A review of

First-Order Logic

Using KIF

Knowledge Interchange Format

Material adapted from
Professor Richard Fikes
Stanford University

Knowledge Interchange Format

Sys Know. Base
in KIF

L Library |

KIF ~ First order logic
theory

. An lnterllngua for enCOded KIF <-> Langl Translator| KIF <-> Lang?2 Translatos

e Ced C=P
Know. Base Know. Base
~ Takes translation among n e Sys o b

from O(n?) to O(n)

¢ Common language for reusable knowledge
~ Implementation independent semantics
~ Highly expressive - can represent knowledge in typical application KBs.
~ Translatable - into and out of typical application languages

~ Human readable - good for publishing reference models and ontologies.

Current specification at http:/ /logic.stanford.edu/

KIF Syntax and Semantics

+ Extended version of first order predicate logic

o Simple list lzsed linear ASCII syntax, e.g.,
(forall ?x (=> (P ?x) (Q ?x)))
(exisits ?person (mother mary ?person))
(=> (apple ?x) (red ?x))
(<<= (father ?x ?y) (and (child ?x ?y) (male ?x))

¢ Model teoretic semantics

+ KIF includes an axiomatic specification of large function
and relation vocabulary and a vocabulary for numbers,
sets, and lists

KR Language Components

A logical formalism
~ Syntax for wifs
~ Vocabulary of logical symbols
~ Interpretation semantics for the logical symbols
~ E.g., (=> (Person ?x) (= (Gender (Mother ?x)) Female)))

+ An ontology

~ Vocabulary of non-logical symbols
> Relations, functions, constants

~ Axioms restricting the interpretations of the symbols
~ E.g., (=> (Person ?x) (= (Gender (Mother ?x)) Female)))

* A proof theory
~ Specification of the reasoning steps that are logically sound
~ E.g., (=> 51 52) and S1 entails S2

Conceptualization

Universe of discourse
~ Set of objects about which knowledge is being expressed

Object
~ Concrete Clyde, my car
~ Abstract Justice, 2
~ Primitive Resister
~ Composite Electric circuit

~ Fictional ~Sherlock Holmes

Blocks World

¢Objects- a, b, ¢, d, e, table

Relations and Functions

¢ Relation

~ Set of finite lists of objects
> E.g., Parent: {(Richard Earl) (Richard Polly) (Debbie Don) ...}

~ Mapping: <list of objects> — <truth value>

¢ Function

~ Relation that associates a unique nth element with a given n-1
elements

> E.g, +: {(134) (172340) 27101231) ...}
~ Referred to as (argl, arg?, ... ,argk, value)

~ Mapping: <list of objects> — <object>

a
b
C
Blocks World
Objects
~a, b, ¢, d, e table
Relations
~ Above: {(ab) (ac) (bc) (de)}
~ Clear: {(a) (d)}
- Table: {(c) (e)} a
+ Functions b
~ On: {(ab) (bc) (de)}
C

Predicate Calculus - KIF

+ Knowledge Base- Collection of sentences
#Sentence- Expression denoting a statement
¢ Term- Expression denoting an object

Objects always in the conceptualization
~ Words
~ Complex numbers
~ All finite lists of objects
~ All sets of objects
~ " (bottom)

Declarative Semantics

Interpretation -
~ <object constant> => <object>
~ <logical constant> => <truth value>
~ <relation constant> => (<tuple of objects> — <truth value>)
~ <function constant> => (<tuple of objects> — <object>)

& Variable assignment -
> <individual variable> => <object>
~ <sequence variable> => <finite sequence of objects>

Semantic value - <term> => <object>
~ Defined in terms of an interpretation and variable assignment

o Truth value - <sentence> => {true, false}
~ Defined in terms of an interpretation and variable assignment

& Version of a variable assignment

- V' is a version of a variable assignment V with respect to variables
varl,...,varn if and only if V’ agrees with V on all variables except for
varl,...,varn.

Constants, Individual Variables, Function Terms

¢ Constant- Word
E.g., Fred, Block-A, Justice

~ SIV(<constant>) = I(<constant>)

¢ Individual Variable- Word beginning with “?”
E.g, ?x, ?The-Murderer

> SIV(<individual variable>) = V(<individual variable>)

¢ Function Term

~ (<function constant> <term>* [<sequence variable>])
E.g., (plus 23) (Father-Of Richard)

~ SIV((fn term1 ... termn)) = I(fn)[SIV(term1) ... SIV(termn)]
~ SIV((fn term1 ... termn @var)) =
- I(fn)[SIV(term1) ... SIV(termn) | V(@var)]

List Terms and Set Terms

o List Term
~ (listof <term>* [<seqvar>])
E.g., (listof ABC) (listof A ?second @rest)
~ SIV((listof term1 ... termn)) = <SIV(term1), ..., SIV(termn)>
~ SIV((listof term1 ... termn @var)) =
- <SIV(term1l), ..., SIV(termn) | V(@var)>

¢ Set Term

~ (setof <term>* [<seqvar>])
> E.g., (setof ABC) (setof A?X @Z)

~ SIV((setof term1 ... termn)) = {SIV(term1), ..., SIV(termn)}
~ SIV((setof terml ... termn @var)) =
~ {SIV(terml), ... SIV(termn)} U {x | ($i) x = SIV(nth(@var i))}

Logical Terms

(if <sentence> <term> [<term>])

» E.g, (if (Above A B) A B)

~ SIV((if sent term)) =
> SIV(term) when TIV(sent) = true
> otherwise

~ SIV((if sent term1 term2)) =
> SIV(terml) when TIV(sent) = true
> SIV(term2) otherwise

¢ (cond (<sentence> <term>) ... (<sentence> <term>))
> E.g., (cond ((Above A B) A) ((Above B A) B))
~ SIV((cond (sentl terml) ... (sentn termn))) =
> SIV(terml) when TIV(sentl) = true

L
> SIV(termn) when TIV(sentn) = true
> otherwise

Quantified Terms

#Set Torming Term- (setofall <term> <sentence>)
E.g, (setofall ?block (Above ?block A))

SIV((setofall term sent)) = {SIV’(term) | TIV'(sent) = true}

for all versions V' of V wrt the variables in term

Designator- (the <term> <sentence>)
E.g., (the ?block (Above ?block A))

~ SIV((the term sent)) =
SIV’(term) when
V’ is a version of V wrt the variables in term, and
TIV'(sent) = true, and
SIV”(term) = SIV’(term)
for all versions V" of V such that TIV” (sent) = true
A otherwise

Logical Constants, Equations, Inequalities

Logical constant
~ Tiv(constant) = I(constant)
~ Tiv(true) = true
~ Tiv(false) = false
+ Equations - (= <term> <term>)
> E.g, (= (Father Richard) Earl) (= A B)

~ TIV((= term1 term2)) =
> true when SIV(term1) and SIV(term2) are the same object
> false otherwise

& Inequalities - (/= <term> <term>)
> E.g, (/= (Father Richard) (Father Bob)) (/= A B)
~ TIV((/= term1 term2)) = TIV((not (= term1 term2)))

Relational Sentences

(<relation constant> <term>* [<sequence variable>])

> E.g, (Parent Richard Earl) (Clear A) (Set-Partition Set] @Sets)

~ TIV((rel term1 ... termn)) =
> true when I(rel)[SIV(term1), ..., SIV (termn)] is true
> false otherwise

~ TIV((rel terml ... termn @var)) =
> true when I(rel)[SIV (term1), ..., SIV (termn) | SIV (@var)] is true
> false otherwise

(<function constant> <term>* <term>)
> E.g, (Father Richard Earl) (Plus257)
= TIV((fun argl ... argn val)) =
> true when I(fun)[SIV(argl), ..., SIV (argn)] = SIV(val)
> false otherwise

Logical Sentences: not, and, or

+ Negation - (not <sentence>)
> E.g., (not (On AD)) (not(On B B))
~ TIV((not sent)) =
> true when TIV(sent) is false
> false otherwise

+ Conjunction - (and <sentence>*)
> E.g., (and (On A B) (On B Q))
~ TIV((and sentl ... sentn)) =

> true when TIV(senti) is true for all i=1,...,n
> false otherwise

Disjunction - (or <sentence>*)
» E.g, (or (On A D) (On A B))
~ TIV((or sentl ... sentn)) =
> true when TIV(senti) is true for some i=1,...,n
> false otherwise

Logical Sentences: => <= <=>

Implication - (=> <sentence>* <sentence>)
+ Eg, (>(OnAB) (OnBCQ)
~ TIV((=> antel ... anten conse)) =
> true when:

« TIV(antei) is false for some i=1,...,n; or
« TIV (conse) is true

> false otherwise
« Eg., (=>(OnAD) (OnD D))

- TIV((=>al ... anc)) = TIV ((or (not al) ... (not an) c))
& Implication - (<= <sentence> <sentence>*)

Equivalence - (<=> <sentence> <sentence>)

~ TIV ((sentl <=> sent2)) =
> true when TIV (sentl) = TIV (sent2)
> false otherwise

- TIV((<=>s1 52)) = TIV((and (=> s1 s2) (=> s2 s1)))

Universally Quantified Sentences

¢ (forall <individual variable> <sentence>)
E.g, (forall ?b (not (On ?b ?b)))
TIV((forall ?var sent)) =
true when TIV'(sent) = true
for all versions V' of V with respect to variable ?var
false otherwise

(forall (<individual variable>*) <sentence>)
E.g., (forall (?b1 ?b2) (=> (On ?b1 ?b2) (Above ?b1 ?b2)))
TIV ((forall (?varl ... ?varn) sent)) =
true when TIV'(sent) = true
for all versions V’ of V with respect to ?varl ... ?varn
false otherwise

Existentially Quantified Sentences

(exists <individual variable> <sentence>)
> E.g, (forall ?b1 (or (on ?bl table) (exists ?b2 (On ?b1 ?b2))))
~ TIV((exists ?var sent)) =
> true when TIV’(sent) = true
> for some version V' of V with respect to variable ?var
> false otherwise

(exists (<individual variable>*) <sentence>)
> E.g., (exists (?b1 ?b2) (and (On ?b1 ?A) (Above ?A ?b2)))
~ TIV ((exists (?varl ... ?varn) sent)) =
> true when TIV’(sent) = true
> for some version V' of V with respect to ?varl ... ?varn
> false otherwise

forall not in the scope of an exists may be omitted
~ E.g, (or (on ?bl table) (exists ?b2 (On ?bl ?b2)))

20

An Example: Digital Circuit C1

c1
- A
1@
20 'D_'t)D 1
Addends 4 Sum Out
In

3@
Carry In az

01 —— 2
at Carry Out

Russell and Norvig, Figure 8.1

Domain Conceptualization
Objects
> Circuits
~ Terminals
~ Signals
~ Gates
~ Gate types

~ Signal values

¢ Relations

~ Connected: (<terminal> <terminal>)

+ Functions
~ Type: <gate> — <gate type>
~ In: (<index> <gate>) — <input terminal>
> Out: (<index> <gate>) — <output terminal>

~ Signal: <terminal> — <signal value>

Electronic Circuit Domain Theory

Connected terminals have the same signal
(=> (Connected ?t1 ?t2) (= (Signal ?t1) (Signal ?t2)))

Signal at terminal is either on or off
(or (= (Signal ?t) On) (= (Signal ?t) Off))
(or (Signal ?t On) (Signal ?t Off)))
(not (= On Off))

¢ Connected is commutative
(<=> (Connected ?t1 ?t2) (Connected ?t2 ?t1))

OR and AND Gates

OR gate’s output is on when any of its inputs are on
(=> (= (Type ?g) OR)
(<=> (= (Signal (Out 1 ?g)) On)
(exists ?i (= (Signal (In ?i ?g)) On)))

& AND gate’s output is off when any of its inputs are off
(=> (= (Type ?g) AND)
(<=> (= (Signal (Out 1 ?g)) Off)
(exists ?i (= (Signal (In ?i ?g)) Off)))

XOR and NOT Gates

XOR gate’s output is on when its inputs are different
(=> (= (Type ?g) XOR)
(<=> (= (Signal (Out 1 ?g)) On)
(not (= (Signal (In 1 ?g) (Signal (In 2 ?g))))))
+ NOT gate’s output is different from its inputs
(=> (= (Type 7g) NOT)
(not (= (Signal (Out 1 ?g)) (Signal (In 1 ?g)))))

Circuit C1 Representation

+ Gates
(= (Type X1) XOR) (= (Type X2) XOR)
(= (Type A1) AND) (= (Type A2) AND)
(= (Type O1) OR)

+ Connections
(Connected (Out 1 X1) (In 1 X2)) (Connected (In 1 C1) (In 1 X1))
(Connected (Out 1 X1) (In 2 A2)) (Connected (In1 C1) (In1 A1))
(Connected (Out 1 A2) (In 1 O1)) (Connected (In 2 C1) (In 2 X1))
(Connected (Out 1 A1) (In 2 O1)) (Connected (In 2 C1) (In 2 A1))
(Connected (Out 1 X2) (Out 1 C1)) (Connected (In 3 C1) (In 2 X2))
(Connected (Out 1 O1) (Out 2 C1)) (Connected (In 3 C1) (In1 A2))

Knowledge About Knowledge

& KIF represents knowledge about knowledge by allowing
expressions to be treated as objects in the universe of discourse

& KIF expressions are lists and can be referred to using the quote
operator
(=> (believes John '(material moon bleucheese))

(=> (believes john ?p) (believes mary ?p))
or using the listof operator
(=> (believes John (listof 'material ?x ?y))
(believes Lisa (listof 'material ?x ?y))
Vocabulary is available for "evaluating" an expression
(= (denotation (listof 'F ?x ?y)) (F ?x ?y))
(=> (sentence ?p) (true (listof '=> ?p ?p)))

Big KIF and Little KIF

That KIF is highly expressive language is a desirable
feature; but there are disadvantages.

~ complicates job of building fully conforming systems.

> resulting systems tend to be “heavyweight”
« KIF has “conformance categories” representing dimensions of

conformance and specifying alternatives within that
dimension.

o A “conformance profile” is a selection of alternatives from
each conformance category.

System builders decide upon and adhere to a conformance
profile sensible for their applications.

Conformance Categories and Profiles
+ Conformance Categories

> logical form: {atomic, conjunctive, positive, logical, rule-based,
quantified}

- recursion: yes/no
> terms: {constants, variables, complex terms}

> relational variables: yes/no

Common Conformance Profiles might be
> Databases (ground atomic assertions & conjunctive forms)
~ Datalog
~ Relational logic
~ First order logic

> Second order logic

KIF vs ANSI KIF

+ KIF is the object of an ANSI Ad Hoc standardization
group (X3T2)
& ANSI KIF is somewhat different from previous specs
~Nonon nmotonic rules
~ Allow for possible (future) higher ader extensions

~ Defines a standard infix format for presenting KIF

KIF Software

¢ Several KIF Imsed reasoners in LISP are available from
Stanford (e.g., EPILOG).

+ IBM’s ABE (Agent Building Environment) & RAISE
reasoning engine use KIF as their external language.

Stanford’s Ontolingua uses KIF as its internal language.

¢ Translators (partial) exist for a number of other KR
languages, including LOOM, Classic, CLIPS, Prolog,...

& Parsers for KIF exist which take KIF strings into C++ or
Java objects.

