EE Graduate Seminar

Detection and Classification of Chemical, Biological, and Explosive
Materials: A Brief Overview of Several Cutting-Edge Problem Areas

Darren Emge
PI and Deputy Branch Chief
Laser Standoff Detection Branch
US Army Edgewood Chemical Biological Center

11:30am-12:45pm Friday, 21 October 11, ITE 231

The detection and classification of chemical, biological, and explosive (CBE) materials is an area of extremely active research. With the advent of new sensor technologies and sensing methods there is the rapidly growing need for timely robust detection and classification algorithms. Several factors associated with emerging sensors offer novel challenges for the signal processing community. As sensor platforms become more mobile the added complexities of "on the move" standoff detection requires the use of non-stationary and adaptive methods. Ever increasing overall sensitivity introduces variations in signal response and many methods currently lack adequate performance models or ground truth. Reduction in size, weight, and power, along with real time performance, further limit approaches that can be used in addressing these issues. This presentation will provide a brief overview of several of these cutting edge problem areas and offer a glimpse into this challenging problem space.

Mr. Darren Emge earned a BS in Physics from UMBC in 1992. He then went to work for the University of Maryland Medical System, Department of Neurology. During his time at University Medical System, he developed analysis algorithms for evoked response potentials (ERP), functional magnetic resonance (fMRI), or neuronal mapping. He also supported the cognitive psychology group in the development of a pupil motion tracking system in the study of dyslexia. Mr. Emge earned the MSEE from UMBC/CSEE Dept in 2000. In 2001 He joined the US Army ECBC passive detection team investigating advanced mathematical techniques for the detection of chemical vapors based on Fourier transform infrared (FTRI) imaging. In 2003 Mr. Emge was promoted to a Principal Investigator (PI) in the laser standoff detection branch, where he currently serves as PI and Deputy Branch Chief. His current work is in the areas of the detection of small signals, detection of non-stationary signals, and the application of non-linear signal processing methods for the detection of biological and trace chemical/explosive materials.

Seminar Host: Prof. Joel M. Morris