Prolog

University of Maryland
Baltimore County

9/19/01

Facts, rules, and queries

fFact: Secrates is a man.
man(socrates).

Rule: All men are mortal.
mortal(X) - man(X).

Query: Is Socrates mortal?
mortal(socrates).

Syllogisms

“Prolog” is alllabout :) - gramming in
IC.

= Socrates is a man.
u All'men are mortal.
= [herefore, Socrates isi mortal.

Running Prolog I

Create your “database™ (program)iin
any. editor:

Save it as text only, with a .pl
extension

Here's the complete “program'™

man(socrates).
mortal(X) :- man(X).

Running Prolog I1 On gl.umbc.edu

> sicstus
Prolog Is) completely, interactive. SICStus 3.7.1 ... Licensed to umbc.edu

Begini by invoking the Prolog) interpreter. | 7= consult('mortal:pl5):
{consulting /home/fiaculty4/finin/cmsc/331/fall00/prolog/mortal.pl...

SICstus {/home/fiaculty4/finin/cmsc/331/fall00/prolog/mortalipl consulted, O

Then load your program. yesmsec 624 bytes}

consultCmortal.pl’) || ?- mortal(socrates).

Tihen, ask your guestion at the, prompt: yes
mortal(socrates). || 2= mortal(X).

X =i socrates| ?
Prolog responds: yes

Yes | #-

Syntax I: Structures Syntax II: Base Clauses

Example structures: Example base clauses:
u suinshine = debug. on:

| man(socrates) = loves(john), mary).

u| path(garden souifh, sundiall) = loves(mary, bill).

<structure> =
<name> || <name> (<argumentis>) <base clause> = <stiructiures .

<arguments> =
<argument> | <argument> , <arguments>

Syntax III: Nonbase Clauses Syntax IV: Predicates

Example nonbase clauses: A predicate is a collection off clauses with the
s mortal(X) :- man(X). same functor and arity.

= mortal(X) - woman(X) Iloves((john, rrl;aﬁ;l)

= happy(X) := healthy(X), wealthy(X), wise(X) oves{mary, bill). .
<nonbizz(cl)ause> ¥ e IR loves(chuck, X)i:- female(X), rich(X).

<Structures i~ <structuress . <predicate> =

B ik <clause> | <predicatie> <clause>
<STP res> .=

<clause> ii=
<structiures || <structures>, <stiructures <base clause> | <nonbase clause>

Syntax V: Programs Syntax VI: Assorted details

A program is a collection of predicates. Variables beginiwith ai capital letter:
Predicates|cani be inlany. order. X, Socrates, _result

Predicates are used in the order in which they: AtoTsscoI(():rllcirtelgegm vt 2 capital Jstter
OCCUF. :

Other atoms must be enclosed inisingle guotes:
s ‘Socraties’
= C:/My Documentis/examples.pli

Syntax VII: Assorted details

In'a quoeted atom,, ai single guote must be
quoted or backslashed: ‘Can’ ‘1, or won\ 12"

/[Comments) are like this) /.

Prolog allows seme infix operators, such as :-
(turnstile) and', (comma) These are syntactic
sugar for the functors ':-' and *

Example:
=" (mortal(X), man(X)).

Additional answers

female(jane).
female(mary);
female(susan).

?- female(X).
X = jane ;

X = mary
Yes

Backtracking

loves(chuck, X)) = female(X)), rich(X).
female(jane).

female(mary).

rich(mary).

Slppose welask: loves(chuck, X):
female(X)I= fiemale(jane), X = jane.
rich(jane) fails.
female(X) = female(mary), X = mary.
rich(mary) succeeds.

Prolog Execution Model/Prolog Debugger

Goal = parent(P, john) e g
aregTEPHIeEgShi")
CALL a gt A @XIT

— parent(james, john).
parent(james, alan).

—— parent(florence, john).
parent(florence, alan).
parent(alan, elizabeth).
parent(alan, emily).

Execution Model (conjunctions)

parent(james, john). female(emily).
parent(james, alan). female(florence).
parent(florence, john). female(elizabeth).
parent(florence, alan).

parent(alan, elizabeth).

parent(alan, emily).

Nonmonotonic logic

Prolog(s facts and rules can be changed at any.
time.

asserf(man(platio)):

asserf((loves(chuck,X) = female(X), rich(>X))).
retiract(man(plato)).

refiracti(leves(chuck, X)ii= female(3X)), rich(3X))):

Readings

loves(chuck, X) i- female(X), rich(X).
Declarative reading: Chuck loves X iff X is female
and rich.

Approximate procedural reading: To find an X
that: Chuck loves, first find a female) X, then
check that X'is rich.

Declarative readings are almost always
preferred.

Common problems

Capitalization| is extremely important!
Noispace between al functor and itsiargument
list:

man(socrates), 0t man (socraties).

Don't; forget the period! (But you cani put it on
the next line.)

A Simple Prolog Model Nomenclature and Syntax

Imagine prolog as a system whichi has a database A prolog rule is called a clause.
composed! of tWo, components: y
a FACTS - statements about: true relations whichihold between A clause has a head’ a neck and a bOdy'
particular objects in the world. For example: -
parent(adam,able): adam;is a parent of able
parent(eve,able): eve is a parent ofi able neck
male(adam): adam is male. the IS a rule's conclusion.

n RULESI- statements about true relations which hold between ’ f : -
objects in the world which contain generalizations, The is a rule’s PHEMISE Ol condition.

expressed through the use of variables. For example, the note:

rule ¢
father(X,Y) :- parent(X,Y), male(X). s read ;- as IF

might express: m read , as AND

for any X and any Y, X is the father of Y if X is'a parent of Y and = a . marks the end of input
X is' male. .

PrOIOg Database The terms extensional and Exten ional vs. Inten ional

intensional are borrowed from
the language philosophers use

; Prolog
for epistemology.

Database

refers to whatever extends, i.e., parent(adam,able)

parent(adam able) “is quantifiable in space as well as in parent(adam,cain) acts comprising the
o A time”. male(adam) extensional database™
parent(adam,caln) FaCtS Comprlsnlg the is an antonym of extension,

e 1 2 ferring to “that class of existence which
m m extensional database e
ale(ada) may be quantifiable in time but not in ORI S O Rules comprising the

space.” male(X).

o ‘intensional database”
sibling(X,Y) :- ...

NOT inten ional with a ““ ”, which has to
do with “will, volition, desire, plan, ...”

father(X,Y) :- parent(X,Y), 5 For KBs and DBs we use
le(X Rules comprising the P . . ;
ma. e(). to refer to that which is Epistemology is “a branch of philosophy

that investigates the origin, nature,

to refer to that which is methods, and limits of knowledge”
represented abstractly, e.g., by a rule of

S]bhng(X’Y) - “intenSional database” explicitly represented (e.g., a fact), and

inference.

A Simple Prolog Session

?-

éssert(parent(adam,able)) || 2- parent(X,able).

yes
| %
assert(parent(eve;able)):
VEes

| ?=rassert(male(@adam)):
yes
[*?="parent(adam;able):
yes

| 2~ parent(adam, X).

X = able

VES

| 2= [user].

| sibling(X,Y) :-

| father(Pa,X),

[father(Pa,Y),

[mother(Ma,X),

[~ mother(Ma,Y),

[not(X=Y).

AZuser consulted 152 bytes
0.0500008 sec.

VEs

[2= sibling(X, Y).

X = able

Y = cain ;

X = cain

Y = able ;

X = adam ;
X =eve;
no

| 2= parent(X,able) ,

male(X):
X = adam ;
no

race,sibling(X,Y).
1 Call: sibling(_0, 1) ?.

3 Call parent(_65

t
¢

(3)2 Call: father(65643, 0) ?
(0
(4)3 Exit: parent(adam,able)
(

(5)3 Exit: male(adam)
(3)2 Exit: fether(adam,able)

(6) 2 Call: father(adam, 1) ?

(7)3 Call: parent(adarm, 1) 7

(7) 3 Exit: parent(adam,zbie)

(8)3 Call: male(adam) 7

(8)3 Bxit: male(adam)

(6)2 Exit: fether(zdamable)

(9) 2 Call: mother(_65644,ble)
(10) 3 Call: parent(_65644,able) ?
(10) 3 Exit: parent(adam,able)

(11) 3 Call: female(adam) >

(11)3 Fail: female(adam)

(10)3 Back to: parent(_65644,able)

(10) 3 Exit: parent(eve,able)
(12) 3 Call: femaleeve) ?
(12) 3 Exit: female(eve)

(9) 2 Exit: mother(eve,able)
(13) 2 Call: mother(eve,able) 7
14)3 Call: parent(eve,able) 7
14) 3 Exit: parent(eve,able)
15)3 Call: femaleeve) ?
15) 3 Exit: female(eve)

(13) 2 Exit: mother(eve,able)
(16) 2 Call: not able=able ?
(17) 3 Call; able=able 7
(17)3 exit: able=able

(16) 2 Back to; not able=able ?
(16) 2 Fail; not able=zble:

(15) 3 Back to: female(eve) 2.
(15)3 Fail: femalefeve)

(14) 3 Back to; parent(eve, able) 7

(14) 3 Fail: parent(eve,able)

(13) 2 Back to; mother(eve, able) 7

(13) 2 Fail: mother(eve,able)

(12) 3 Back to: female(eve) 2

(12) 3 Fail: femaleeve)

(10) 3 Back to; parent(_65644,able)
2

(10) 3 Fail; parent(_65644,able)

(9) 2 Back to: mother(_65644,able) 7

(9)2 Fail: mother(_65644,able)
(8)3 Back to; male(adam) 7
(8)3, Fail: male(adam)

(7)3 Back to: parent(adam, 1) ?
(7)3 Bxit; parent(adam,cain)
(18) 3 Call: maleadarm)

(18)3 Exit: male(adam)

(6) 2 Ext: father(adam,cain)

(19) 2 Call: mother(_65644,able) 7
(20) 3 Call: parent(_65644,able) ?
(20) 3 Exit: parent(adam,able)
(21) 3 Call: female(adam) >
(21)3 Fail: female(adam)

(20) 3 Back to; parent(_65644able)

(20)3 Exit: parent(eve, able)
(22) 3 Call: female(eve) 7
(22)3 Bit: female(eve)
(19) 2 Exit: mother(eve, able)
(23) 2 Call; mother(ev:
(24) 3 Call: parent(ev:
(24) 3 Exit: parent(eve,cain)
(25)3 Call: female(eve) 7
(25)3 Bit: female(eve)
(23) 2 Bxit: mother(eve,cain)
(26) 2 Call: not able=cain ?
(27) 3 Call: able=cain ?
(27)3 Feil: able=cain

(26) 2 Exit: not able=cain
(2) 1 Exit: sibling(able,cain)
X = able

Y = cain

yes no

|2

| ?- [user].

[fiemale(eve).

| parent(adam),cain).

| parent(eve;cain).

[fiather(X,Y) -
parent(X,Y), male(X).

[*moether(XY) -

parent(X,Y)), female(X).

| AZuser consulted 356
bytes 00666673 sec.

yes
[2=mother(\Who,cain):
Who = eve

yes

A Prolog Session

| ?-"mother(eve,Who).

Whe = cain

yes

| 2~ trace, mother(Who,cain).
(2)11 Call: mother(_0,cain) ?
(3)2 Call: parent(_0,cain) ?
(3)2 Exit: parent(adam,cain)
(4) 2 Call: female(adam)) ?
(4) 2 Fail: female(@dam)

(3)2 Back to: parent(_0,cain) ?

(8)2 Exit: parent(eve,cain)
(5)2 Call: female(eve) ?
(5) 2 Exit: female(eve)
(2) 1 Exit: mother(eve,cain)
Who ='eve
yes

How to Satisfy a Goal

Here is an informal description of how: Prolog satisfies a

goal (like fiather(adam) X))k

Supposeithe goallis G:

a ' Gl = P, QIthenfTirist satisfy. P, Cariy any Variable
bindingsiforweard to) @), and thenisatiety @

u i G = P;Q then satisfy P. Ifithat fails, thenitry to

satisfiy. Q:

n it Gl = not(P) then try te satisfy: P. Iff this| succeeds,
then fiaill and if it fails, thenisucceed:

1 ' G is alsimple’goal, thentlook foralfact inithe DB
that unifieswithi Gl look for al rule' whose conclusion
unifies with' G and 'ty to satishy its body.

Note

two) basic conditions are true, which: alwaysi suceeeds,
and fiail, whichralwaysifiails:

A commal () represents conjunction) (i.e. and):

A semi-colon represents disjunction (i.e. or), asiink
grandParent(X,Y) ;- grandEather(X,Y); grandMother(X,Y):

there is noireal distinction: between RULES andl FACTS.
A FACT is just ai rule whoese body: is the: trivial condition
true. Thatiis) parent(adam)caim)end: parent(ada)can)
S~ truer ane eduivalent

Goals cani usually: be pesed with: any of several
combination of Variables andiconstants:

u| parent(cain,able) - is Cain Able’s parent?

» parent(cain,X) - Who'is a childlof Cain?

u parent(X,cain) - Who is Cain a child of?

sparent(X,Y) - What two) people have al parent/child relationship?

Compound Terms

A compound term can be thought of as ai relation

Terms

Tihe termyiis thelbasic datal structurenin Prolog.
Tihe; termiis to) Prolog what the s-expression! IS to
Lisp.
A 'term is either:
u o constant - €.9:
john , 13}, 3.1415, +, 'a constant’
u o Variable-e.d.
X, Var, _, _foo
u o compoeund termi - e:g.
part(arm,body)
part(arm(john)),body(jehn))

The Notion of Unification

between one or more terms: Unificationsisiwhen two thingsi “become

s part. of(finger, hand)
and is written| as: Unificationiis kind of like assignment

1. the relation name: (prncp/e firnctor) which A e Sl . o S
S A OR Gt Unification is kind of like equality in algebra

, An open parenthesis T Unification; isimostly like pattern matching
5 The arguments - one or more e;m Example:

terms separated| by commas. f(a) = loves(john, X) unifies with loves(john, mary)

4. A closing| parenthesis. f(a,b) = and|in the process, X gets unified with mary
The number of argumentsi of a f(g(a),b) 2

compound terms is called its arity.

Unification I

Any value can be unified with itself.

= weather(sunny) = weather(sunny)

A variablercan be unifiediwith another
Variable:

m X = Y

A variable can be unified! with
(Minstantiated to™) any: Prologl term.

= Topic = weather(sunny)

Unification I1I

Tihe explicit unification operator is =
Unification| is symmetric:

Cain = father(adam)
means the same as

father(adam) = Cain

Most unification happens iImplicitly, as a
result of parameter transmission,

Unification II

Two different structures can be unified!if
their constituents can be unified.

= mother(mary, X) = mother(Y, father(z))
Ini Prolog, a variable cani be unified withia
structure containing| that same variable.
Tihis is usually: arBad Idea;

Unifying X and f(X) binds X to a circular
structure which Prologi caninot print.

w X = FF(FCF(FC.

Scope of Names

The secope of a variableiis the single
clause in whichi it appears:

The scope of the “anonymous” (“don't
care”) variable, _, is itself.

= loves(_,)= loves(john, mary)

A variable that only occurs oence in a
clause isia useless sjag/eton,; you should
replace it with| the anonymous variable.

Most Prolog interpreters will issue
warnings! if you have rules with singleton
variables.

Writing Prolog Programs

Suppose, the database contains
loves(chuck, X) :- female(X), rich(X):
female(jane):

and we ask whos Chuck loves,

?- loves(chuck, Woman).
female(X)) /inds a value for X, say, jane

rich(X) then tests:whether Jane is rich

Ordering

Clausesi are; always triedlin order
buy(X) - good(X).

buy(X):- cheap(X).
cheap('Java 2 Complete).
good(Thinking ini Jiava’).

Whatwill - buy(X)" choose first?

Clauses as Cases

A predicate consists, off multiple clauses whose
heads have the same principle functor and arity.

Each| clause represents a| “case”.
grandfather(X,Y) :- father(X,2), father(Z,Y).
grandfather(X,Y) :- father(X,Z), mother(Z,Y).
abs(X, Y) :-X <0, Yis -X.

abs(X, X) :- X >= 0.

Clauses with heads having different airty are
unrelated.

Ordering I1

Try to handle more specific cases| (those having
more Variables instantiated) first.

dislikes(john, bill).
dislikes(john, X) :- rich(X).
dislikes(X, Y) :- loves(X, Z), loves(Z, Y).

Ordering III Recursion

Prolog makes avoiding infinite recursion the
Some "actions™ cannot be undone; by programmer’s responsibility:
backtracking over them: But it always tries clauses in order and processes
= write, nl, assert, refract;, consult: conditions in a clause from left to right.
Do tests before you do undoable actions: So, handle the base cases first, recur only with a
= take(A) i- simpler case; Use fight: recursion.
att(A, in_hand), ancestor(P1,P2) :- parent(P1,P2).
write("Youl re alr'eady holding i), ancestor(P1,P2) :- parent(P1,X), ancestor(X,P2).
nl. But not:
ancestor(P1,P2) :- parent(P1,P2).
ancestor(P1,P2) :- ancestor(P1,X), parent(X,P2).

Facts and Rules Choosing predicates

Designing al set of predicates (an ontology)
reguires; knowledger ofi the;domain andhow! the

Desianing a Prolegl knowledge base; usually, starts
gning g 0 Y representation will be used:

with deciding which' predicates will' be provided as o e B ek
fiacts and whichiwill ' be defined by rules. _szzni;e:i‘?:)ese N Ty P
parent(Adam,cain). = color(kermit green)

child(X,Y) :- parent(Y,X). = value(kermit,color,green)

We don't have to worry about this in logjc: pronripuigieamin golpn vajae gregly ’
parent(X,Y) < child(Y,X) Tisslies: whai queriesican be agkgd (g.g., what gio we
" . know, about kermif2); how efificient: is'tihe refrieval of
Of course, it's common for a predicate to be relevant facts and rules.

defined wsing both' facts and rules. = et a ferm's signature be itis principle functor and arity.

= What's at issue is really: avoiding| circular definitions: = Prolog indexes a fact or ruleheadlon its'signature and the
signature of itsifirst argument:.

Cut and Cut-fail

Tihe cut, !, isiarcommit point. It commits to:
= the clause in which' it oceursi (can't try: another)
s everything up to that point in the clause

Example:
= |oves(chuck, X) :- female(X), !, rich(X).

= Chuck loves the /st femalelin the database, but only:if sheiis
rich:

Cut=fiail, (1, Fail), meansigive Up row.andidon't, even| try
fior another solution:

More on thistlater

What you can't do

There are no functions, only predicates

Prolog| is: programming) in logic, therefore there

are few! control structures

There are no assignment statements; the state

of the program isiwhat's in the database

Arithmetic: Built-In is/2

Arithmetic expressionsiare not nermally:evaluated in
Prolog.

BUilt-In /afix. operatoris /2 evaluates it’s 274 argument,
and unifiesithe result withiit’s: 15t argument.
| 2-X=5+2.
X =5+2?
yes
| 2-Xis5 + 2.
=
yes

Any:variablesiin the right-hand! side ofis/2 must be
instantiated when'it'is' evaluated:

More on this/later

Workarounds II

There are few control structures in Prolog, BUT...

You don't need IF because you caniuse multiple
clauses with "tests” inithem

You seldom need loops because you have
recursion

You can, if necessary, construct a "fiail loop"

Fail Loops

notice_objects_at(Place) :-
at(X, Place),
write(' There isa '), write(X),
write(' here.'), nl,
fail.
notice_objects_at(_).

Use fail loopsi sparingly, if at all.

Workarounds II

Functions are a subset of relations, so you can
define a function like factorial as a relation
factorial(N,0) :- N<1.
factorial(1,1).
factorial(N,M) :-
N2 is N-1,
factorial(N2,M2),
M is N*M2.
Tihe last argument to theirelation|is used for:
thevalue that the function returns.
How! would you define:

fib%\2=fib(n-1)+ﬁb(n-2) where fib(0)=0and
fib(1)=1

Workarounds I1

There are no functions, only’ predicates, BUT...

A callftoral predicate can instantiate Variables:
female(X) can either
u |ook for avalueifor X that satisfies female(X)) or

u it X alieady has)avalue, test whether fiemale(3X) can
be proved true

By convention, output variables are put last

Workarounds III

There areine assignment statements, BUT...

the Prolog| database keeps track of program state

bump_ count: -
refiract(count (X)),
Yis X +1,
asserti(counti(Y)):

Don't get carried away and misuse this!

Lists in Prolog

Prolog| has a simple universal data structure, the
term, out of which: others are built.

Prolog) lists are important because
u They are usefiul'in practice

u They offier good examples off writingl standard
recursive predicates

u They show: how: allittle syntactic;sugar helps

Example: list/1

% list(?List)

list([1).

list([_Head| Tail]):-
list(Tail).

Since: Prolog isiuntyped, we don't have to know
anything about Head except that it Is al term.

Linked Lists

Prolog allows a speciall syntax for lists:

n [a,b,c] isia list of 3 elements

u [isial special atomi indicating| allist with: Ol elements
Internally, Prolog; lists are regular Prolog terms
withi the functor *.” (so called“dotted pairs”)
[a,b,c] =""(a, *./(b, *.(c, []1))-

The symbol | in allist indicates “rest of list”, or
the term) that is a dotted pair’s 279 argument.
[a,b,c] = [al[b,c]]-

[Head|Tail] isia common expression for dividing
a list into its 1st element (Head) and the rest of
the list (Tail).

Example: member/2

7> member(2Element, 2List) isi true iff Element:
7 is a top-level member of the list List.

member(Element, [Element|_Tail]).
member(Element, [_Head| Tail]):-
member(Element, Tail).

Member has several uses

% member(+,+) checks
% membership.

| 2= member(b,[a,b,c]).

yes

| 2- member(x,[a,b,c]).

no.

% member(-,+) generates
%0 members.

| 2= member(X,[a,b;c])-

X=2a?;

WAl 7 7

X=c?;

no

['?- member(X/[a,b,c,1,d/e,2]),
integer(X).

X=17?;

X=27?;

no

% member(+,-) generates lists.

| 2= member(a,L).
L=l A7
L=[Aal_B]?;
L=[_A_B,al| C]?
yes

% member(-,-) generates lists.
| 2- member(X,L).

L=[X|_A]?;

L=[_AX|_B]?;
L=[_A_BX_C]?

Example: append/3

% append(?Listl, ?List2, ?List3)
Y% append/3 succeeds iff List3 contains alli the
Y% elements; off List1, followed by allithe elements

9% off LList2.

append([], List2, List2).

append([Head|List1], List2, [Head|List3]):-
append(List1, List2, List3).

Example: delete/3

Y% delete(+Element, +List, -NewlList)

% delete/3 succeeds iff NewList results from
% removing one occurrence of Element firom List.

delete(Element, [Element| Tail], Tail).
delete(Element, [Head| Tail], [Head|NewTail]):-
delete(Element, Tail, NewTail).

Append is amazing

% append(+,+,+) checks

I 2= append([1I2]l[alb]I[1121alx])'

no

% append(+,+,-) concatenates
| 2- append([1,2],[a,b])L).

L =[1,2,a,b]?

yes

% append(+,-,+) removes prefix.

I 25 append([llz]ll‘l[1lzlalb])'
L =[ab]?
yes

% append(-,+,+) removes suffix.

I 2= append(xl[alb]l[llzlalb])'
X =[1,2]2
yes

% append(-,-,+) generates all
% ways to split a list into a
% prefix and suffix.

I Y- append(leI[llzlalb])'
X =11,
Y =[1,2,a,b] ?;

X =[1],
Y=[2ab]?;

X =[1,2],
Y =[ab]?;

= [1,2,a],
= [b]?;

X
Y

X = [1I2Ialb]l
Y=[017?;
no

Example: sublist/3

Y% sublist(?SubList, +List). Note: The 15 append
% finds a beginning point for'the sublist and the
% 279 append finds an end point

sublist(SubList, List):-
append(_List1, List2, List),
append(SubList, _List3, List2).
% example: sublist([3,4],[1,2,3,4,5,6])

sublist

list1

Example: “naive” reverse

Example: sublist/3 (cont)

% here’s another way: towrite sublist/2
sublistl(SubList, List):-
append(Listl, _List2, List),
append(_List3, SubList, List1).

Example: efficient reverse/3

% nreverse(?List, ?ReversedList) is true iff the
% result off reversing the top-level elements of
% list List is equal to ReversedList.

nreverse([], [1).

nreverse([Head| Tail], ReversedList):-
nreverse(Tail, ReversedTail),
append(ReversedTail, [Head], ReversedList).

this is simple but inefficient
u 1t’'s net taillrecursive
u Append is;constantly’ copying and' recopying lists

it’s a traditional benchmark for Prolog.

% reverse(+List, -ReversedList) is a “tail recursive”
% version of reverse.

reverse(List, ReversedList) :-
reversel(List, [], ReversedList).

reversel([], ReversedList, ReversedList).
reversel([Head|Tail], PartialList, ReversedList):-
reversel(Tail, [Head|PartialList], ReversedList).

reverse and nreverse

reverse([1,2,3],L).
1 Call: nreverse([1,2,3],_204) ?
2 Call: nreverse([2,3],_712) ?
3 Call: nreverse([3],_1122) ?
4 Call: nreverse([],_1531) ?
4 Exit: nreverse([1,[1) ?
4 Call: append([],[3],_1122) ?
4 Exit: append([]1,[3],[3]) ?
3 Exit: nreverse([3],[3]) ?
3 Call: append([3],[2],_712) ?
4 Call: append([],[2],_3800) ?
4 Exit: append([],[2],[2]) ?
3 Exit: append([3],[2],[3,2]) ?
2 Exit: nreverse([2,3],[3,2]) ?
2 Call: append([3,2],[1],_204) ?
3 Call: append([2],[1],_5679) ?
4 Call: append([],[1],_6083) ?
4 Exit: append([],[1],[1]) ?
3 Exit: append([2],[1],[2,1]) ?
2 Exit: append([3,2],[1],[3,2,1]) ?
1 Exit: nreverse([1,2,3],[3,2,1]) ?
L=[321]?
yes

| ?- reverse([1,2,3],L).

1

2
3
4
2
5
4
3
2
1

1 Call: reverse([1,2,3],_204) ?
2 Call: reverse1([1,2,3],[],_204) ?
3 Call: reverse1([2,3],[1],_204) ?
4 Call: reverse1([3],[2,1],_204) ?
5 Call: reverse1([],[3,2,1],_204) ?
5 Exit: reverse1([],[3,2,11,[3,2,1]) ?
4 Exit: reverse1([3],[2,1],[3,2,1]) ?
3 Exit: reverse1([2,3],[1],[3,2,1]) ?
2 Exit: reversel1([1,2,3],[1,[3,2,1]) ?
1 Exit: reverse([1,2,3],[3,2,1]) ?

L=[321]?

yes

Note: calling trace/0
turns on tracing. Calling
notrace/0 turns it off.

“Pure Prolog” and non-logical built-ins

All'the examplesisoi farthave been *pure; Priolog”
= Contain no) built-ins with non-logicall side-effects
Prolog has many: built=in’ predicates that have suchiside-
efifiectss
= Type checking of terms
Arithmetic
Contiiol execution
Input and output
Modify thel program| during execution (assert, retract, ete.)
u Perform aggregation operations
Use of non-logical built-in predicatesiusually’ effiects the
reversability of your program.

