Description Logics

Tim Finin

University of Maryland Baltimore County

9/19/0

Description Logics

- A family of logic-based knowledge representation formalisms wellsuited for the representation of and reasoning about
 - terminological knowledge
 - configurations
 - ontologies
 - database schemata
 - schema design, evolution, and query optimization
 - source integration in heterogeneous databases/data warehouses
 - conceptual modeling of multidimensional aggregation
 - descendents of semantics networks, frame-based systems, and KL-ONE
- Used as the basis for the Semantic web language DAML+OIL

UMBC

KL-ONE Style Languages

- Object-oriented representation formalisms http://www.ida.liu.se/labs/iislab/people/patla/DL
- Major focus of KR research in the 80's
 - Led by Ron Brachman (AT&T Labs)
- Major systems
 - KL-ONE, NIKL, KANDOR, BACK, CLASSIC, LOOM
- Used as the basis for the Semantic web language DAML+OIL

UMBC

DL Paradigm

- A **Description Logic** is mainly characterized by a set of constructors that allow one to build complex **concepts** and **roles** from atomic ones,
- Concepts correspond to classes
 - and are interpreted as sets of objects,
- **Roles** correspond to relations
 - and are interpreted as binary relations on objects

UMBC

Ot	her con	stuctors	
Constructor number restriction	Syntax >= n R <= n R	Example >= 7 haschild <= 1 hasmother	
inverse role	R-	haschild-	
Trans. Role Etc.	R*	haschild*	
UMBC	*40		

ALC **Example** Constructor **Syntax** Α Human atomic concept atomic role R likes conjunction C^D Human ^ Male disjunction CVD Nice V Rich Negation ~C ~Meat ∃R.C ∃haschild.Human exists restrict. ∀R.C ∀haschild.Blond value restrict. for concepts C and D and role R **UMBC**

Intensional Description Language DLs provide a composable "description language" (and Person (At-Least 1 Degree) (All Degree (One-Of BA BS MA MS PhD))) Describes a unary predicate Has variable-free syntax KIF equivalent: (and (Person ?x) (Min-Cardinality Degree ?x 1) (Value-Type Degree ?x (Set-Of BA BS MA MS PhD))) **OKBC** frame language equivalent: Object-Being-Described Instance-Of: Person Degree: Min-Cardinality: 1 Value-Type: (Set-Of BA BS MA MS PhD) **UMBC**

```
cconcept> ::=
  Thing | Nothing |
  and (<concept> +) |
  all (<role> , <concept>) |
  at-least (<integer> , <role>) |
  at-most (<integer> , <role>) |
  same-as (<attribute-path> , <attribute-path>) |
  one-of (<individual> +) |
  fills (<role> , <individual> +) |
  primitive (<concept> , <id>) |
  disjoint-primitive (<concept> , <group-id> , <id>)
  <role> ::= <identifier>
  <attribute-path> ::= <identifier> | <identifier> . <attribute-path>
***Concept** | <identifier> . <attribute-path>
***Concept** | <identifier> . <attribute-path>
****Concept** | <identifier> . <attribute-path>
***Concept** | <identifier> . <attribute-path>
***Concept** | <identifier> . <attribute-path>
```

Primitive ClassesOKBC class frames describe *primitive* classes • Necessary properties of instances, e.g. –

Person
Subclass-Of: Living-Thing
*Name:
Slot-Cardinality: 1

Slot-Cardinality: 1 Value-Type: String *Child:

Value-Type: Person

- Useful for inferring -
 - Properties of an instance of a class

(=> (C ?x) ...)

■ That an object is not an instance of a class

(=> (C ?x) (P ?x)), (not (P a)) |- (not (C a))

Cannot infer that an object is an instance of a class

UMBC

Example Classic Description

CLASSIC composite description:

(and Game

(At-Least 4 Participants) (All Participants (and Person

(Fills Gender Female)))

OKBC frame language equivalent:

Object-Being-Described

Instance-Of: Game Participants:

Min-Cardinality: 4

Value-Type: Female-Person

Female-Person

Subclass-Of: Person *Gender: Female

UMBC

Non-Primitive Classes

 DL description language used to provide necessary and sufficient properties for class instances e.g., - University-Grad is-a

> (And Person (At-Least 1 Degree) (All Degree (One-Of BA BS MA MS PhD)))

KIF translation -

(<=> (University-Grad ?x)

(and (Person ?x)

(Template-Facet-Value Min-Cardinality Degree ?x 1)

(Template-Facet-Value Value-Type

Degree

?x

(Set-Of BA BS MA MS PhD))))

Can <u>recognize</u> that an object is an instance of a class

UMBC

12

Subsumption

UMBC

Classification

- Determine subsumption relationships
 - For a new concept description
 - For an individual
 - See: http://www.cs.umbc.edu/771/papers/classification.mov
- Useful for -
 - Maintaining a taxonomy of concepts
 - Classifying an individual
 - Finding individuals that satisfy a description
- Subsumption in CLASSIC is
 - Polynomial and complete
 - Borgida and Patel-Schneider, J. of AI Research, v1, 1994, http://www.cs.umbc.edu/771/borgida94a.html
- Subsumption only works for non-primitive concepts
 - Problem: Most classes in most KBs are primitive(!)

UMBC

14