Prolog

negation and cut

University of Maryland
Baltimore County

9/19/01

Negation as Failure

single_student(X) :- i~ single._student(bill).

(\F married(X)); > vyes.

student(X).
student(bill):
student(joe).
married(joe).

- No.

i- single_student(joe).

?- single student(X)
- no.

Negation and the Cut

Negation as' Failure

' Negation succeeds ifi search fiails:

u' Not Constructive - Unification does not: produce;any
bindings:

' Consistent Intenpretation dependsioni Closed World
Assumption

The Cut *”

A device for controllingl the search
n Used o) increase efficiency;

a BUTF canl alter’ semantics of'a program -~ change! its
solution set.

Negation as Failure

The \+ prefix operator is the standard in modern
Prolog,

\-+P means; P isiUnprovable’”

\+P succeeds!iff P fails (e.g., we can find no
proof for P) and fails iff we can find any: single
proof for P.

\+is like al turnstile'symbol with a line thrul it




Negation as Failure

singler student(x) =
(\+ married(X)), > yes.
student(X):
student(bill):
student(joe):
married(joe).

= Nk

Negation as Failure 2" Try

i~ single_student(bill).

i- single_student(joe).

?- single student(X)
- no.

Closed World Assumption

Assumption; that therworldiisi defined i itsientirety;
= The representation is “complete”/“closed”
NG trug; statement is missing firom| the iepresentation
In| priactice, assumed for conventional databases
= “Sorry, sir you must NOT: exist your sociall security: number: is
NOIF IN our database, bye, bye”.
From! a logic program, P, allowsius to conclude
= the negation of A
= IF A isiINOT IN the meaning of P.

singlel student(x) =
student(X)),

(A= married(X)):
student(bill):
student(joe):
married(joe).

i- single_student(bill).
~> yes.

.- single_student(joe).
- no.

?- single student(X)
- X=bill.

Negation as Failure & the CWA

single_student(X) -
student(X)),

(\+ married(X)):
student(bill):
student(joe).
married(joe).

i~ single_student(bill)
- Yyes.

i single_student(joe):
> NO.

But Jim IS married.

Maybe I should read up on the CWA.




The Cut (1) A Green Cut
The one and only *!”

= There are;GOOD, BAD and Ugly ones (Usages).
= GREEN and RED ones (usages). fact(N, 1) :- N =0. !.

Goals/before a cut produce first set and only: the first set of: bindings for named fact(N,F) -
Variables

= Commits a choice N> 0/
= No alternative matches considered upon: backtracking. M isiN —1,

' ' fact(M,FL)
= Exclude clauses (solution attempts), but NOT solutions.

1 %
= Removal oft Cut does NOT change the meaning ofi the program. The cut’s Fis N * F1.
positioning|just effects efficiency.

e A e o e If' NI = Olin first clause we do not r]eed tol consider
Bad Cut second! clause. The second will fail, so:we CUI to prune

= A cut used inisuch a way: as to) make the actuallmeaning diverge from the URNECESSaly consideration| of the second! clause:
intended meaning.

s With or without the cut the program produces the same
oy : : solutions. Its intended meaning]is intact.
. scures intended meaning but does not loose it

A Good Red Cut A BAD Red Cut

?- if_then_else(true, write(equal), write(not_equal))
equal
yes..

if_then_else(If, Then,Else) £
I N SThen.

. pension(X,disabled) :- disabled(X),!.

. pension(X,senior) :- over65(X), paid_up(X),!.

. pension(X,supplemental) ;- over65(X),!.

if_then_ else(If, Then, Else) : 2 if_then_else(false, write(equal), write(not_equal)) . pension(X,nothing). %" The Default” If everything else fails.
Else. gl . disabled(joe). F4. over65(lou).

yes- . overb5(joe). F5. paid_up(lou).

. paid_up(joe).

The cut is used
to implement the
default case -- Yike!

B . .2 pension(joe, nothing) - >yes.
If we take out the cut we change the meaning -- so the cut is RED.

- i " OOPS! "I'm sorry Mr. Joe...yes Mr. Joe you are entitled, it was a small computer
But it is used to produce the meaning we want -- so the cut is GOOD. error...really Mr. Joe computers DO make mistakes...I'm sorry what was that about
intended meaning?".

if then_else(If, Then,Else) :- 2-if_then_else(true, write(equal), write(not_equal))
If, Then. cdial Q2.2 pension(joe,P) - > P = disabled
not_equal
if then else(If,Then,Else) :- yes. Nz penSTon (X, Senit MY
Else. What happened to Lou's pension? Isn’t he a senior?

Does Joe get more than one pension payment?




Joe's Revenge Is it Good, Bad or Just Ugly?

R1. pension(X,disabled._pension) :- disabled(X).
R2. pension(X,senior_pension)) :- over65(X), paid_up(X).
R3. pension(X,supplemental_pension) :- over65(X).
R4, entitled(X,Pension) :- pension(X,Pension). T | .
R5. entitled(X,;nothing) :- \+(pension(X,Pension)). nOt(P) : P’ ¥ fail.
%% %% %R5. entitled(X;nothing).

not(P).

F1. disabled(joe). F4. over65(lou)

F2. over65(joe). F5. paid_up(lof

F3. paid_up(joe).
entitled(joe,nothing) - >no.
entitled(joe,P) - > 1. P = disabled, 2. P=ser 3. P=supplemental
entitled(X,senior_pension)- >1 oe 2. X =lou

entitled(X,disabled_pension)- joe.




