
Material adapted from
Professor Richard Fikes

Stanford University

A review of
FirstFirst--Order LogicOrder Logic

Using KIF

Knowledge Interchange Format

2

Knowledge Interchange Format

KIF ~ First order logic with set
theory

An interlingua for encoded declarative
knowledge

Takes translation among n systems
from O(n2) to O(n)

Common language for reusable knowledge
Implementation independent semantics
Highly expressive - can represent knowledge in typical application KBs.
Translatable - into and out of typical application languages
Human readable - good for publishing reference models and ontologies.

Current specification at http://logic.stanford.edu/

Know. Base
in

Lang1

KIF <-> Lang1 Translator

Sys 1
Know. Base

in
Lang2

KIF <-> Lang2 Translator

Sys 2

Know. Base
in KIF

Library

Know. Base
in

Lang3

Sys 3

KIF <-> Lang3 Translator

KIF

3

KIF Syntax and Semantics

Extended version of first order predicate logic

Simple list- based linear ASCII syntax, e.g.,
(forall ?x (=> (P ?x) (Q ?x)))
(exisits ?person (mother mary ?person))
(=> (apple ?x) (red ?x))
(<<= (father ?x ?y) (and (child ?x ?y) (male ?x))

Model- theoretic semantics

KIF includes an axiomatic specification of large function
and relation vocabulary and a vocabulary for numbers,
sets, and lists

4

KR Language Components

A logical formalism
Syntax for wffs
Vocabulary of logical symbols
Interpretation semantics for the logical symbols
E.g., (=> (Person ?x) (= (Gender (Mother ?x)) Female)))

An ontology
Vocabulary of non-logical symbols

› Relations, functions, constants
Axioms restricting the interpretations of the symbols
E.g., (=> (Person ?x) (= (Gender (Mother ?x)) Female)))

A proof theory
Specification of the reasoning steps that are logically sound
E.g., (=> S1 S2) and S1 entails S2

5

Conceptualization

Universe of discourse
Set of objects about which knowledge is being expressed

Object
Concrete Clyde, my car
Abstract Justice, 2
Primitive Resister
Composite Electric circuit
Fictional Sherlock Holmes

6

a

b

c

d

e

Blocks World

Objects - a, b, c, d, e, table

7

Relations and Functions

Relation
Set of finite lists of objects
› E.g., Parent: {(Richard Earl) (Richard Polly) (Debbie Don) … }

Mapping: <list of objects> → <truth value>

Function
Relation that associates a unique nth element with a given n-1
elements

› E.g, +: {(1 3 4) (17 23 40) (2 7 10 12 31) …}

Referred to as (arg1, arg2, … ,argk, value)
Mapping: <list of objects> → <object>

8

a

b

c

d

e

Blocks World

Objects
a, b, c, d, e, table

Relations
Above: {(a b) (a c) (b c) (d e)}
Clear: {(a) (d)}
Table: {(c) (e)}

Functions
On: {(a b) (b c) (d e)}

9

Predicate Calculus - KIF

Knowledge Base - Collection of sentences

Sentence - Expression denoting a statement

Term - Expression denoting an object

Objects always in the conceptualization
Words
Complex numbers
All finite lists of objects
All sets of objects
^ (bottom)

10

Declarative Semantics

Interpretation -
<object constant> => <object>
<logical constant> => <truth value>
<relation constant> => (<tuple of objects> → <truth value>)
<function constant> => (<tuple of objects> → <object>)

Variable assignment -
<individual variable> => <object>
<sequence variable> => <finite sequence of objects>

Semantic value - <term> => <object>
Defined in terms of an interpretation and variable assignment

Truth value - <sentence> => {true, false}
Defined in terms of an interpretation and variable assignment

Version of a variable assignment
V’ is a version of a variable assignment V with respect to variables
var1,…,varn if and only if V’ agrees with V on all variables except for
var1,…,varn.

11

Constants, Individual Variables, Function Terms

Constant - Word
E.g., Fred, Block-A, Justice

SIV(<constant>) = I(<constant>)

Individual Variable - Word beginning with “?”
E.g, ?x, ?The-Murderer

SIV(<individual variable>) = V(<individual variable>)

Function Term
(<function constant> <term>* [<sequence variable>])
E.g., (plus 2 3) (Father-Of Richard)

SIV((fn term1 … termn)) = I(fn)[SIV(term1) … SIV(termn)]
SIV((fn term1 … termn @var)) =

I(fn)[SIV(term1) … SIV(termn) | V(@var)]

12

List Terms and Set Terms

List Term
(listof <term>* [<seqvar>])

E.g., (listof A B C) (listof A ?second @rest)

SIV((listof term1 … termn)) = <SIV(term1), …, SIV(termn)>
SIV((listof term1 … termn @var)) =

<SIV(term1), …, SIV(termn) | V(@var)>

Set Term
(setof <term>* [<seqvar>])

› E.g., (setof A B C) (setof A ?X @Z)

SIV((setof term1 … termn)) = {SIV(term1), …, SIV(termn)}
SIV((setof term1 … termn @var)) =

{SIV(term1), … ,SIV(termn)} U {x | ($i) x = SIV(nth(@var i))}

13

Logical Terms
(if <sentence> <term> [<term>])

› E.g, (if (Above A B) A B)
SIV((if sent term)) =

› SIV(term) when TIV(sent) = true
› ^ otherwise

SIV((if sent term1 term2)) =
› SIV(term1) when TIV(sent) = true
› SIV(term2) otherwise

(cond (<sentence> <term>) … (<sentence> <term>))
› E.g., (cond ((Above A B) A) ((Above B A) B))

SIV((cond (sent1 term1) … (sentn termn))) =
› SIV(term1) when TIV(sent1) = true
› ...
› SIV(termn) when TIV(sentn) = true
› ^ otherwise

14

Quantified Terms

Set- Forming Term - (setofall <term> <sentence>)
E.g, (setofall ?block (Above ?block A))

SIV((setofall term sent)) = {SIV’(term) | TIV’(sent) = true}
for all versions V’ of V wrt the variables in term

Designator - (the <term> <sentence>)
E.g., (the ?block (Above ?block A))

SIV((the term sent)) =
SIV’(term) when

V’ is a version of V wrt the variables in term, and
TIV’(sent) = true, and
SIV’’(term) = SIV’(term)

for all versions V’’ of V such that TIV’’(sent) = true
^ otherwise

15

Logical Constants, Equations, Inequalities

Logical constant
Tiv(constant) = I(constant)
Tiv(true) = true
Tiv(false) = false

Equations - (= <term> <term>)
› E.g, (= (Father Richard) Earl) (= A B)

TIV((= term1 term2)) =
› true when SIV(term1) and SIV(term2) are the same object
› false otherwise

Inequalities - (/= <term> <term>)
› E.g, (/= (Father Richard) (Father Bob)) (/= A B)

TIV((/= term1 term2)) = TIV((not (= term1 term2)))

16

Relational Sentences

(<relation constant> <term>* [<sequence variable>])
› E.g, (Parent Richard Earl) (Clear A) (Set-Partition Set1 @Sets)

TIV((rel term1 … termn)) =
› true when I(rel)[SIV(term1), …, SIV (termn)] is true
› false otherwise

TIV((rel term1 … termn @var)) =
› true when I(rel)[SIV (term1), …, SIV (termn) | SIV (@var)] is true
› false otherwise

(<function constant> <term>* <term>)
› E.g, (Father Richard Earl) (Plus 2 5 7)

TIV((fun arg1 … argn val)) =
› true when I(fun)[SIV(arg1), …, SIV (argn)] = SIV(val)
› false otherwise

17

Logical Sentences: not, and, or
Negation - (not <sentence>)

› E.g., (not (On A D)) (not (On B B))
TIV((not sent)) =

› true when TIV(sent) is false
› false otherwise

Conjunction - (and <sentence>*)
› E.g., (and (On A B) (On B C))

TIV((and sent1 … sentn)) =
› true when TIV(senti) is true for all i=1,…,n
› false otherwise

Disjunction - (or <sentence>*)
› E.g., (or (On A D) (On A B))

TIV((or sent1 … sentn)) =
› true when TIV(senti) is true for some i=1,…,n
› false otherwise

18

Logical Sentences: => <= <=>
Implication - (=> <sentence>* <sentence>)

• E.g., (=> (On A B) (On B C))

TIV((=> ante1 … anten conse)) =
› true when:

• TIV(antei) is false for some i=1,…,n; or
• TIV (conse) is true

› false otherwise
• E.g., (=> (On A D) (On D D))

TIV((=> a1 … an c)) = TIV ((or (not a1) … (not an) c))

Implication - (<= <sentence> <sentence>*)

Equivalence - (<=> <sentence> <sentence>)
TIV ((sent1 <=> sent2)) =

› true when TIV (sent1) = TIV (sent2)
› false otherwise

TIV((<=> s1 s2)) = TIV((and (=> s1 s2) (=> s2 s1)))

19

Universally Quantified Sentences

(forall <individual variable> <sentence>)
E.g, (forall ?b (not (On ?b ?b)))

TIV((forall ?var sent)) =
true when TIV’(sent) = true

for all versions V’ of V with respect to variable ?var
false otherwise

(forall (<individual variable>*) <sentence>)
E.g., (forall (?b1 ?b2) (=> (On ?b1 ?b2) (Above ?b1 ?b2)))

TIV ((forall (?var1 … ?varn) sent)) =
true when TIV’(sent) = true

for all versions V’ of V with respect to ?var1 … ?varn
false otherwise

20

Existentially Quantified Sentences
(exists <individual variable> <sentence>)

› E.g, (forall ?b1 (or (on ?b1 table) (exists ?b2 (On ?b1 ?b2))))
TIV((exists ?var sent)) =

› true when TIV’(sent) = true
› for some version V’ of V with respect to variable ?var
› false otherwise

(exists (<individual variable>*) <sentence>)
› E.g., (exists (?b1 ?b2) (and (On ?b1 ?A) (Above ?A ?b2)))

TIV ((exists (?var1 … ?varn) sent)) =
› true when TIV’(sent) = true
› for some version V’ of V with respect to ?var1 … ?varn
› false otherwise

forall not in the scope of an exists may be omitted
E.g, (or (on ?b1 table) (exists ?b2 (On ?b1 ?b2)))

21

Sum Out

Carry Out

Addends
In

Carry In

An Example: Digital Circuit C1

Russell and Norvig, Figure 8.1
22

Domain Conceptualization
Objects

Circuits
Terminals
Signals
Gates
Gate types
Signal values

Relations
Connected: (<terminal> <terminal>)

Functions
Type: <gate> → <gate type>
In: (<index> <gate>) → <input terminal>
Out: (<index> <gate>) → <output terminal>
Signal: <terminal> → <signal value>

23

Electronic Circuit Domain Theory

Connected terminals have the same signal
(=> (Connected ?t1 ?t2) (= (Signal ?t1) (Signal ?t2)))

Signal at terminal is either on or off
(or (= (Signal ?t) On) (= (Signal ?t) Off))

(or (Signal ?t On) (Signal ?t Off)))

(not (= On Off))

Connected is commutative
(<=> (Connected ?t1 ?t2) (Connected ?t2 ?t1))

24

OR and AND Gates

OR gate’s output is on when any of its inputs are on
(=> (= (Type ?g) OR)

(<=> (= (Signal (Out 1 ?g)) On)
(exists ?i (= (Signal (In ?i ?g)) On)))

AND gate’s output is off when any of its inputs are off
(=> (= (Type ?g) AND)

(<=> (= (Signal (Out 1 ?g)) Off)
(exists ?i (= (Signal (In ?i ?g)) Off)))

25

XOR and NOT Gates

XOR gate’s output is on when its inputs are different
(=> (= (Type ?g) XOR)

(<=> (= (Signal (Out 1 ?g)) On)
(not (= (Signal (In 1 ?g) (Signal (In 2 ?g))))))

NOT gate’s output is different from its inputs
(=> (= (Type ?g) NOT)

(not (= (Signal (Out 1 ?g)) (Signal (In 1 ?g)))))

26

Circuit C1 Representation

Gates
(= (Type X1) XOR) (= (Type X2) XOR)
(= (Type A1) AND) (= (Type A2) AND)
(= (Type O1) OR)

Connections
(Connected (Out 1 X1) (In 1 X2)) (Connected (In 1 C1) (In 1 X1))
(Connected (Out 1 X1) (In 2 A2)) (Connected (In 1 C1) (In 1 A1))
(Connected (Out 1 A2) (In 1 O1))(Connected (In 2 C1) (In 2 X1))
(Connected (Out 1 A1) (In 2 O1))(Connected (In 2 C1) (In 2 A1))
(Connected (Out 1 X2) (Out 1 C1)) (Connected (In 3 C1) (In 2 X2))
(Connected (Out 1 O1) (Out 2 C1)) (Connected (In 3 C1) (In 1 A2))

27

Knowledge About Knowledge

KIF represents knowledge about knowledge by allowing
expressions to be treated as objects in the universe of discourse

KIF expressions are lists and can be referred to using the quote
operator

(=> (believes John '(material moon bleucheese))
(=> (believes john ?p) (believes mary ?p))

or using the listof operator
(=> (believes John (listof 'material ?x ?y))

(believes Lisa (listof 'material ?x ?y))

Vocabulary is available for "evaluating" an expression
(= (denotation (listof 'F ?x ?y)) (F ?x ?y))
(=> (sentence ?p) (true (listof '=> ?p ?p)))

28

Big KIF and Little KIF

That KIF is highly expressive language is a desirable
feature; but there are disadvantages.

complicates job of building fully conforming systems.
resulting systems tend to be “heavyweight”

KIF has “conformance categories” representing dimensions of
conformance and specifying alternatives within that
dimension.

A “conformance profile” is a selection of alternatives from
each conformance category.

System builders decide upon and adhere to a conformance
profile sensible for their applications.

29

Conformance Categories and Profiles
Conformance Categories

logical form: {atomic, conjunctive, positive, logical, rule-based,
quantified}
recursion: yes/no
terms: {constants, variables, complex terms}
relational variables: yes/no

Common Conformance Profiles might be
Databases (ground atomic assertions & conjunctive forms)
Datalog
Relational logic
First order logic
Second order logic

KIF

KIF2

KIF1
KIF0

flat tuples

variables

logical
connectives Datalog

KIF3

Datalog with
recursion

30

KIF vs ANSI KIF

KIF is the object of an ANSI Ad Hoc standardization
group (X3T2)

ANSI KIF is somewhat different from previous specs
No non- monotonic rules
Allow for possible (future) higher- order extensions
Defines a standard infix format for presenting KIF

31

KIF Software

Several KIF- based reasoners in LISP are available from
Stanford (e.g., EPILOG).

IBM’s ABE (Agent Building Environment) & RAISE
reasoning engine use KIF as their external language.

Stanford’s Ontolingua uses KIF as its internal language.

Translators (partial) exist for a number of other KR
languages, including LOOM, Classic, CLIPS, Prolog,...

Parsers for KIF exist which take KIF strings into C++ or
Java objects.

