
1

2/19/022/19/02
11

XSBXSB
Tim FininTim Finin

University of Maryland University of Maryland
Baltimore CountyBaltimore County

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 22

OverviewOverview

What XSB offersWhat XSB offers
TablingTabling
Higher order logic programming Higher order logic programming

sort ofsort of

NegationNegation

2

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 33

What XSB OffersWhat XSB Offers
LP languages have been based on SLDNF (SLD resolution with LP languages have been based on SLDNF (SLD resolution with
negation as failure) and implemented with the WAM (Warren negation as failure) and implemented with the WAM (Warren
Abstract Machine) model.Abstract Machine) model.
These suffer from some drawbacks: they address either positive These suffer from some drawbacks: they address either positive
or negative loops. or negative loops.
Positive loopsPositive loops result from recursion without negation.result from recursion without negation.

It has been addressed with magic sets and tabling, which It has been addressed with magic sets and tabling, which
assign failing values to derivation paths which contain positiveassign failing values to derivation paths which contain positive
loops.loops.

Negative loopsNegative loops result from recursion through negation.result from recursion through negation.
derivations are assigned the value undefined by well founded derivations are assigned the value undefined by well founded
semantics.semantics.

XSB attempts to handle both and do so with efficiency XSB attempts to handle both and do so with efficiency
approaching that of standard SLDNF as implemented, for approaching that of standard SLDNF as implemented, for
example, by Prolog.example, by Prolog.

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 44

SLDSLD--resolution ruleresolution rule

<- A1,..,A(i-1),Ai,A(I+1),...,Am B0 <- B1,...,Bn

<- (A1,...,A(i-1),B1,...,Bn,A(i+1),...,Am)σ

where
• A1,...,Am are atomic formulas (goals)
• B0 <- B1,…,Bn is a (renamed) definite clause in
P

• mgu(Ai,B0)=σ

3

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 55

Goal and clause selectionGoal and clause selection

A goal selection function specifies which goal Ai is
selected by the SLD-rule.
�Prolog goes left-to-right

The order in which clauses are chosen is
determined with a clause selection rule.

Prolog selects clauses in the order in which they are
added to the database

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 66

SLDSLD--resolution is Sound and resolution is Sound and
Complete for Horn ClausesComplete for Horn Clauses

Any query (goal) that is provable with SLDAny query (goal) that is provable with SLD--
resolution is a logical consequence of the resolution is a logical consequence of the
program.program.

Any query (goal) that is (true) in the least Any query (goal) that is (true) in the least
Herbrand model is provable with SLDHerbrand model is provable with SLD--resolution.resolution.
In the case of an infinite SLDIn the case of an infinite SLD--tree, the selection function tree, the selection function

has to be fair (as in breadth first search). For finite has to be fair (as in breadth first search). For finite
SLDSLD--trees lefttrees left--firstfirst--withwith--backtracking as used in Prolog backtracking as used in Prolog
gives a complete method.gives a complete method.

4

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 77

SLDSLD--treetree
studentof(X,T):- majors(X,C), teaches(T,C).
majors(paul, cmsc).
majors(paul, ifsm).
majors(maria, math).
teaches(adrian, ifsm).
teaches(peter, math).
teaches(peter, cmsc).

:-teaches(peter,math)

:-teaches(peter,ifsm)

:-teaches(peter,cmsc)

?-studentof(S,peter)

:-majors(S,C), teaches(peter,C)

:-teaches(peter,ifsm)

:-teaches(peter,cmsc) :-teaches(peter,math)

[][]

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 88

Infinite SLDInfinite SLD--treestrees

brother(X,Y) :-brother(Y,X).
brother(paul, peter).

brother(paul,peter).
brother(peter,adrian).
brother(X,Y):-
brother(X,Z), brother(Z,Y).

?-brother(paul,B)

[] :-brother(paul,Z),brother(Z,B)

:-brother(paul,Z1),brother(Z1,Z),brother(Z,B):-brother(peter,B)

[] :-brother(peter,Z),brother(Z,B)
•
•
•

•
•
•

•
•
•

:-brother(B,peter)

[]

?-brother(peter,B)

:-brother(peter,B)

:-brother(B,peter)

[]

5

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 99

Positive Loops in PrologPositive Loops in Prolog

We might like to use rules with loops:
% Logically: parent(X,Y) child(X,Y).
parent(X,Y) :- child(X,Y).
child(X,Y) :- parent(X,Y).
parent(adam,able).
child(cain,eve).
% Logically: spouse(X,Y) spouse(Y,X).
spouse(X,Y) :- spouse(Y,X).
spouse(adam,eve)

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 1010

Positive Loops in PrologPositive Loops in Prolog

Sometimes we are forced to…
% Loops because there are cycles in the owes

graph
avoids(Source,Target) :- owes(Source,Target).
avoids(Source,Target) :-

owes(Source,Intermediate),
avoids(Intermediate,Target).

owes(andy,bill).
owes(bill,carl).
owes(carl,bill).

6

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 1111

NonNon--looping Prolog versionlooping Prolog version

avoids(X,Y) :- avoids(X,Y,[]).
avoids(X,Y,L) :- owes(X,Y), \+ member(Y,L).
avoids(X,Y,L) :-

owes(X,Z),
\+ member(Z,L),
avoids(Z,Y,[Z|L]).

owes(andy,bill).
owes(bill,carl).
owes(carl,bill).

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 1212

More problemsMore problems

Even if we prevent loping or the graph contains no Even if we prevent loping or the graph contains no
cycles, its structure may lead to exponential cycles, its structure may lead to exponential
computations.computations.

7

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 1313

NonNon--looping XSB versionlooping XSB version

::-- table avoids/2.table avoids/2.
avoids(Source,Target) :avoids(Source,Target) :-- owes(Source,Target).owes(Source,Target).
avoids(Source,Target) :avoids(Source,Target) :--

owes(Source,Intermediate),owes(Source,Intermediate),
avoids(Intermediate,Target).avoids(Intermediate,Target).

owes(andy,bill).owes(andy,bill).
owes(bill,carl).owes(bill,carl).
owes(carl,bill).owes(carl,bill).

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 1414

SLD resolution: Program Clause ResolutionSLD resolution: Program Clause Resolution

Given a tree with a node labeled Given a tree with a node labeled
A:A:--A1,A2…AnA1,A2…An

and a rule in the program of the form and a rule in the program of the form
H :H :-- B1,B2…BkB1,B2…Bk

and given that H and B1 match with matching and given that H and B1 match with matching
variable assignment Theta, then add a new node variable assignment Theta, then add a new node
as a child of this one and label it with as a child of this one and label it with

(A :(A :-- B1,…,Bk,A2…An)ThetaB1,…,Bk,A2…An)Theta
if it does not already have a child so labeled. Note if it does not already have a child so labeled. Note
that the matching variable assignment is applied to that the matching variable assignment is applied to
all the goals in the new label.all the goals in the new label.

8

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 1515

SLD tree for the query: append(X,Y,[a,b])SLD tree for the query: append(X,Y,[a,b])

append([],L2,L2).
append([X|L1t],L2,[X|L3t]) :-

append(L1t,L2,L3t).

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 1616

Tree for avoid(andy,Ya) goal serverTree for avoid(andy,Ya) goal server

9

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 1717

Tree for avoid(bill,Ya) goal serverTree for avoid(bill,Ya) goal server

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 1818

Tree for avoids(carl,Ya) goal serverTree for avoids(carl,Ya) goal server

10

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 1919

Updated tree for avoid(andy,Ya) goal Updated tree for avoid(andy,Ya) goal
serverserver

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 2020

Updated tree for Updated tree for
avoid(andy,Ya) goal avoid(andy,Ya) goal

serverserver

11

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 2121

SLG resolution rulesSLG resolution rules
Program Clause Resolution:Program Clause Resolution: Given (1) a tree with a Given (1) a tree with a
node labeled A:node labeled A:--A1,A2…An, which is either a server tree A1,A2…An, which is either a server tree
root node or A1 is not tabled and (2) a rule H:root node or A1 is not tabled and (2) a rule H:--B1,B2…Bk B1,B2…Bk
where H and A1 match with substitution Theta, then add where H and A1 match with substitution Theta, then add
a new child node with label (A:a new child node with label (A:-- B1,…,Bk,A2…An)Theta, B1,…,Bk,A2…An)Theta,
if it does not already have a child so labeled. if it does not already have a child so labeled.
Subgoal Call:Subgoal Call: Given a nonroot node with label, where Given a nonroot node with label, where
A1 is indicated as tabled, and there is no tree with root A1 is indicated as tabled, and there is no tree with root
A1 :A1 :-- A1, create a new tree with root A1 :A1, create a new tree with root A1 :-- A1. A1.
Answer Clause ResolutionAnswer Clause Resolution Given a nonGiven a non--root node root node
with label A:with label A:--A1, A2…An, and an answer of the form B :A1, A2…An, and an answer of the form B :--
in the tree for A1, then add a new child node labeled by in the tree for A1, then add a new child node labeled by
(A :(A :-- A2…An) Theta , where Theta is the substitution A2…An) Theta , where Theta is the substitution
obtained from matching B and A1 (if there is not already obtained from matching B and A1 (if there is not already
a child with that label.) a child with that label.)

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 2222

Left recursive versionLeft recursive version

The leftThe left--recursive version is, in fact, more efficient recursive version is, in fact, more efficient
in XSB.in XSB.
::-- table avoids/2.table avoids/2.
avoids(Source,Target) :avoids(Source,Target) :-- owes(Source,Target).owes(Source,Target).
avoids(Source,Target) :avoids(Source,Target) :--

avoids(Source,Intermediate),avoids(Source,Intermediate),
owes(Intermediate,Target).owes(Intermediate,Target).

Only one table is generated by the query Only one table is generated by the query
avoids(andy,Ya) instead of three.avoids(andy,Ya) instead of three.

12

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 2323

Hilog termsHilog terms
XSB has a simple extension that provides some XSB has a simple extension that provides some
“higher“higher--order” logic programming capability.order” logic programming capability.
A term in XSB is:A term in XSB is:

an atomic symbol, oran atomic symbol, or
a variable, or a variable, or
of the form: t0(t1,t2,...,tn) where the ti are terms. of the form: t0(t1,t2,...,tn) where the ti are terms.

Transitive closure example:Transitive closure example:
closure(R)(X,Y) :closure(R)(X,Y) :-- R(X,Y).R(X,Y).
closure(R)(X,Y) :closure(R)(X,Y) :-- R(X,Z), closure(R)(Z,Y).R(X,Z), closure(R)(Z,Y).
::-- hilog parent.hilog parent.
ancestor(X,Y) :ancestor(X,Y) :-- closure(parent)(X,Y).closure(parent)(X,Y).

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 2424

Some examplesSome examples

map(F)([],[]).
map(F)([X|Xs],[Y|Ys]) :-

F(X,Y),
map(F)(Xs,Ys).

twice(F)(X,R) :-
F(X,U),
F(U,R).

:- hilog successor,double,square.

successor(X,Y) :- Y is X+1.
double(X,Y) :- Y is X+X.
square(X,Y) :- Y is X*X.

| ?- map(successor)([2,4,6,8],L).
L = [3,5,7,9]
| ?- map(double)([2,4,6,8,10],L).
L = [4,8,12,16,20];
| ?- twice(successor)(1,X).
X = 3
| ?- twice(twice(successor))(1,X).
X = 5
| ?- twice(twice(square))(2,X).
X = 65536
| ?- twice(twice(twice(double)))(1,X).
X = 256

13

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 2525

How it’s doneHow it’s done
If T is a variable or compound term or a hilog term, If T is a variable or compound term or a hilog term,

rewrite:rewrite:
T(A1…An) T(A1…An) apply(T,A1,…An)apply(T,A1,…An)

So the clauses:So the clauses:
closure(R)(X,Y) :closure(R)(X,Y) :-- R(X,Y).R(X,Y).
closure(R)(X,Y) :closure(R)(X,Y) :-- R(X,Z), closure(R)(Z,Y).R(X,Z), closure(R)(Z,Y).
ancestor(X,Y) :ancestor(X,Y) :-- closure(parent)(X,Y).closure(parent)(X,Y).
parent(adam,cain). parent(cain,enoch)parent(adam,cain). parent(cain,enoch)

Become:Become:
apply(closure(R),X,Y) :apply(closure(R),X,Y) :-- apply(R,X,Y).apply(R,X,Y).
apply(closure(R),X,Y) :apply(closure(R),X,Y) :-- apply(R,X,Z), apply(closure(R),Z,Y).apply(R,X,Z), apply(closure(R),Z,Y).
ancestor(X,Y) :ancestor(X,Y) :-- apply(parent,X,Y).apply(parent,X,Y).
apply(parent,adam,cain). apply(parent,cain,enoch).apply(parent,adam,cain). apply(parent,cain,enoch).

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 2626

Negation in XSBNegation in XSB

\\+ +P, fail_if(+P), not(+P) are all like + +P, fail_if(+P), not(+P) are all like
Prolog’s Prolog’s \\+ +P :+ +P :
not(P) :not(P) :-- call(P), !, failcall(P), !, fail
not(_).not(_).
tnot(Ptnot(P) is xsb’s negation operator and) is xsb’s negation operator and
allows for the correct execution of allows for the correct execution of
programs with well founded semantics. programs with well founded semantics.
P must be a tabled predicate.P must be a tabled predicate.

14

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 2727

NegationNegation

bachelor(X) :bachelor(X) :--
male(X),male(X),
\\+ married(X).+ married(X).

male(bill).male(bill).
male(jim).male(jim).
married(bill).married(bill).
married(mary).married(mary).

?- bachelor(bill).
no
| ?- bachelor(jim).
yes
| ?- bachelor(mary).
no
| ?- bachelor(X).
X = jim;
No

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 2828

Floundering goalsFloundering goals

Prolog treats Prolog treats \\+ as + as negation as failure negation as failure which is which is
sound if we make the sound if we make the closed world assumptionclosed world assumption
To guarantee reasonable answers, the negation To guarantee reasonable answers, the negation
operator should be applied only to operator should be applied only to ground ground
literalsliterals..
If it is applied to a nonground literal, the If it is applied to a nonground literal, the
program is said to program is said to flounderflounder..
Some LP languages define not likeSome LP languages define not like
not(P) :not(P) :-- ground(P) ground(P) --> (> (\\+ P) | error(“…”).+ P) | error(“…”).

15

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 2929

Floundering goalFloundering goal

bachelor(X) :bachelor(X) :--
\\+ married(X),+ married(X),
male(X),male(X),

male(bill).male(bill).
male(jim).male(jim).
married(bill).married(bill).
married(mary).married(mary).

?- bachelor(bill).
no
| ?- bachelor(jim).
yes
| ?- bachelor(mary).
no
| ?- bachelor(X).
no

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 3030

Stratified Negation Stratified Negation

% A set is normal if it doesn’t% A set is normal if it doesn’t
% contain itself% contain itself
normal(S) :normal(S) :-- \\+ in(S,S)+ in(S,S)
% mySet is the set of all sets% mySet is the set of all sets
% that are normal.% that are normal.
in(S,mySet) :in(S,mySet) :-- normal(S).normal(S).
% is mySet normal?% is mySet normal?
??-- normal(mySet) normal(mySet)
% this leads to Russell’s paradox% this leads to Russell’s paradox
% and will cause Prolog to loop% and will cause Prolog to loop

• A program is
stratified if there are
no cycles in the call
graph which contain a
call to P and to
not(P).
i.e., no recursion

through negation
• XSB allows non-

stratified programs to
be evaluated.

normal in-

16

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 3131

Stratified Stratified
Negation Negation

:- table reachable/2.
reachable(X,Y) :- reduce(X,Y).
reachable(X,Y) :-
reachable(X,Z),
reduce(Z,Y).

reduce(a,b).
reduce(b,c).
reduce(c,d).
reduce(d,e).
reduce(e,c).
reduce(a,f).
reduce(f,g).
reduce(g,f).
reduce(g,k).
reduce(f,h).
reduce(h,i).
reduce(i,h).

a b dc e

i h gf k

Suppose we have some kind of reduction Suppose we have some kind of reduction
operator and want to apply it to an object operator and want to apply it to an object
and want to repeatedly apply it until it can’t and want to repeatedly apply it until it can’t
be reduced any further.be reduced any further.
If there are cycles, treat the objects in the If there are cycles, treat the objects in the
cycle (the strongly connected components cycle (the strongly connected components
or SCCs) as equivalently reduced.or SCCs) as equivalently reduced.

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 3232

Stratified Stratified
Negation Negation

:- table reducible/1.
reducible(X) :-
reachable(X,Y),
tnot(reachable(Y,X)).

fullyReduce(X,Y) :-
reachable(X,Y),
tnot(reducible(Y)).

reduce(a,b).
reduce(b,c).
reduce(c,d).
reduce(d,e).
reduce(e,c).
reduce(a,f).
reduce(f,g).
reduce(g,f).
reduce(g,k).
reduce(f,h).
reduce(h,i).
reduce(i,h).

a b dc e

i h gf k

• A node is reducible if it can be
further reduced.

• A node X can be fully reduced to
another Y if X can be reduced to
Y and Y is not further reducible.

17

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 3333

Stratified Stratified
Negation Negation

| ?| ?-- fullyReduce(a,X).fullyReduce(a,X).
X = c;X = c;
X = h;X = h;
X = d;X = d;
X = k;X = k;
X = i;X = i;
X = e;X = e;
NoNo
| ?| ?-- fullyReduceRep(a,X).fullyReduceRep(a,X).
X = c;X = c;
X = h;X = h;
X = k;X = k;
nono

fullyReduceRep(X,Y) :-
fullyReduce(X,Y),
tnot(smallerequiv(Y)).

smallerequiv(X) :-
reachable(X,Y),
Y@<X,
reachable(Y,X).

a b dc e

i h gf k

• We might want to return a
representative object from a
SCC.

• We’ll pick (arbitrarily) the
smallest.

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 3434

This is a Stratified ProgramThis is a Stratified Program

reduce

reachable

reducible

fullyReduce

-

-
• There is no

recursion thru
negation.

• We can safely do
the computation if
we work from the
bottom up.

18

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 3535

Stratified or not?Stratified or not?

::-- auto_table.auto_table.
p:p:-- q, tnot(r), tnot(s).q, tnot(r), tnot(s).
q:q:-- r, tnot(p).r, tnot(p).
r:r:-- p, tnot(q).p, tnot(q).
s :s :--

tnot(p), tnot(p),
tnot(q), tnot(q),
tnot(r).tnot(r).

p

rq

s

Black arcs are + and red -

•This simple program, when
executed, does not recurse
thru negation.

•S can be proven (by XSB)
even tho Prolog would loop.

•If we change the order of
the literals in the clauses for
p, q and r?

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 3636

WellWell--founded semantics of nonfounded semantics of non--stratified stratified
negation. negation.

XSB handles nonXSB handles non--stratified programs computing stratified programs computing
answers using “well founded semantics”answers using “well founded semantics”
In WFS there are three truth values: true, false In WFS there are three truth values: true, false
and unknownand unknown
Atoms that depend on themselves negatively are Atoms that depend on themselves negatively are
assigned the value unknown.assigned the value unknown.
Example:Example:

The barber shaves everyone who does not shave The barber shaves everyone who does not shave
himself.himself.
shaves(barber,X) :shaves(barber,X) :-- tnot(shaves(X,X))tnot(shaves(X,X))

19

UMBCUMBC
an Honors University in Marylandan Honors University in Maryland 3737

exampleexample

person(john).person(john).
person(bill).person(bill).
person(mark).person(mark).
person(harry).person(harry).
person(barber).person(barber).

::-- table shave/2.table shave/2.

shave(john,john).shave(john,john).
shave(bill,bill).shave(bill,bill).

shave(barber,Y) :shave(barber,Y) :--
person(Y),person(Y),
tnot(shave(Y,Y)).tnot(shave(Y,Y)).

[5:10pm] linuxserver1 103(02)=>xsb
XSB Version 2.2 (Tsingtao) of April 20, 2000
[i686-pc-linux-gnu; mode: optimal; engine: chat; scheduling: batched]
| ?- [shave].
[shave loaded]
Yes

| ?- shave(X,Y).
X = john
Y = john;
X = bill
Y = bill;
X = barber
Y = mark;
X = barber
Y = harry;
X = barber
Y = barber;
No

| ?- tnot(shave(barber,barber)).
Yes

| ?- shave(barber,barber).
yes

