special-purpose robotics often stays largely within a small microworld, but rarely
covers the range of commonsense inference; these tend to be con�ned to a few types of inference
(e.g. prediction) and to very few types of partial knowledge. Within these con�nes, they go far
beyond commonsense reasoning in specialized techniques and knowledge (otherwise, they wouldn't
be expert systems.) Natural language processing of general text and planning in rich environments
uses many more types of inference, but only occasionally do these fall within the chosen microworld.

The method of exploring variants, advanced in section 1, often yields a collection of interesting
problems, but it has a number of built-in biases: it tends to favor prediction problems over other
directions of inference; it tends to favor fairly complete speci�cations; and, being generated by the
researcher herself or sympathetic colleagues, it can easily be biased toward conforming to the theory
the researcher has in mind. Also, a researcher who has thought for a long time about a given
microworld may well tend to exaggerate how easily naive subjects can make certain inferences, so
she may include as commonsensical inferences that are in fact quite di�cult.

For example, suppose we want to evaluate how well the model and language for cutting solid
objects presented above characterize commonsense inference in that domain. How can we go about
such an evaluation?

A claim of adequacy must be that a signi�cant fraction of the commonsense inferences in this
domain can be justi�ed in this theory. How do we �nd or de�ne a space of typical commonsense
inferences within this microworld? We can look at the inferences that a CAM machining program
is implicitly carrying out, or the additional inferences that it would be useful for such a program to
carry out. But most of these are of the form \To create hole H in object O, move cutter C through
path P", which can all be satis�ed by a substantially simpler model of cutting, such as one in which
each operation with the cutter is taken to be atomic; and by a simpler language, such as one in
which all geometric descriptions are exact. Most of the other inferences used in the CAM program
fall outside the microworld, such as restrictions on the thinness of the parts that can cut out of
a given material with a given cutter. We can look at natural language processing of a technical
text describing machining. This will probably yield a slightly broader class of inferences within the
microworld than the CAM program, but still a quite restricted one. We can look at unrestricted
text, but how frequently does any interesting issue in cutting solid objects arise in novels or in the
newspaper?

So the question, which is naturally often raised, of how this theory could be implemented, is one
that I can hardly answer, because I have no idea what such an implementation would be supposed
to do. I could implement a predictive program that takes exact initial shape descriptions and
description of motions and output �nal shape descriptions, but this has been done by the CAM
people much better than I could do it. I could set a general-purpose complete theorem prover on the
axiom set of tables 3 and 4, together with a set of temporal and geometric axioms, but for a theory
of this complexity, I would not expect an answer in reasonable time to any but the most trivial
queries. What I am looking for is an inference engine that will work e�ciently over the space of
commonsensically obvious inferences, but I don't know what that space is , let alone how to design
an inference engine for it.

I am not, of course, arguing that commonsense inference has no practical application. I am

12Interestingly, the original plan for CYC (Lenat et al. 1986) was to express the background knowledge needed to
understand encyclopedia articles (hence the name); they later report that \that use of external written materials has
become increasingly rare." (Lenat and Guha 1993).
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arguing that the practical applications are apt to be few until we have gotten far past simple
microworlds to very broad theories. A program that could do general commonsense reasoning would
be of immense value; a program that could do physical commonsense reasoning, broadly interpreted,
would be of very great value; but a program that can do commonsense reasoning about cutting solid
objects, or similarly narrow domains, would be of very little value. Therefore, it is very di�cult to
know what any of these programs should do about cutting solid objects. We don't know what a
program that only does commonsense reasoning about cutting solid objects should do, because there
is almost nothing useful that it can do. We don't know what kinds of reasoning about cutting solid
objects a general commonsense reasoning program would be called on to do because it will only very
occasionally called upon to carry out an inference that is both non-trivial and lies entirely within
this microworld.

This problem is serious, not just because the absence of short-term payback makes it di�cult
to attract the interest of colleagues, students, and funding agents, though these considerations are
not to be sneezed at. Far more importantly, it means that there is almost no way to guide research
in microworlds to evaluate what progress is being made, except for the judgment and taste of the
researcher (McDermott 1987). We have to work almost blind until the work is almost complete.

Innumerable microworlds

Hayes' project is large but, at least in principle, it is �nite; once the knowledge of all naive physics
has been formalized, the project is done. Our project, by contrast, is in�nitely open-ended or nearly
so; one can continue to make up and analyze new microworlds forever, by slightly varying the set
of assumptions involved. For example, there is an endless collection of variations on the blocks
world: Blocks may stack in towers one on one, or they may be rectangular of varying sizes, or
they may have more general shapes; time and space may be continuous or discrete; there may be
one hand or many hands, and, if many, they may work one at a time or concurrently and they
may interact in any of several ways; and so on. This is useful for the teacher giving a class in KR
who needs simple examples to assign, but for the researcher, only a few of these merit any study.
The methodology described above does not give one any clue as to when the analysis of a new
microworld is worthwhile. The choice of where to invest energy is left entirely up to the judgment of
the researcher, and KR research has always been remarkably apt to leave the great ocean of truth
undiscovered, while crowding around an empty Clorox bottle on the beach.

Excessive speci�city

A microworld is, so to speak, an entire alternative universe that approximates or abstracts the real
one. In formulating a microworld, therefore, it is often di�cult to avoid ontological overcommitment;
being overly speci�c merely for the sake of having a well-de�ned model.

Suppose, for example, we want to describe cell division. At the beginning of the process, there
is one cell; at the end, there are two cells. For simplicity, it is certainly easiest to say that up to
a certain time there is one cell, called A, and after that time, there are two cells, called B and C.
Clearly, however, isolating the moment in the process that divides one from two is entirely arbitrary
and pretty pointless.13 So we would like to be agnostic about this. In the axiomatic approach, this
agnosticism is very easily attained, through the following axioms:

1. At the beginning of cell division, A exists.

2. At the end of cell division, B and C exist

13Deciding which state holds at that exact moment is doubly arbitrary and pointless.
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3. At all times during cell division, exactly one of two possibilities holds: (1) A exists; (2) B and
C exist.

4. It cannot be that B and C exist at one time and then A exists at a later time.,

By contrast, the whole spirit of the microworlds approach militates against this kind of ag-
nosticism. Characteristically a microworlds approach will feel obliged to de�ne a criterion for the
temporal individuation of cells, and this criterion will impose a unique solution to the question of
the dividing point. Without such a criterion, the only way to achieve conditions (3) and (4) is to
de�ne the temporal lifetime of one cell in terms of the lifetime of another, and this kind of recursion
loses many of the advantages of microworlds, such as the easy guarantee of consistency. I'm not
saying it can't be done; I'm saying that someone working within the microworlds methodology is
much less likely to adopt such a solution or to be satis�ed with it.

The model-based methodology also pushes toward excessive speci�city and concreteness in the
concepts considered. The focus is on concepts that are easily characterized in terms of their spa-
tial/temporal/material aspects to the exclusion of more nebulous but important concepts attached
to causality and teleology. Consider the following inference

If you cut through an object anywhere near the center, you will probably destroy its
functionality.

The inference is important, true, and commonsensically obvious, but is likely to be omitted in a
model-based theory, because of the di�culty of de�ning \functionality". It is also unlikely to be
found as a sample commonsense inference by the method of proposing variants, because it is too
general.

Excessive mathematization

Similarly, the model-based methodology leads to an excessive interest in constructing elegant and
minimal mathematical models rather than expressive, messy models. For example, the kinematic
theory of cutting solid objects presented earlier is elegant and simple, easily stated and formalized,
covering a wide range of phenomena with a few rules.

The dynamic theory of cutting solid objects, by contrast, is complex, haphazard, and incomplete.
Consider the range of motions, forces, and behaviors involved in slicing through butter, sawing wood,
driving a nail, screwing a corkscrew, and drilling a hole. A model that characterizes all these fully
at the commonsense level will necessarily involve a large number of separate rules and constraints
governing these separate common cases. (The theory at the atomic level is simple, but there the
structural representations needed to describe these various scenarios is very complicated.) Moreover,
these rules and constraints are not disconnected arbitrary facts, but are deeply interconnected. For
instance, anyone who has observed the processes of butter being sliced and of wood being sawed will
expect, from the nature of the processes and the materials, that butter can be sliced more thinly that
wood can be sawed. But it is not easy to �nd the general rules that give rise to that expectation.

The researcher who wants to move forward producing models will therefore tend to avoid this
kind of microworld, as these models are, in every respect, harder to develop. The ontology and
language are much richer; the theory is much more complex; it is hard to be sure that the various
constraints and rules are mutually consistent; it is hard to be sure that all cases have been covered.
Paradoxically, one suspects that this kind of model would also be harder to \sell" as legitimate
research; they look like a mere translation of random obvious statements into formalese. In fact, the
immense gap between a mere translation of random statements and a coherent theory is no smaller
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in a complex theory than in a simple one, but the coherence of the complex theory is harder to
achieve, to convey, and to grasp.

In fact, as the microworlds become more complex, the need for complex systems of constraints
on the models means that the distinction between the axiomatic approach and the model-based
approach tends to vanish. Each of these constraints is, e�ectively, an axiom; the di�culties of
dealing with the constraints are almost the same as the di�culties of dealing with a set of axioms;
and the advantages of a model-based approach over an axiomatic approach, in terms of clarity and
of easily-veri�ed consistency are much diminished.

Having constructed elegant models for simple domains, the next temptation is to spend time
proving neat theorems about them, or in them. These are often of doubtful relevance. A twenty-
two page proof that two theories of cutting are mathematically equivalent (Davis 1993) certainly
does not represent any cognitive activity that anyone (except myself) has ever carried out, nor any
computational activity that any program is ever likely to carry out. Now, of course, I can and
do justify such research in terms of the methodology itself: a program that can reason exibly
about cutting must be based on a good model of cutting; the two models potentially have di�erent
advantages as regards automated inference; if we want to use them both, we should understand the
relation between them; hence, it is of value to know that they are in fact equivalent. Which is all
very well, but all the same the gap between application and research has gotten rather large.

This mathematizing tendency also a�ects the formulation of queries. Previously, we suggested
that the special rule \The thinner you roll the cookies dough, the more cookies you can cut out,"
could be deduced as a consequence of more general geometric rules, plus rules that the cookie dough
has �xed volume, and that cutting out cookies corresponds to dividing the region of the dough into
vertical cylinders with some �xed cross-section. But this \generalization" fails to capture the causal
direction of the special rule, the fact that the baker can choose how thick to roll the dough and
where to cut the cookies, and that these choices determine the number of cookies obtained. By
contrast the geometric rules are atemporal; they would equally apply to a case where someone was
assembling a mass of cookie dough out of cookie pieces, and where the choice of the number of cookie
pieces would determine the eventual volume of cookie dough. A large part of mathematical training
involves making this kind of abstraction automatic; it eventually becomes so much second nature
that perceiving the distinction between the original rule and its abstraction requires a conscious
e�ort.

Too much stress on deduction

Being centered around semantic consequence, the microworlds approach tends to focus exclusively on
deductive reasoning. It can, perhaps, be extended to types of plausible reasoning based on a strong
semantic model, such as circumscription or probabilistic reasoning, but would be very di�cult to
integrate with such theories as default reasoning, reasoning by analogy, case-based reasoning, and
so on.

Extending and combining microworlds

An advantage to Hayes' project is that, as the aim at every step is always a complete theory of naive
physics, and as every axiom of every cluster is \true"' relative to that overall theory, once you have
correctly formulated an axiom or a cluster, you can count on it and keep it. If it is true, it remains
true. In the microworlds approach, by contrast, a model that has been constructed to characterize
a very narrow microworld does not usually apply in a broader world. Models, theories, languages,
and axioms almost always require some revision in going from a narrower to a wider setting, and
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may well require complete reworking from scratch.

Let us �rst consider a case where the extension of one model to a richer model has a straight-
forward logical structure. The kinematic theory of rigid solid objects can be extended to a dynamic
theory by adding mass, force, momentum, and so on, and imposing Newton's laws. This is what
Giunchiglia and Walsh (1992) call a \theorem increasing" extension; the language is richer and the
axioms of dynamics are a strict superset of those of kinematics. It is also, correspondingly, \model14

decreasing" (Nayak and Levy 1994); if H is a history consistent with the dynamic theory then the
\projection" of H obtained by eliminating all aspects of the history except shape and position is
consistent with the kinematic theory.15

A more complex example is the extension of the kinematic theory of rigid solid objects (KRSO) to
the theory of cutting rigid solid objects (CSO) described above. This is a model-increasing extension;
any history consistent with the KRSO theory is also consistent with CSO. Correspondingly, it is a
theorem-decreasing extension. This seems a little odd, as the CSO contains all kinds of axioms and
inferences about cutting that don't apply in KRSO, but actually these are all vacuously true in the
KRSO case. For instance, it is true in KRSO that if a knife cuts through an apple, the apple will
be split into two parts, because the antecedent of the implication is necessarily false. (Note that
statements of feasibility like \You can cut through an apple with a knife," are not part of CSO, as
we have de�ned it.)

However, the simple characterization above requires a signi�cant quali�cation. Starting with
CSO, it is easy to construct KRSO as a special case by adding to the \mutable objects" theory the
axiom that the shape of an object is constant; or adding to the \chunk" theory the axiom that all
chunks are eternal. Going to KRSO to CSO, which is the more likely order of development, is much
more di�cult. In the natural logical statement of KRSO, shown in tables 5-7, there is no need for the
uent \material(O)", since all objects are eternal, and the function \shape(O)" maps an object O
to a spatial region rather than to a uent, since the shape of an object is �xed. Thus, developing the
mutable object theory of CSO from KRSO requires signi�cant reworkings of the conceptualization,
ontology, and language in addition to changing the axioms. (Note that only one of the axioms from
table 7 survives unchanged in table 3.) Developing chunk theory requires even greater ontological
changes, though, curiously, fewer axiomatic changes (three axioms from table 7 appear in the same
form in table 4).

14This is \model" in the strict metalogical sense.
15If you allow the imposition of arbitrary external forces and impulses as boundary conditions then a version of

converse also holds: Given any (piecewise twice-di�erentiable) motion satisfying the kinematic constraints, there is
some way of imposing external forces so that, in the dynamic theory, the objects execute the speci�ed motion. At
this point, the question of which, if either, direction is \theorem decreasing" and \model increasing" becomes rather
murky.
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Sort Letter
Spatial regions (set of points) R

Rigid mappings M

Temporal situations S

Fluents F

Objects O

Table 5: Logical Sorts in KRSO

Temporal:
value in(S; F ) | Function. Value of uent F in situation S.

Spatial:
intersect(R1; R2) | Predicate. Region R1 intersects R2.
good shape(R) | Predicate. Region R is non-empty, open, bounded, connected,

and equal to the interior of its closure.
image(M;R) | Function. The image of region R under mapping M .
continuous(F; S) | Predicate. F is a continuous function of time at situation S.

F is a uent whose value in each situation is a rigid mapping.

Physical: Primitive Symbols
placement(Q) | Function. The uent of the mapping from the shape of Q

to the place of Q.
shape(O) | Function. The point set occupied by O in a standard orientation.

Physical: De�ned Symbols
place(Q) | Function. The uent of the region occupied by Q in situation S.

Table 6: Non-logical primitives in KRSO

K.1 place(O;S) = image(placement(O;S), shape(O)).
(De�nition of place: The region occupied by O in S is the image of its shape under its
placement.)

K.2 O1 6= O2 ) :intersect(place(O1; S), place(O2; S)).
(Two objects do not overlap.)

K.3 good shape(shape(O)). (Every object has a good shape.)

K.4 continuous(placement(O),S).
(The placement of object O is continuous in any situation S.)

Table 7: Axioms of KRSO

Similar di�culties are encountered in trying to combine two microworlds; all too often, one �nds
that each microworld depends on assumptions that are violated in the other. Let me discuss an
example that has been fretting me for some years. I have a theory of cutting rigid solid objects. I
also have a theory of strings, presented briey in (Davis 1995). The form of this theory is determined
by the following considerations:
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The central curve is the core of the string, and the small circles are cross-sections.

Figure 8: Theory of string

A. The length of a string is constant.

B. Strings are very exible.

C. It is tempting to make strings one-dimensional curves, but that creates di�culties. For in-
stance, if two strings touch one another, or one part of a string touches another part, then,
if the strings are truly one-dimensional, it becomes very di�cult to specify which string is on
which side. Consequently, it becomes di�cult to �x the rules so that one string cannot pass
through the other. It is much easier to specify a reasonable physics if strings are required to
be fully three-dimensional objects, though thin.

D. The diameter of a string is generally much less than its length, and the shape of its cross
section is unimportant for most purposes.

E. We wish to abstract away the details of the composition of the string, which varies from one
string to the next, and focus on the external characteristics, which are very much the same
from one string to another.

To accommodate these constraints, I proposed the following kinematic theory of strings and solid
objects (Figure 8):

A string is characterized by its length L and its radius R. At any given moment, the
core of the string lies on a curve C of arc-length L. The cross-section of the string
perpendicular to the core is a circle of radius R; that is, the extension of the string
occupies all points of the form q+�N̂ where q is a point in the core C; N̂ is normal to
the curve C at q; and � � R. The string observes the following constraints:

� The string moves continuously.

� The string does not overlap any solid rigid object.

� The string does not overlap any other string.

� The string does not overlap itself. That is, there cannot be two distinct points q1
and q2 on curve C; two normals N̂1 and N̂2 to C at q1 and q2; and two quantities
�1, �2 < R, such that q1 +�1N̂1 = q2 +�2N̂2

This theory is reasonably straightforward, and integrates directly with the kinematic theory of
rigid objects. It supports inferences such as, \If string A is looped, with one end ush against the
other, and string B is likewise looped, and the two cores are topologically linked, then the two strings
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cannot be separated from one another while keeping them both looped." The topological part of
this proof is not easy, but the physics is simple.

The problem now is, how can the theory of strings be combined with the theory of cutting? The
di�culty is that halfway through the process of cutting the string, the string has a notch that has
been vaporized out of it. The theory of strings, as stated above, assumes that a string has a circular
cross-section everywhere.

Now there may be a good, or at least a deep, reason for this di�culty. The model of string as a
uniform tube is an abstraction of many di�erent string-like substances: woven string, braids, single
�bers, metal wires, rubber-coated wires, even linked chains. The abstraction is reasonable across
a wide range of behaviors, but it falls apart in scenarios that probe the internal structure of the
string. (By de�nition, of course: a scenario that distinguishes one internal structure from another
is precisely one in which the internal structure cannot be abstracted away.) Chief among these is
cutting or partially cutting the string; what happens when you cut halfway through a string is quite
variable, depending on what the string is made of. Hence, it is not surprising that modelling cutting
string is not a simple extension of modelling string.

On the other hand, cutting string is not, after all, a very esoteric activity, and the fact that, when
you cut a string, you end up with two shorter strings is one of the best-known and most important
properties of string. Three related reactions to the above di�culty come to mind immediately. The
�rst is that we don't care what's going on in the middle of cutting string; all we care about is the end
result. The second is that we don't generally care about strings that have been halfway cut through;
when we start to cut a string, we usually complete the job. The third is that the requirement that
strings have a circular cross-section should be dropped; there are many strings, including sneaker
laces and strings that have been partially cut through, that do not.

The �rst of these reactions is actually a fallacy, based on the ease with which human reasoners
solve and therefore ignore the frame problem. After all, cutting string does not create a physics-free
zone, and we would care very much if string, while it was being cut, spat forth a poison that was
fatal on contact. So the reaction \we don't care" is presupposing some very strong constraints on
the behavior of the string while being cut that carry over from before it was cut, and our problem
is precisely to state these constraints in a way that integrates with the rest of our theory.

The second reaction is more productive. We could look for a model in which the string is never
partially divided, by positing that the string splits in two as soon as it is penetrated by the blade.
This can be accommodated in chunk theory by observing that, unlike soap or marble where any
reasonable subset can be carved out, strings can really only be cut straight through. (If you do
manage to cut a string lengthwise, then what you get may very well not be a string.) Therefore,
if we take a \chunk" to be \something that can potentially be cut out of the material," then the
chunks in the string are precisely lengthwise segments of the string. If we apply our rule from chunk
theory that a chunk vanishes as soon as it is penetrated, then what we get is precisely the above
model, that the string is split as soon as the blade enters it. (Chunk theory also allows a more
elegant expression of the rule that the string does not overlap itself.)

This theory seems elegant enough, and it does the right thing for almost all cases of cutting
string, so in that sense it is a reasonable competence theory.16 Unlike the microworlds we have
looked at before, however, the description here is never either true or plausible; strings do not split
in two the instant that the knife enters them, and one does not imagine that they do. Moreover, on
the rare occasions when it is obvious that the knife will partially cut the string but not wholly, this
gives a prediction that is neither right nor plausible.

16I have not worked through this theory carefully, and so there may be some technical problems that arise. It is a
little worrisome, for instance, that in this theory a solid object exists over a time interval that is closed on the left
and open on the right, while a string exists over an interval that is open on the left and closed on the right. My guess,
though, is that this does not raise any real di�culties.
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What we have done, in short, is to construct a concrete model of the process of cutting, which
has the correct starting and ending behavior for completed cuts and the correct interaction during
cutting with the rest of the world (i.e. none). Then this model will do the right thing as long as we
never have to reason about incomplete cuts or about the state of the string during cutting. The fact
that it is easier to construct such a overly speci�ed model rather than just characterize correctly the
starting and ending states and the interaction with the rest of the world is a �ne example of how
the model-based methodology pressures one into overly speci�c models.

The third suggestion, that we should allow strings with non-circular cross-sections, has in its favor
that it is true and it will have to be accommodated in an ultimate commonsense theory. However,
the theory of non-cylindrical strings is signi�cant more complicated than the theory of cylindrical
strings, for a number of reasons. First, non-cylindrical strings can twist; in cylindrical strings, twist
is invisible and can therefore be ignored. Second. non-cylindrical strings are more restricted in the
shapes they can attain. For instance, it is not possible to wind a sneaker lace tightly in the plane of
the lace itself without buckling, because the outer diameter of the lace becomes so much longer than
the inner diameter. The microworlds approach has value insofar as it allows us to focus on a natural
class of issues, and it would seem natural that we should be able to reason about the very common
and familiar process of cutting string without getting involved in all the rare and specialized issues
of oddly-shaped string.

Hairsplitting

By this stage of the paper, few readers will need more illustrations of this point! A little earlier,
we were patting ourselves on the back because we could avoid two-hour discussions on the meaning
of \in", but though that particular vacuous argument is avoided, many others come in to take its
place. The kind of precision needed in this kind of analysis seems to require inescapably that all
kinds of borderline cases and anomalies be resolved.

In the case of real borderline cases | Is a platypus a mammal? Is glass a solid? What is an
impulse? | this is somewhat tolerable, as scientists and engineers who study this kind of issue
also spend serious work doing this kind of resolving of borderline cases. Even here, one's intuition
is that human commonsense reasoning is distinguished by its willingness to admit the existence of
borderline cases, and its non-insistence on tying all these down; and one would like the theory of
automated commonsense reasoning to be similarly exible. What is truly intolerable, however, is
the amount of time and e�ort that must be spent in resolving purely hypothetical and imaginary
borderline cases and anomalies, just for the sake of having clear-cut de�nitions and models | When
you turn on a light, is it on or o� at the exact dividing moment? Do objects occupy open or closed
regions in space? What happens if an object is sliced simultaneously by in�nitely many blades? No
scientist or engineer would dream of wasting her time in this way; here we are in company only with
mathematicians and philosophers. Mathematicians have it comparatively easy; the hairs only have
to be split when choosing de�nitions, not when proving theorems; mathematics tends to have few
de�nitions and many theorems; and hairs can be split along any lines that seem most convenient. By
contrast, we spend much more of our time de�ning concepts and models, and we are under pressure
to make our de�nitions more or less �t with commonsense concepts. Philosophers have it even worse
than we do; rather than analyzing straightforward concepts like cutting string, they are trying to
deal with Truth, Justice, and Beauty. On the other hand, of course, the reward for their e�orts is
a better understanding of Truth, Justice, and Beauty, whereas the best we can hope for is a better
understanding of how to formalize cutting string.
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The role of microworlds in the larger scheme of things

When we are all done | when we have encoded all of commonsense physical knowledge in a declar-
ative knowledge base, and implemented all commonsense physical reasoning in an inference engine
over the knowledge base | how will our work on microworlds be reected in the �nal product?
Three posssibilities come to mind.

One possibility is that we will attain Hayes' dream of a single consistent theory that incorporates
all commonsense physical knowledge and supports all commonsense physical inferences. In this case,
our microworlds would certainly serve no intrinsic logical function. They would survive at most as
organizational structures, clusters within the knowledge base supporting e�cient retrieval. More
likely, in view of our observations above of their characteristic inextensibility, they would simply
vanish. Their whole function in the research project, then, would have been as stepping stones
and training exercises for the eventual theory. Certainly, there would be no point in ever going
backwards; once a more comprehensive microworld had been satisfactorily formulated, there would
be no interest in considering special cases.

A second possibility, along the lines of (Addanki et al. 1989), is that the �nal knowledge base
would be structured entirely in terms of mutually inconsistent microworlds, with no overall theory.
There would be rules at the meta-level for choosing the microworld suitable to a given problem, or for
resolving conicts when di�erent microworlds gave di�erent answers, but there would no object-level
theory that would serve as the �nal court of appeals in such cases.

A third possibility combines the two of these. There is a structure of microworlds, integrated
through meta-rules, but at the top of this structure is a single Hayesian theory to which all questions
can be ultimately referred (Figure 9.) The microworlds approximate the overall theory, and are
computationally more tractable. This can be viewed as a special case of the second structure, in
which there happens to be a single overarching top-level microworld. Alternatively, it can be viewed
as an instance of the �rst structure, by taking the overall theory to be logically primary, and viewing
calculations involving the microworlds as approximation heuristics to the overall theory.

Undoubtedly, we at present know much too little to predict which, if any, of these will win out.
However, a few pros and cons may be observed.

The �rst structure, of a single comprehensive theory, is certainly the simplest from a logical
standpoint. Indeed, the idea of using multiple worlds runs seriously counter to goals of a declarative
representation or a knowledge-based analysis. This becomes particularly evident in cases where you
want to use two conicting models in a single problem, either to describe two di�erent objects in
the problem, or two di�erent times, two di�erent places, two di�erent scales of granularity, or two
di�erent interactions. For instance, to calculate the tides, you �rst calculate the motions of the earth
and the moon around the sun as if they were point objects; then treat the earth as a solid of very
complex shape with bodies of water. The reasoner must somehow keeping the inferences from each
microworld within the range of its applicability and avoid making inferences from these microworlds
that make nonsense of the problem being solved; and this idea of a limited range of inference is not
one that works easily within the standard view of a knowledge-based system.

This di�culty is not necessarily alleviated by formally incorporating a microworlds structure
inside a single �rst-order theory, as is done in the theory of \contexts" (McCarthy 1993). The
fundamental issue is not so much whether there is one �rst-order theory or a system of many; it is
whether the knowledge base as a whole can be considered as a declarative, transparent representation
of a coherent body of knowledge. If the structure of contexts can be given a clear extensional
signi�cance justifying the axioms that connect them, that would be a great gain. But an obscure
and arbitrary �rst-order theory of contexts has no advantage over an obscure and arbitrary system
of procedural techniques for combining alternative theories.
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Moreover, I have not found any convincing arguments that a structure of alternative microworlds
is a particularly plausible cognitive model of commonsense physical reasoning. I do not know of any
cases where commonsense reasoning seems to require the combination of two conicting models. I
suspect that in developing a commonsense physical reasoner, our ultimate aim should be something
like Hayes' uniform, comprehensive theory. Therefore we should tend to stress the steady expansion
of the scope and detail of our theories, rather than pursue such virtues as simplicity or tractability.

By contrast, in developing an automated reasoner for expert scienti�c or engineering reasoning,
the idea of a structure of alternative microworlds approximating a single ultimate correct theory
seems much more promising. In formulating and solving a problem, a scientist/engineer will almost
always simplify, abstract, and approximate; she can generally describe the approximations she is
making and, to some extent, explain why they will simplify the problem, and why she expects that
the answer will still be useful. A large part of scienti�c and engineering training has to do with
learning a library of useful approximations and abstractions and learning how to apply these to
di�erent problems. Indeed, there is a very active research area trying to develop an account of the
relations between microworlds and to see how a structure of microworlds can be used in automated
expert physical reasoning.

I am not convinced, however, that microworlds as such play a major role in this kind of reason-
ing. Approximation and abstraction in physical reasoning takes many forms: Objects of complex
characteristics may be approximated by objects of simpler characteristics (e.g. a real resistor by an
ideal resistor); a group of objects may be approximated by a single object (�gure 10); a group of
simple objects may be approximated by a single complex object (e.g. a chain of rigid links by a
string). The case where a complex microworld is approximated by a simpler microworld is just one
of many cases, and it is not obvious that it is a particularly important special case. Also, it is a
mistake to assume, as is sometimes done (e.g. (Weld 1992)) that a problem is easier to solve in a
formally simpler theory than in a more complex theory; in many important cases, the reverse holds.
For example, solid object dynamics is a formally simpler theory if friction is excluded than if it is
included, but in many problems, such as the system in �gure 11, prediction is easy in a theory with
friction | the system remains static | but di�cult in a frictionless theory.

Since many problems in physical reasoning can be solved within the scope of a single microworld,
the development of microworlds remains useful in developing automated expert physical reasoners.
I suspect, however, that the study of the relationships between microworlds and the manipulation
of microworld assumptions will be much less important in developing sophististicated reasoning
techniques.

Conclusions

Despite all these di�culties and objections, and despite the increasing impatience of the AI com-
munity with laboriously hand-coded knowledge-based systems (e.g. (Charniak 1993, preface)), I
�nd our original scenarios | the staked plant, the cookie dough, the baby bottles, and a myriad
similar situations | too fascinating and compelling to abandon. I still feel that it is wise to begin
by developing representations for a knowledge-level analysis, and that the method of microworlds is
the most promising approach that we have. The main task now, therefore, is to develop more and
richer microworlds.

As we have discussed, we can expect the next generation of microworlds will be more di�cult in
every respect than those we have already seen. If we look at microworlds such as the dynamics of
cutting, we expect to �nd that microworlds will be more complex and narrower; that reasoning will
rely more on plausible inference; that the spatial component of reasoning will be both more complex
and less clearly de�ned; and that immediate connections to useful applications will become fewer.
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The four objects on top can be treated as if they were the single object below.

Figure 10: Abstraction of structure: Several objects become a single object

37



Figure 11: A simple system with friction

But if we have patience enough to stick with it, we should eventually have a remarkable theory.
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