Introduction to
Logic Programming
and Prolog

University of Maryland
Baltimore County

Computation as Deduction

LLogic progremming)offiers a slightly: different paradigm fior
computation:

It uses thellanguage: off logic;to) express data and

priograms.

u Forgll X and. Y, Xs the father or Yk X /s & parent or: Y and the
genderorXis ma/e)

Most logic progriamming languages are: based onfirst

ordertlogic (FOL) butsome have Used otherlogics:

s In FOL variables range over objects, but not functions or relations:
We can express Al elephants are mamimals but not 7orevery
CORLIUOUS TURCHORT; I <. and. 1{n)<0.and i(m)>0. then there
EXISLS all X SUch that: n<x<m and 1x)=0"

What is Logic Programming?

There are;many. (overlapping) perspectives on

logic programming

= Computations as Deduction

= Theorem, Proving

s [Non-procedurall Programming

= Algorithms minus Control

s A Very High Level Programming Language

= A Procedural Interpretation of Declarative
Specifications

Theorem Proving

Logic Programming Uses; the notion| off anl automatic:
theorer, proveras an interpreter.

Tihe theorem prover: derives)al desiredisolution| friom: an
initial Set of axioms.

Note that the! proof must be a “constriuctive™ oneiso
that, more than altitie/fialse answer cani be obtained.

E.G. The answer to

EXISLSIX SUCH tiat X< = Sqii(16)
should be

x=4orx=-4
rather tham

true

Non-procedural Programming

Logic Programming| languages are non-

procedural programming languages.

A non-procedural language onelin which one

specifies needs to be computed but not
it is to be done. That is, one specifies:

u the set off objects involved!in the computation

u the relationships whichrhoeld between them

u the constraints which must hold for the problem! to be

solved
and leaves it up the the interpreter or compiler to
decide to satisfy the constraints.

A Very High Level Language

A good programming language should notiencumber the
programmer withinen-essential details:
The development off programmingllangtiagest hiasibeen

toward freeingl the: progremmer: of details...
= ASSEMBLY LANGUAGE: symbolic encoding ofi data and instructions.

= FORTRAN: allocation of variables to. memory locations, register saving,...

s ALGOL: environment manipulations

» LISP: memory management

= ADA: name conflicts

s ML: explicit variable type declarations

a JAVA: Platform specifics

Logic Programming LLanguades arelal class off languages
whichrattempt to) firee us;firom! having| te woriy about
many aspects ofi explicit control

Algorithms Minus Control

Nikolas Wikth' (architect of Pascal) used the following
slogan! asithe;title of' al book:

Bob Kowalski' offers a similar one torexpress the
centralltheme of logic progriamming:

We caniview, the LOGIC component ask

A specification of the essentiall logical constriaints of a particular
prioblem

and CONTROL component; as:

Advice to an evaluation machine (e:.g. ani interpreter or
compiler) on how! tor go about satisfying the constraints)

A Procedural Interpretation of
Declarative Specifications

One canl take a logicall statement likerthe following:

Foralx and Y, X /s thelfather of: Y X s al parent or: Y-
and the gender orXJs male)

whichiwould be expressed in Prolog) ask
fatHeEn X,)l == parent(x,), genden X, male).
and interpret itin two slightly: different Ways:
s declaratively - asia statement off the; tiuthr conditions
whichimust be trueif alfather relationshiprholds:

s priocedurally - as a descriptionl off what te do to
establish that a father relationship holds:

Some Underlying Ideas

Logic Programming languagdes; typically: embody
a number of usefull ideas:

= pattern invoked procedures

= Unification matching

= built=in failure driven search mechanism
= Deductive database

s [ule-based programming

Unification

Unification is'a pattenn matching operation between
two terms, both of which! can’ contain Variables.

A Supstitution s an assignment of Variablesitorvaluges.

Two termsiunify/ifff there 1s) af substitution; that makes
the terms identical.

Unifying fi(X,2) and f(3,Y) produces X=3), Y=2
A (mgu)is a substitution that
unifies;the terms wjo: ‘over-assigning’ any: Variables:
Tihe result of applyingla: most generall Unifier toiar set
ofterms resultsfinia (map),
E.g., unify fOX,Y)rand fi(1,A)

= A substitution: X=1, Y=2, A=2

s The mgu: X=1, Y=A

= The magi: f(1,Y)

Pattern Invoked Procedures

Carl Hewitt (MIT): first articulated the useful
notion off specifying| ai procedure to call by a

description. or the /apuLs offered and. the resuits
gesired

rather than the conventional mechanisme
e procequre iame

This frees the programmer from; the reguirement
of knowing the procedure name.

This suggests that there may: be NO o SEVERAL
procedures which may match the pattern.

Search

al Logic Programming ‘procedure’ cani either: fail or succeed.
It sticceeds;, it may: have computed some additional
information: (conveyed! by’ instantiating| variables):

Question: What ifiit fiails
try tormake) it succeed.
Most logic programmingllanguagesiuse: a simple, fixed

search) stiategy: to) thy alternatives:

u iff a/goal succeedsiand| there are more goals to achieve; then
remember any untriedl alternatives and go) on to) the next goal.

u iff @ goal succeeds andl there are no moere goals to achieve, then stop
withrsuccess.

» if'a goeal feilsiand there are alternate ways toiselvelit, then! tiy the
nextrone.

u/if @l goal fails and thereiare no alternate ways te solve! it and there is
a previous goal, then propagate failure back to the previous goal.

= if. 2 goal fails and there are no alternate ways to solve it and no
previous goal theni stop with failure.

Deductive Database

Most logic; programmingl languages haveia
commpon| database Whichiany: procedure can
access and! modify.

It is sometimes called an assertional database:
It is similar to the blackboard model off program
communication, (@nd for that matier to; the
Fortran COMMON mechanism)

The database is used| to represent both
PROGRAMS, and DATA in a uniform way.

Datalog

A Short History

1965 Efficient theorem provers. Resolution| (Alan; Robinson)
1969 Iiheorem Proving for preblem solving). (Cordell Green)

1969 PLANNER? “theorem! provinglas programming) (Carl
Hewett)

19701 Micro-Planner, aniimplementation (Sussman, Charmiak
and Winograd)

1970 Prolog, aniimplementation (Alain Colmerauer)
1972 Book: Logic for Problem Solving. (Kowalski)

1977 DEC-10! Prolog), an efficient! intenpreter/compiler
(Warrenrandf Pereira)

1982 Japan's 5th Generation Computer Project:
~1985 Datalog and deductive databases
1995 Prolog interpreter embedded in NT

Rule-Based Programming

Logic Programming languages provideione kind! ofi
rule-based programming environment.

Programs are usually: made upofimany: “independent”
rules;, eachione off whichicaptures aj part: of the
computation:

= toEnroll(X,freshman,cse110) do ...

» toEnroll(X,underGrad,cse???) do ...

= toEnrol(X,grad,cse???) do....

= toEnrol(X,grad,cis???) do ...
Advantages ofi this approach include modularity, easy,
oft adding additional’ capabilities, ease off
understanding each case.

Tihis ideal shows Upiini the programming language: ML
asiwell'and to some degreeini OOP’si methods:

PROLOG is the FORTRAN
of Logic Programming

Prelog is the onlywidely used logic
programming language.
As|a Logic Programming| language; it has a
number of advantages

u simple, small, fast, easy: to write; good compilers for

it.

andidisadvantades

u It has al fixed control striategy.

u It has aistrong procedural aspect:

u [imited support parallelism o' concurrency: or multi=
threading.

the englishmanilives in the red house
the spaniard owns the dog.
coffee is drunk in the green house

Here is al classic example the ukrainian drinks tea.
the green house isiimmediately to the

of al constraint satisfiaction right ofithelivory, house)
puzzle. the old gold smoker owns snails.

The Zebra Puzzle

A Solution - Preliminaries

We begin by defining some binary: relations between people:
= X haslLeftNeighbor Y - X has Y as his immediate left neighbor.
= X rightOf Y - X lives somewhere to the right of Y.
= X nextTo Y - X and Y live in adjacent houses.

There are five hOUSES, kools are being/ smoked in the yellow:
each of al diffierent color
and/inhabited by men of:
different nationalities, with
different pets, drinks, and
cigarettes.

house.

milk'is drunk in the middle house.

the noerwegian lives ini the first house on
the left.

the camellsmoker: lives next to the fox
owner.

kools are smoked in the house next to
the house where the horse is kept.

= X isNot Y - X and'Y are distinct people.
Tiake hasleftNeighbor asial primitive relation, andl define the others:
= X nextlo Y if X hasLeftNeighbor Y or Y haslLeftNeighbor X.
= X rightOf Y if X hasLeftNeighbor Y or X hasLeftNeighbor Z and Z rightOf'Y.
= X isNot Y if X rightOf Y or Y rightOf X.
We willlintroduce constant symbolsite standifoer: the five people:

Given thelfiacts to the the lucky:strike smoker drinks orange
right, who drinks water juice.

the japanese smokes parlaiments.
?
andiwho owns the zebrar the norwegian lives next to the blue

house.

differ(X1,X2,X3,X4,X5) :-

A Prolog SOI ution X1 isNot X2, X1 isNot X3, X1 isNot X4, X1 isNot X5,

X2 isNot X3, X2 isNot X4, X2 isNot X5,
X3 isNot X4, X3 isNot X5,
X4 isNot X5.

= op(500, xfy,
[hasLeftNeighbor, rightOf;nextTo,isNot]).

?- Englishman = RedHouser,

Spaniard = DogOwner,

CoffeeDrinker = GreenHouser;,
rightGuy: haslLeftNeighbor midrightGuy. Ukranian = TeaDrinker,

il 3 3 GreenHouser haslLeftNeighbor IveryHouser,
m{drlghtGuy hasLeftNelghbor mlddIeGuy. T R e,
middleGuy haslLeftNeighbor midleftGuy. KoolSmoker = YellowHouser,
midleftGuy hasLeftNeighbor: leftGuy. MilkDrnker= midd|sGuy)

Norwegian = leftGuy,
. CamelSmoker nextTio FoxOwner,
X nextTo Y : XhasleftNeighbor Y. KoolSmoker nextTo HorseOwner,
X nextTo Y= Y hasLeftNeighbor X. LLickySmoker: = OIDrinker;
Japanese = ParliamentSmoker;
Norwegian nextTo BlueHouser,
X rightOf Y ¢ X hasLeftNeighbor Y. differ(GreenHouser, YellowHouser,RedHouser,IvoryHouser,

X rightOf Y = X hasLeftNeighbor Z, Z rightOf Bluetouser),

\7 differ(ZebraOwner, FoxOwner, HorseOwner, Snailowner, DogOwner),

differ(0JDrinker, MilkDrinker, TeaDrinker, CoffeeDrinker,
WaterDrinker),

differ(Englishman,Spaniard,Norwegian,Japanese, Ukranian),

differ(KoolSmoker, WinstonSmoker, ParliamentSmoker,
LuckySmoker,CamelSmoker).

XisNot Y = XrightOf Y.
XisNot Y+ Y rightOf X.

= rightGuy, midrightGuy, middleGuy, midleftGuy, leftGuy.
We will'define a predicate differ which hoelds ifiall of itsiarguments are

distince people:

differ(X1,X2,X3,X4,X5) if X1 isNot X2 and X1 isNot X3 and X1 isNot X4 and X1

isNot X5 and X2 isNot X3 and X2 isNot X4 and X2 isNot X5 and' X3 isNot X4 and

X3jisiNot X5 and X4 isNot X5.

Answer

| 2- [zebra].

Englishman = middleGuy;
RedHouser = middleGuy,
Spaniard = midrghtGuy;
DogOwner = midrightGuy;
CoffeeDrinker = rightmostGuy,
GreenHouser = rightmostGuy,
Ukranian = midleftGuy
TieaDrinker = midleftGuy:
IvoryHoeuser = midrightGuy;
WinstonSmoker = 'middleGuy:
Snailowner = middleGuy;
KoolSmoker = leftmostGuy,

YellowHouser = leftmostGuy;
MilkDrinker = middleGuy.
Norwegian = leftmostGuy/
CamelSmoker = midleftGuy;
FoxOwner = leftmostGuy,
HorseOwner = midleftGuy,
LuckySmoker = midrightGuy;
OIDrinker = midrightGuy,
Japanese = rightmostGuy,

ParliamentSmoker =
rightmostGuy;

BlueHouser = midleftGuy,
ZebraOwner: =i rightmostGuy,
WaterDrinker' = leftmostGuy/

