

APPROVAL SHEET

Title of Thesis: EXTENSIBLE DYNAMIC FORM FOR SUPPLIER
DISCOVERY

Name of Candidate: Yan Kang
Master of Science, Computer Science,
2011

Thesis and Abstract Approved:
Dr. Yun Peng
Professor
Department of Computer Science and
Electrical Engineering

Date Approved:

Curriculum Vitae

Name: Yan Kang

Permanent Address: 4816 Grand Bend Drive.

Degree and date to be conferred: Master of Science in Computer Science,
May 2011.

Place of Birth: Chongqing, China.

Secondary Education: Chongqing Number One Middle School, Chongqing,
China

Collegiate institutions attended:
University of Maryland Baltimore County, M.S. Computer Science, 2011.
Chongqing Technology and Business University, B.S. Computer Science,

2007.

Major: Computer Science.
Professional publications:

Industry-Oriented Bank Risk Early Warning Evaluation Based on Self-
Adaptive RBFNN and Uniform Design Method. Yan Kang, Shi Ying Kang.
proceedings of 2008 International Conference of Risk Management and Engi-
neering Management (ICRMEM 2008), pp121-125, 2008

Professional positions held:
Software Designer, Chongqing New Century electric Co, Ltd. (Dec. 2008 –
May 2009).

Lecturer, Chongqing ZhengDa Software Polytechnic College. (Sept. 2007 –
Oct. 2008).

ABSTRACT

Title of Thesis: EXTENSIBLE DYNAMIC FORM FOR
SUPPLIER DISCOVERY

Yan Kang, Master of Science (Computer Science), 2011

Thesis directed by: Dr. Yun Peng, Professor
Department of Computer Science and
Electrical Engineering

Discovery of suppliers (supplier discovery) is essential for building a flexible

network of suppliers in a supply chain. The first step for supplier discovery is to

collect manufacturing capabilities of suppliers and requirements of customers. In

traditional e-marketplaces, online form interfaces are typically used to collect the

requirements and capabilities. However, those forms are mostly lack of flexibility to

capture a variety of requirements and capabilities in a structured way. In this the-

sis, we propose new innovative form architecture called eXtensible Dynamic Form

(XDF) to facilitate data collection process of supplier discovery. This architecture

provides several key innovations including: 1) architecture for users (suppliers or cus-

tomers) to create new structure of form for their own contents; 2) an synonym-based

intelligent search engine facilitating users to reuse the existing form components 3)

hierarchical representation of the requirements and capabilities as XML instances.

Experimental results demonstrate that the proposed architecture is valuable for fa-

cilitating the supplier discovery process.

Keywords: eXtensible Dynamic Form, Supplier Discovery, Data Collection,

Synonym-based Search

EXTENSIBLE DYNAMIC FORM FOR SUPPLIER DISCOVERY

by

Yan Kang

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County in partial fulfillment

of the requirements for the degree of
Master of Science

2011

Advisory Committee:
Professor Yun Peng, Chair/Advisor
Professor Charles Nicholas
Professor Yelena Yesha

c© Copyright by
Yan Kang

2011

Table of Contents

List of Tables iv

List of Figures iv

1 Introduction 1
1.1 Challenges in Supplier Discovery . 1
1.2 Contributions of the Thesis . 3
1.3 Organization of the Thesis . 3

2 Background and Related Works 4

3 XDF Overview 7
3.1 Logic Flow of XDF . 7
3.2 XDF Architecture . 9

3.2.1 Data Layer . 10
3.2.2 Business Logic Layer . 11
3.2.3 Presentation Layer . 13

4 XDF Generation 15
4.1 Form Components Generation . 16

4.1.1 XML Schema . 16
4.1.2 Schema Library . 18
4.1.3 Wrapper Classes . 20
4.1.4 Form Components . 22

4.1.4.1 Form Component with Simple Type 23
4.1.4.2 Form Component with Complex Type 24
4.1.4.3 Wildcard Form Component 29

4.2 Base Form Generation . 30

5 XDF Extension 32
5.1 Overview . 32
5.2 User-defined Form Component . 34
5.3 Form Component Searching Methods 35

5.3.1 Keyword-based Search . 35
5.3.2 n-gram based Search . 36
5.3.3 WordNet-based Search . 37
5.3.4 Synonym-based Search (Exhaustive) 40
5.3.5 Synonym-based Search (Greedy) 41
5.3.6 Experiments and Results . 43

6 XDF Output: XML Instance 47
6.1 XML Instance Generation . 47

ii

7 Experiment on Supplier Discovery 49
7.1 Design of Experiment . 49
7.2 Experimental Results . 51

8 Conclusions and Future Works 53
8.1 Conclusions . 53
8.2 Future Works . 54

A User Manual 55
A.1 Basic Form Interface . 56

A.1.1 Navigation Interface . 56
A.1.2 Container Node . 58
A.1.3 Data Input Node . 58
A.1.4 Data Input Node: List Type 59
A.1.5 Form Component Remove Button 59
A.1.6 Extension . 59

A.1.6.1 Search Existing Form Components 60
A.1.6.2 Define New Form Components 62

A.2 BasicInfo Form Page . 65
A.2.1 BasicInfo Nodes . 66

A.3 Service Form Page . 67
A.3.1 Service Nodes . 68

A.4 Example . 72
A.4.1 Raw Data of Supplier Capability Profiles 72
A.4.2 BasicInfo Page . 73
A.4.3 Service Page . 74
A.4.4 XML Instance . 77

Bibliography 79

iii

List of Tables

4.1 Corresponding Relationship Between Wrapper Classes, Schema Java
Classes and Schema Constructs . 21

5.1 Comparison of Search Methods with Synonymous Version of Search Key-

words . 44
5.2 Comparison of Search Methods with Typo Version of Search Keywords . . 44
5.3 Comparison of Computing Time . 45

7.1 Performances of Search Engines . 51

List of Figures

3.1 Logic Flow of XDF . 8
3.2 Architecture of XDF . 10
3.3 Architecture of Business Logic Layer 12
3.4 Architecture of Presentation Layer 14

4.1 Form Components Generation Flow 16
4.2 Class Diagram of Schema Library . 19
4.3 Wrapper Classes . 20
4.4 Class Diagram of Wrapper Classes 20
4.5 Simple Type Form Component with multiple occurrence 23
4.6 Simple Type Form Component One Occurrence 24
4.7 Complex Type Form Component with Simple Content 25
4.8 Complex Type Form Component with Complex Content 26
4.9 Form Component with List . 27
4.10 Form Component with Group . 28
4.11 Wildcard Form Component . 29
4.12 Base Form . 30

5.1 Example for Form Extending . 33
5.2 Example for Form Component Creation 34
5.3 String-to-String Matching to Word-to-Word Matching 38
5.4 Synonym Sets . 39
5.5 Comparison of Computing Time . 46

6.1 XML Instance Generation . 48

iv

Chapter 1

Introduction

1.1 Challenges in Supplier Discovery

In todays dynamic manufacturing industry, discovery of manufacturing sup-

pliers - henceforth, supplier discovery - is essential to build a flexible network of

suppliers in supply chain [1]. To utilize the supplier discovery, several electronic

marketplaces (e-marketplaces), such as Thomasnet, mfg.com, and GlobalSpec, have

been established. In general, supplier discovery function involves two steps.

The first step is to collect supplier capabilities and customer requirements

henceforth collect function. In the traditional e-marketplaces, online forms interfaces

[2] [3] [4] are typically used for the collect function[5]. However, those forms are

mostly fixed and pre-defined, so they are not flexible enough to capture a variety

of requirements and capabilities in a structured way. Different users (suppliers or

customers) often use different terminologies, structures, and semantics to represent

their own capabilities or requirements. Therefore, those fixed forms may not be

able to capture users’ domain-specific information. Although some of those fixed

forms provide users with search engines to find appropriate form components to put

their domain-specific information, it did not solve the lack-of-flexibility problem of

traditional fixed form: First, most of these search engines are based one keyword

string matching methods, therefore, users with semantically similar capabilities or

1

requirements, but represented using different syntaxes, may not be identified by

simple keyword matching methods. Second, traditional forms do not provide users

a way to create their own form components based on their domain-specific concepts.

The second step is to find suppliers - henceforth, search function - whose capa-

bilities are of the greatest relevance to requirements specified by customer. Several

approaches have been proposed to enhance the search function (e.g., semantic-based

search). They mostly reply on the structured data models such as XML [6] [7],

RDF [8], and OWL[9]. The unstructured or semi-structured information collected

by traditional forms makes it difficult to use those advanced search approaches. To

enhance the search functions, thus, it is necessary to first enhance the form archi-

tecture that collects requirements and capabilities in a better structured way.

In order to collect information accurately and use the appropriate supplier

discovery methods, two factors should be considered. First, the supplier profiles

should be captured in a better structured and a machine interpretable format so

that search function can better identify the relationships between supplier profiles

and customer queries, and discover more relevant suppliers. Second, the form ar-

chitecture should provide users with advanced search engine or other approaches

to guide them input their information precisely. The form architecture should also

provide functionality that allows users (suppliers or customers) to extend the form

by considering their own terms and structures of contents. Work reported in this

thesis is aimed at addressing these and other related issues.

2

1.2 Contributions of the Thesis

In this work, we propose an innovative form architecture called eXtensible Dy-

namic Form (XDF) to facilitate the process of collect function in supplier discovery.

XDF provides suppliers (or customers) flexibilities to extend the base form

by either searching the existing form components or creating their own form com-

ponents. An intelligent search engine is provided for suppliers (or customers) to

search existing form components. User-created form components will be stored as

user-defined schema in repository, and they can be searched and reused by other

users or form components later.

1.3 Organization of the Thesis

The remainder of the Thesis is organized as follows. Chapter 2 describes

background of supplier discovery and the related works. The architecture and logic

flow of XDF is described in Chapter 3. Chapter 4 explains in details how the base

form of XDF is generated. Chapter 5 explains XDF extension and discusses four

form component search methods. A comparison experiment on the performance of

these four search methods is provided. Chapter 6 explains XML instance creation.

Chapter 7 measures the performance of XDF by comparing XML-based match-

making algorithm to some other supplier discovery approaches. Conclusions and

future work are outlined in chapter 8.

3

Chapter 2

Background and Related Works

E-marketplaces are a new business model which is developing rapidly in todays

dynamic markets. Typically e-marketplaces have three roles: provision of institu-

tional infrastructure, supplier discovery by matching customers’s requirements and

suppliers’ capabilities, and facilitating the transaction [10]. In this work, we focus

on the supplier discovery role, especially the data collection in supplier discovery.

Most of the approaches proposed [11] [12] for matching customers and suppliers

in supplier discovery are based on similarity retrieval of textual description. These

approaches often ignore semantics contained in the textual descriptions. Though

a few natural language processing (NLP) technologies have been developed to an-

alyze the meaning of textual descriptions [13], Their practicability needs further

investigate because of the complexity and ambiguity in natural language[14].

To overcome the problems of these approaches, several knowledge-based ap-

proaches have been developed for the manufacturing domain [15] [16] [17]. The

search capabilities can be enhanced by utilizing manufacturing knowledge based on

the formal semantic representations (e.g., Ontology). Most of them employ ontolo-

gies to capture and represent semantic information. The ontology should be shared

and agreed upon by both suppliers and buyers, often called shared ontology.

However, ontology-based approaches often lead to many challenges due to

4

immaturity of technologies in semantic representation, measuring, and reasoning.

We employ three reasons. First, developing and maintaining a single shared ontology

is time-consuming and expensive because all participants should keep understanding

all the concepts and semantics. Second, some information is unlikely to be captured

by the shared ontology because it could be too specific and make the shared ontology

too complex. Third, there are no tools to easily capture the ontological information

from the textual descriptions.

Another approach to enhance the search capabilities is to utilize XML data

representations which are widely used in the e-business industry to represent the

structured information. XML data representations are XML instances of a XML

schema that defines their structure, content and semantics. XML instance is typi-

cally viewed as labeled trees. Each node of these trees represents a data element or

an attribute by a label of English word or concatenation of words or their abbrevia-

tions. Although XML is not a formal semantic model, its structure and the English

words for the labels contain rich semantic information. Many XML matching ap-

proaches have been proposed [18] [19], most of which analyze the similarity between

these labeled tress based on their semantic and structural information.

Applications [20] [21] have been developed to generate XML schema [7] based

web forms to capture users information and produce XML instances as output.

However, these applications support limited XML schema features. And the web

forms they generated are fixed. Rein [22] proposed an application of dynamically

generating a web form based on XML schema and producing XML instance as

output. It supports more XML schema features and allows users to dynamically

5

add and remove items from the base form. However, Rein did not take into account

the extensibility, which is crucial in the information collection process. Lacking of

extensibility, web form may not be able to capture the information that is specific

to users domain.

Therefore, we need more flexible and dynamic architecture to collect require-

ments and capabilities in a better structured way to support meaningful semantic

analysis.

6

Chapter 3

XDF Overview

This chapter describes logic flow of XDF system and XDF architecture. XDF

starts with a base form generated based on several XML schemas. It allows users

(suppliers or customers) to extend the base form of XDF by searching the existing

form components. Also users can freely create their own form components by using

their domain-specific concepts, structures and semantics, and then add them to

the base form. These user-created form components will be stored as user-defined

schemas, and they can be searched and reused by other users or form components

later. User-inputed data on the eXtensible Dynamic Form will be automatically

transformed the into XML instances, which can be analyzed by advanced supplier

discovery methods.

3.1 Logic Flow of XDF

Figure 3.1 illustrates the logic flow of XDF system. The logic flow of XDF

consists of four steps (step 1, 2, 3, 4). The algorithms for semantics-based XML

instance matching for the last step (discovering suppliers) will not be covered in this

thesis. However, we will in Chapter 8 present the experimental results on comparison

of three supplier discover methods.

Step one: The base form is automatically generated by XDF system from

7

Figure 3.1: Logic Flow of XDF

schemas in the repository. At the beginning, all the XML schemas, including domain

ontology, core component, and pre-defined manufacturing schemas, in the repository

are parsed and then transformed into form components. These form components

will be rendered as form components that build the base form.

Step two: Users input their data in this base form. When the base form can

not cover users’ information (i.e. user can not find a place to input his/her data),

users can extend the base form by searching existing form components and plugging

them into the base form. An intelligent search engine is provided for users to search

existing form components. This intelligent search engine combines the benefits of n-

gram based searching and WordNet-based searching. It tolerates typo and can find

8

semantically similar words or phrases. Because different users may describe their

capabilities using different terms, structures and semantics, users may not be able to

find a appropriate form component to fit their data. Thus, users can extend the base

form by creating their own form components. These user-defined form components

will be transformed into XML schema and saved in user-defined schema file.

Step three and Step four: When user finish inputing their data, all the data

will be transformed into XML instances and be stored to XML instance repository.

Step five: XML instance will be used in the process of supplier discover. This

process will be conducted by matching customer requests XML instance and supplier

profile (capabilities) XML instance.

To accomplish all these functionalities, a three layered architecture was devel-

oped.

3.2 XDF Architecture

XDF employs a three-layer architecture: Presentation Layer, Business Logic

Layer and Data Layer. As illustrated in Figure 3.2, the Data Layer is a repository

that stores all the XML schema files and XML instance files; the Business Logic

Layer contains a Schema Library, and it handles all the communication between

Presentation Layer and Data Layer through a collection of web services; the Pre-

sentation Layer is a web-based dynamic form through which users can interact with

the whole XDF system.

9

Figure 3.2: Architecture of XDF

3.2.1 Data Layer

The Data Layer is a repository that stores all the XML schemas that define

form components. These include domain ontology schemas, core component XML

schemas, pre-defined manufacturing schemas and user-defined XML schemas. The

domain ontology schema is generated based on ontology defined in [23]. Core compo-

nents schemas come from Open Application Group’s Integration (OAGi) [24]. OAGi

implements core components schemas with the purpose of increasing interoperability

for enterprises and encourages all business languages to be based on same concepts.

These core component schemas define grammar rules, key naming conventions and

key common content. Since core component schemas are mainly focusing on the

10

general concepts of e-business, we created pre-defined manufacturing schemas that

are specifically focus on manufacturing industry but not defined by the ontology.

All user-defined form components will be stored as user-defined schemas. Users can

integrate user-defined form components with existing form components with the

help of XDF’s search engine. The topic of search engine will be covered in Chapter

5.

The repository also stores XML instances generated from user-inputted data.

These XML instances will be taken as input in the process of supplier discovery. In

addition, the repository stores a set of binary files, which are not shown in Figure

3.1. These binary files store the whole eXtensible Dynamic Form for each user.

Users can retrieve their eXtensible Dynamic Forms next time they input new data.

Thus, they do not have to start their work from the scratch.

3.2.2 Business Logic Layer

Business Logic layer is responsible for transferring information between the

Presentation Layer and Data Layer. As illustrated in Figure 3.1, Business Logic

Layer contains a Schema Library and a collection of web services performs the

function of transforming information between different representations. Figure 3.2

shows the details on the Business Logic Layer.

The Schema Library is a collection of Java objects generated from XML

schemas through a Schema Java Objects Generator. In other words, it is the repre-

sentation of XML schemas in the Business Logic Layer. The XML Schema Generator

11

Figure 3.3: Architecture of Business Logic Layer

is responsible for transforming Schema Java objects into XML schemas.

Business Logic Layer includes four web services: GetBaseFormElements ser-

vice, SearchFormElements service, StoreUserDefinedFormComponent service and

StoreXMLInstance service.

• GetBaseFormElements service fetches the form elements from Schema Library

that will be transformed into base form components by a collection of wrap-

pers. These base form components will build the base form.

• SearchFormElements service searches and returns form elements that will be

transformed into form components that user is looking for.

12

• StoreUserDefinedFormComponent service stores user-defined form components

back to Schema Library as form elements. These form elements will be saved

as XML schema in user-defined schema file.

• StoreXMLInstance service stores XML instance generated from user-inputed

data to XML instance repository.

The relationship between form component and form element, and the role of

form component in Presentation Layer will be discussed in Chapter 4.

3.2.3 Presentation Layer

Presentation Layer is the User Interface, from where users can input data,

search and create form components.

As illustrated in Figure 3.4, Presentation Layer includes a collection of form

components. There are three types of form components: base form components,

user-defined form components and searched existing form components. Base form

components are used to build the base form of XDF. They are generated when user

load XDF website. When users can not find a appropriate place in the base form

to fill in their information, they can search existing form components through an

intelligent form component search engine to extend the base form. Users are also

allowed to create their own form components on the fly to fill in their domain-

specific information. Details about how the Presentation Layer is constructed will

be covered in Chapter 4.

13

Figure 3.4: Architecture of Presentation Layer

14

Chapter 4

XDF Generation

In the traditional e-marketplaces, online web form interfaces are typically used

for the supplier profiles collection. Suppliers can input their data on the web form.

These inputted data will be sent to server for further processing. Several electronic

marketplaces (e-marketplaces), such as Thomasnet [2], mfg.com [3], and GlobalSpec

[4], provide such web forms to collect suppliers’ information. Typically, these web

forms are static web pages. The limitation of such static web pages is that if, some-

time later, more suppliers’ information need to be captured, we have to add new

fields to the form by manually updating these static pages, and then recompiling and

redeploying the application to the server. In contrast, we automatically generate

web forms for XDF from XML schemas that defines the structure of the whole web

form. The benefit of using XML schema as basis for generating XDF is that XML

documents are well designed for structured content, and because of its widespread

acceptance between applications, companies and industries, XML becomes an im-

portant part of any matching strategy of structured content. In addition, revision

of XML schemas are much easier than revising the form directly, therefore, making

the XDF form maintenance and revision much more efficient.

15

4.1 Form Components Generation

The eXtensible Dynamic Form system will parse XML schemas and transform

all the schema constructs [7] in these schemas into a middleware called Schema

Library. The Schema Library is a collection of schema Java objects [25], each of

which represents a schema construct. These schema Java objects will be wrapped

by wrapper objects in the presentation layer and transformed into form components,

which are the basic building blocks for constructing the base form. Figure 4.1 shows

the logic flow of form components generation.

Figure 4.1: Form Components Generation Flow

4.1.1 XML Schema

XML Schema language is a complex maze of constructs that overlap each

other. Completely covering features of XML schema is a tremendous amount of

work and out of the scope of this thesis. Instead, we cover the most-used schema

constructs of XML schema [7], including:

16

• element is either complexType or simpleType. If it is complexType, it can

contain sub-elements and carry attributes. If it is simpleType, it can only

contain build-in simple types [7], such as boolean, integer, date and string, or

derivation version of build-in simple types.

• simpleType only allows its corresponding element to contain build-in simple

types.

• attribute provides additional information on its corresponding element. A

attribute can only be simpleType.

• restriction type allows deriving a new simpleType by restricting an existing

simpleType.

• list type is comprised of sequences of build-in simple types and consequently

the parts of a sequence themselves are meaningful.

• union type enables the value of an element or attribute be one or more in-

stances of one type drawn from the union of multiple build-in types and list

types. Build-in type, list type, and the union type described above are collec-

tively called simple types.

• complexType allows its corresponding element to contain sub-elements and

carry attributes. Its content model is either simpleContent or complexContent.

• simpleContent restricts the content of a element to simple type data, but

allows element to carry attributes.

17

• complexContent allows the content of a element to contain other elements or

groups. It also allows element to carry attributes.

• any specifies that any well-formed XML is permissible in a content model. It

is also called any element. This any element will be transformed to a Wildcard

form component to allow users to extend the base form. This transformation

will be covered in Chapter 5.

• group represents a group of schema constructs, which can be element, any

element or group. group can be only contained in complexContent

4.1.2 Schema Library

Before generating form components, XDF system transforms all schema con-

structs into a middleware called Schema Library. Schema Library is a Java Class,

the instance of which contains a collection of Java objects each of which represents a

schema construct explained in section 4.1.1. Figure 4.2 illustrates the class diagram

of Schema Library. We call classes in Figure 4.2 schema Java classes. the instance

of which are called schema Java objects.

Each schema Java object represents a XML schema construct and, as illus-

trated in Figure 4.2, the class diagram of schema Java objects maintains the same

structure as that of schema constructs specified by XML schema Language. That

is, every XMLSchema object contains multiple Element objects, each of which has

either a SimpleType object or a ComplexType object. A SimpleType object may con-

tain a RestrictionSimpleType object, ListSimpleType object or a UnionSimpleType

18

Figure 4.2: Class Diagram of Schema Library

object. ComplexType object contains either SimpleContent object or ComplexCon-

tent object. Both SimpleContent object and ComplexContent object can have zero

or more Attribute objects. ComplexContent object contains at least one instance

of Compositor interface, which must be a ModelGroup object. ModelGroup object

contains multiple instances of Particle interface that can be Element object, Wild-

card object, Group object and/or another ModelGroup object. Wildcard object is

the representation of any element in Schema Library. Summarily, Schema Library

represents XML schemas and their contained schema constructs in terms of Java

objects.

After generating these schema Java objects, XDF transfers them to the Pre-

sentation Layer. A collection of wrapper objects will transform these schema Java

19

objects to form components.

4.1.3 Wrapper Classes

The instances of Wrapper classes (i.e. Wrapper objects) in the presentation

layer are responsible to wrap the schema Java objects and transform them into form

components. Figure 4.3 shows all the Wrapper classes and Figure 4.4 illustrates the

instance level relationship between Wrapper classes.

Figure 4.3: Wrapper Classes

Figure 4.4: Class Diagram of Wrapper Classes

20

As illustrated in Figure 4.2 and Figure 4.4, wrapper classes keep the same

structure diagram as that of schema Java classes. Combining the corresponding

relationship between schema Java classes and schema constructs, we obtain the cor-

responding relationship between wrapper classes, schema Java classes and schema

constructs, presented in Table 4.1.

Table 4.1: Corresponding Relationship Between Wrapper Classes, Schema Java

Classes and Schema Constructs

Wrapper Class Schema Java Class Schema Constructs

ElementWrapper Element elemen

SimpleTypeWrapper SimpleType simpleType

RestrictionSimpleTypeWrapper RestrictionSimpleType restriction

ListSimpleTypeWrapper ListSimpleType list

UnionSimpleTypeWrapper UnionSimpleType union

ComplexTypeWrapper ComplexType complexType

SimpleContentWrapper SimpleContent simpleContent

ComplexContentWrapper ComplexContent complexContent

ModelGroupWrapper ModelGroup

GroupWrapper Group group

WildcardWrapper Wildcard any

ModelGroup corresponds to un-named group in XML schema language. It

groups elements so that these elements can be used to build the content model

21

of complex type. A group of elements can be constrained to appear in the same

order as they are declared by sequence schema construct. Alternatively, they can be

constrained by choice construct so that only one of these elements may appear. The

third option for constraining elements in a model group is to permit all elements in

the group appear only once or not at all. We do not support the third option in that

we allow an element appears multiple times in a model group. Group corresponds

to named group in XML schema language. The difference between un-named group

and named group is that named group can be declared globally and referenced by

other element.

4.1.4 Form Components

Form components are the basic building blocks for constructing XDF. In user’s

perspective of view, a form component is a sub-form that can be attached as sub-

structure to base form or other form components. A form component is rendered

by an ElementWrapper and its representation is determined by the Element object

wrapped by this ElementWrapper. In other words, a form component is generated

from a Element object stored in Schema Library and they have one-to-one relation-

ship. Such a Element object is named form element. Logically, Schema Library

is a Library that stores all form components. As illustrated in section 4.1.2 and

4.1.3, Element object and element schema construct refer to the same concept with

different representations. Therefore, with the purpose of explaining the relationship

between form component and element schema construct, and how a form component

22

is represented by a ElementWrapper, we will replace the role of Element object in

ElementWrapper with element schema construct in the following three sections.

4.1.4.1 Form Component with Simple Type

ElementWrapper will delegate SimpleTypeWrapper to render the form compo-

nent, When its wrapped element is simpleType. The rendered form component is a

list of text boxes (items) for user inputting data. If the value of maxOccurs attribute

of the wrapped element is bigger than the value of minOccurs attribute, user can

dynamically add/remove items to/from a list. Otherwise, the number of items in

the list is fixed. A form component transformed from element with simpleType is

called simple type form component.

Figure 4.5: a form component transformed from a ”Industry Focus”
element with maxOccurs equal to unbound and minOccurs equal to one

Figure 4.5 shows a form component that is transformed from a simpleType

element - ”Industry Focus”. Its maxOccurs attribute is equal to unbound and

23

minOccurs equal to one. Therefore, user can add arbitrary number of ”IndustryFo-

cus” items to this list, but must left at least one ”IndustryFocus” item in the list.

Figure 4.6: a form component transformed from a ”Certification” ele-
ment with maxOccurs equal to one and minOccurs also equal to one

Figure 4.6 shows a form component that is transformed from a simpleType

element - ”Certification”. Its maxOccurs attribute and minOccurs attribute have

the same value, which is one. Therefore, There is only one ”Certification” item in

the list and user can not add/remove items to/from this list.

4.1.4.2 Form Component with Complex Type

When the wrapped element is complexType, the ElementWrapper will delegate

complexTypeWrapper to render the form component. A form component trans-

formed from element with complexType is called complex type form component.

The representation of a complex type form component is determined by the content

type of the wrapped complexType element.

24

If the content type is simpleContentType, the form component will be rendered

by SimpleContentWrapper. SimpleContentWrapper renders a form component the

same way as SimpleTypeWrapper does except that it also renders attributes carried

by the wrapped element.

Figure 4.7: a form component transformed from a ”BuildingMaterial” element

Figure 4.7 shows a form component that is transformed from a complexType

element - ”BuildingMaterial”. The content type of ”BuildingMaterial” element is

simpleContent that carries an attribute named ”ID”. The simpleContentWrapper

rendered this ”ID” attribute as a text box in the ”BuildingMaterial” form compo-

nent.

When the content type of the wrapped element is complexContentType, the

wrapped element may contain sub-elements, which indicates that the form compo-

nent to be rendered (we call it super form component) will contain one or more other

form components (we call them sub form components) as its sub-structure. In this

case, ModelGroupWrapper will be delegated to render these sub form components.

25

There are three different situations when ModelGroupWrapper rendering sub form

components.

(1) When sub-elements of the wrapped element is constrained by sequence

construct, ModelGroupWrapper will render sub form components in the same order

as these sub-elements were declared.

Figure 4.8: a form component transformed from a ”Address” element

Figure 4.8 illustrates the situation where a form component is transformed

from a element with complexType, the content type of which is complexContent.

The sub-elements of ”Address” element are constrained by sequence construct. The

resulting ”Address” form component contains four sub form components - ”street”,

”city”, ”state” and ”zipCode”, each of which is transformed from a sub-element of

”Address” element. The order in which the four sub form components appear in

26

the ”Address” form component is the same as the order their corresponding sub-

elements were declared.

(2) When sub-elements of the wrapped element is constrained by choice con-

struct, ModelGroupWrapper will put all sub form components into a list box. Only

one sub form component can be chosen from the list box and rendered as the child

of the super form component.

Figure 4.9: a form component transformed from a ”hasCerfitication” element

Figure 4.9 illustrates the situation where a form component is transformed

from a element with complexType, the content type of which is complexContent.

The sub-elements of ”hasCertification” element are constrained by choice construct.

The resulting ”hasCertification” form component contains a list of sub form compo-

nents. Only one sub form component can be chosen from the list and added to the

”hasCertification” form component. In this case, ”UserDefinedCertification” sub

27

form component was chosen form the list.

(3) The third situation is when the wrapped element contains a group. The

group can be either named group or un-named group. Either way, a GroupWrapper

will be delegated to render the group as form components. GroupWrapper renders

form components the same way as ModelGroupWrapper does, except that the ren-

dered form components have a group name. Figure 4.10 illustrates that a group was

rendered as a ”group: EquipmentType” form component.

Figure 4.10: a form component transformed from a ”DrillingEquipment” element

28

4.1.4.3 Wildcard Form Component

Wildcard form component is transformed from any element. As suggested by

XML Schema best practices [26], Placing an any element at the end of complexCon-

tent of a element is a good way of adding extensibility to XML schema. Employed

the same concept, Wildcard form component is utilized to extend the base form.

The extension of the base form will be discussed in Chapter 5.

Figure 4.11: A Wildcard form component

As illustrated in Figure 4.11, Wildcard form component is transformed from

an ”Extended Item” element that takes an any element as its sub-element. This

29

Wildcard form component is rendered as an ”Extended Item” button. Once user

clicks the Extended Item button, XDF shows a form component search window.

Then, the user can either search the existing form components with some keywords

or create new form components.

4.2 Base Form Generation

Base form is an online web form that is for suppliers (or customers) inputing

their basic information and general capabilities (or requirements). The base form

is generated from a collection of base form components such as BasicInfo, Service

and Extension. Base form provides users with interfaces to extend the base form if

necessary.

Figure 4.12: Base Form

30

As illustrated in Figure 4.12, The base form of XDF is generated from a

collection of base form components. The user inputted a ”Drilling” service and its

related data. The user also extended the base form by adding an user-defined form

component named ”Material”.

31

Chapter 5

XDF Extension

5.1 Overview

XDF allows users to extend the base form of XDF by either searching the

existing form components or creating their own form components. When the base

form can not cover the users information (i.e. user can not find a place to input

his/her data), the user can extend the base form by searching existing form compo-

nents from Schema Library and plugging them into the base form. The searching

function of XDF is performed by an intelligent search engine, which combines the

benefits of N-gram based searching and WordNet-based searching. It tolerates typo

and word variations, and can match semantically similar words or phrases. Because

different users may describe their capabilities using different terms, structures and

semantics, users may not be able to find a appropriate existing form component to fit

their data. When that happens, users can freely create their own form components

and then add them to the base form.

Each form component, including those in the base form, has a ”Extended

Item” button as shown in Figure 5.1. The ”Extended Item” button is actually a

Wildcard form component transformed from any element, as explained in section

4.2.3. The any element allows a element to contain any types of sub-elements, which

allows form component to contain any other form components as its sub-structure.

32

Once the user clicks the ”Extended Item” button, XDF shows a form component

search window. Then, the user can either search the existing form components with

some keywords or even create new form components.

Figure 5.1 shows the form search operation with the keyword ”certification”.

XDF’s search engine returns a list of form components. User can preview each of

the form components and insert one of them into the current position of the form.

In this case, the ”Certification” form components was added to the current form.

Figure 5.1: illustrates an example of form extending

More detail processes to create or search the form components will be described

in the following subsections.

33

5.2 User-defined Form Component

User-defined form components are stored as user-defined schemas in the repos-

itory. They can be searched and reused by other users or forms later. Figure 5.2

illustrates an example of form component creation operation.

Figure 5.2: an example of form component creation

In this example, the user inputs a keyword ”key feature” and clicks the ”Add

as New Item”. XDF creates new form component with the name of ”KeyFeature”

that has a text input box, and insert it into the current position of the form. The

generated form component is encoded and saved as a element with string simple

type in the user-defined schema.

As explained in section 4.2, a form component can be either simple type or

complex type. This is also true for user-defined form components. If the user-

34

defined form component is simple type, it can only contain value of simple types

(e.g. strings and integers). If it is complexType, it can add arbitrary number of

other form components as its sub-structure through the ways as mentioned in section

5.1. In the case of Figure 5.2, the user defined a form component that is simpleType.

Therefore, an input text box was created for user inputting simple type values.

5.3 Form Component Searching Methods

To extend the base form, users can search the existing form components

from Schema Library. XDF search engine finds form components whose names are

closely matched with the search keyword. For the best quality and performance of

search, we have investigated several search methods: keyword-based, n-gram based,

WordNet-based, and synonym-based methods. In this section, we describe and com-

pare these four different search methods. We denote search keyword as string k and

the name of form component to be compared in the search as string e.

5.3.1 Keyword-based Search

Keyword-based search is the simplest way to find the existing form compo-

nents. It is based on exact string matching method [27]. We assume that the two

string k and e are either single word or concatenated words. These String are tok-

enized to two sets of words, denoted as L(k) and L(e), respectively. For example, if

k = ”ShipAddress”, then L(k) = {Ship, Address}. The similarity between k and e

is defined as:

35

Sim(e, k) =
2× | L(e) ∩ L(k) |
| L(e) | + | L(k) |

(5.1)

For instance, in order to compute the similarity between string ”ShipAddress”

and string ”ShipTo”, we first obtain two word lists: {Ship, Address} and{Ship, To}.

The two string have one shared word, which is ” Ship”. Therefore, the similarity

score is (2× 1)/(2 + 2) = 0.5

The search result is a list of form components ranked by their similarities

by (5.1). The keyword-based search is simple and fast, but it does not utilize the

semantics of words for synonyms or semantically similar words. In addition, it is

unable to match with words in variation forms (e.g., capabilities vs. capability) or

containing typos.

5.3.2 n-gram based Search

The similarity between two strings can be also measured by counting the

number of the occurrences of different n-grams [28][29], i.e., the substrings of length

n, in the two strings. The more similar the strings are, the more n-gram they will

have in common. The similarity can be defined as:

Sim(e, k) =
2× Iden(Ngram(e), Ngram(k))

| Ngram(e) | + | Ngram(k) |
(5.2)

where Ngram(e) and Ngram(k) are the sets of items in the n-grams of e and

k, and Iden(Ngram(e), Ngram(k)) is the number of n-grams shared by e and k. The

denominator indicates the total number of n-grams in the two N-gram sets.

36

n-grams can be used with various length. For experiments, we use trigram

(n=3). Take the word ”shipment” as an example:

bi-grams: #s, sh, hi, ip, pm, me, en, nt, t# ;

tri-grams: ##s, #sh, shi, hip, ipm, pme, men, ent, nt#, t##;

quad-grams: ###s, ##sh, #shi, ship, hipm, ipme, pmen, ment, ent#, nt##,

t### .

When we use tri-grams, the similarity between word ”shipment” and ”ship”

is (2× 4)/(10 + 6) = 0.5

n-gram based searching solves the problem of typo input that Keyword-based

searching faces. Because every string is decomposed into small parts, so any errors

that are presented, affects only a limited number of n-grams, leaving the rest intact.

However, n-gram based search has its limitations, it cannot match semantically

similar concepts (e.g., synonyms).

5.3.3 WordNet-based Search

Both keyword-based and n-gram based methods use string-based similarity

metrics. WordNet-based search, on the other hand, employs semantics of words

to enhance string-based metrics. Kim [30] proposed a WordNet-based approach to

measure the semantic similarity between two strings. This approach has four steps:

(1) Pre-processing: Similar to keyword-based search, this approach first tok-

enizes the string k and string e to two sets of words, L(k) and L(e) respectively.

Thus the string-to-string matching problem is reduced to word-to-word matching

37

problem, as illustrated in Figure 5.3

Figure 5.3: String-to-String Matching to Word-to-Word Matching

(2) Modeling: The word-to-word matching problem can be modeled as a max-

imum weighted bipartite graph-matching problem [31] [32] as follow:

Given an undirected graph G = (A ∩ B,E), where A = {a1, a2, ..., am} and

B = {b1, b2, ..., bn} are two sets of vertices. Each vertex in graph G represents a

word. E = {e11, e12, ..., eij} = A×B is a set of edges, each of which carries a weight.

Each edge eij connects a vertex ai in set A to a vertex bj in set B, and vertices in

the same set can not be connected. Each vertex in set A has a connection to every

vertex in set B.

A matching M of graph G is a subset of E such that no two edges in M shares

a common vertex. The maximum-weighted bipartite matching is a matching whose

sum of the weights of the edges is the highest among all possible matchings. The

maximum-weighted bipartite matching is formulated as an integer programming

defines as bellow:

38

Maxmize :
∑

eij∈E wijxij

Subjectto :
∑m

i=1 xij = 1∀j = 1, ..., | A | (5.3)

∑n
j=1 xij = 1,∀i = 1, ..., | B |

xij ∈ {0, 1}, where xij is 1, if eij ∈M, otherwise is 0

(3) Weights Computing: The maximum weighted bipartite graph-matching

problem depends on the weights carried by each edges in E. Weight on an edge is

equal to the similarity score between two words connected by this edge. In Kim’s

approach [30], the similarity between two words is computed based on their syn-

onym sets drawn from WordNet [33]. For each word, WordNet produces a group

of synonym sets. Each synonym set is an equivalence class of words, sharing the

same meaning within an ontology. Figure 5.4 shows that for word ”Shipment”, two

synonym sets are drawn from WordNet. For word ”Despatch”, four synonym sets

are drawn from WordNet.

Figure 5.4: Synonym sets for word ”Shipment” and ”Despatch”

39

The similarity between two words, say A and B, is computed by averaging the

similarity scores of all combinations of synonym sets, each of which comes from the

synonym sets group of word A and synonym sets group of word B, respectively.

Kim’s method [30] incorporates a form of information content-based measure

[34] in computing the similarity between two synonym sets.

(4) The final step is to run the model and compute the results.

WordNet-based method works well for matching semantically similar concepts

and synonyms. However, it is relatively slow due to the search of a large lexical

database of WordNet, and it cannot deal with the problem of word variations and

typos that n-gram based search can. To address these limitations of WordNet-based

method, we designed a Synonym-based search algorithm.

5.3.4 Synonym-based Search (Exhaustive)

This method extends the n-gram method by using the synonyms of search

keywords rather than the words themselves. In this approach, we only tokenize the

search keyword string k to a set of words denoted L(k). For each word in L(k), a set

of synonyms can be obtained from WordNet. We choose one synonym for each word

from L(k) as its alternative and concatenate them into a single string (concatenated

word). The set of all concatenated words is denoted as C.

For example, if L(k) = {Shipment, Address}, the synonym sets for words

”Shipment” and ”Address” in L(K) are S1 = {Send,Delivery} and S2 = {Destination,

Location, Reference }, respectively. All possible concatenated words form a set C

40

= {SendDestination, SendLocation, SendReference, DeliveryDestination, Delivery-

Location, DeliveryReference}.

For each concatenated word in set C, we compare it to string e and calculate

the similarity score by n-gram method stated in section 5.3.2. This synonym-based

method combines the benefits of n-gram based and WordNet-based methods. It not

only works well for matching semantically similar concepts and synonyms, but also

identifies matches considering word variations and typos. It is relatively faster than

WordNet-based searching method when the search keyword set L(k) is small.

However, there is a serious problem with this exhaustive synonym-based method.

That is, if you have N words in L(k) and each word has M synonyms, the set C will

contain MN number of concatenated words. In other words, this method becomes

very inefficient when the search keyword set L(k) is large. Therefore, For efficiency

purpose, we adopt a greedy version of this method to compute the similarity between

string k and e.

5.3.5 Synonym-based Search (Greedy)

The greedy synonym-based search method goes as follows. (1) we tokenize

k and e to L(k) = {v1, v2, ..., vi, ...} and L(e) = {u1, u2, ..., uq, ...}. (2) For each

word vi in L(k), a set of synonyms are drawn from WordNet, denoted as Si =

{si1, si2, ..., sij, ...}. (3) For each word uq in L(e), find the synonym sij in all syn-

onym sets Si with highest n-gram similarity score between uq and sij, recorded as

Score(uq). The set of scores for all words in L(e) form ScoreSet = {Score(uq), q =

41

1, 2, ..., |L(e)|}. The average scores in ScoreSet is the similarity, subject to a penalty

for length difference between L(k) and L(e).

When |L(k)| ≥ |L(e)|, The similarity is computed as:

Sim(e, k) = (1− abs(|L(e)| − |L(k)|)
|L(e)|+ |L(k)|

)× 1

|L(e)|
×

|L(e)|∑
q=1

Score(uq) (5.4)

where the first factor of the formula is the length penalty. Note that When

|L(k)| ≤ |L(e)|, the highest |L(k)| scores will be selected from ScoreSet from Score-

Set. The similarity is computed as:

Sim(e, k) = (1− abs(|L(e)| − |L(k)|)
|L(e)|+ |L(k)|

)× 1

|L(k)|
×

|L(k)|∑
q=1

Score(uq) (5.5)

For a concrete example, assuming L(k) = {Shipment, Address} and L(e) =

{Deliver, Location}, and the synonym sets for words ”Shipment” and ”Address”

in L(K) are S1 = {Send,Delivery} and S2 = {Destination, Location,Reference},

respectively. For the word ”Deliver” in L(e), The highest n-gram similarity score is

with word ”Delivery” in synonym set S1, which is 0.66. For word ”Location”, the

highest n-gram similarity score is with word ”Location” in synonym set S2, which

is 1. And since L(k) and L(e) have the same length, the length penalty factor is 1.

Therefore, the similarity score between string k and string e is 1× 1
2
× (0.66 + 1) =

0.83.

In the next section, we will assess the performance of the five form component

search methods in terms of hit rate and computing time through the experiments

we have conducted.

42

5.3.6 Experiments and Results

We have conducted experiments with limited scope to assess the performance

of these four search methods using eight sample form components from the Schema

Library to generate search keys. We consider these samples as the correct expected

search results when searched by keywords generated from them. Then, we generate

the arbitrary search keywords based on the names in the samples. There are two ver-

sions of search keywords: a synonymous version and a typo version. For example, for

a form component named DespatchDestination, we generate two search keywords:

a synonymous version ShipmentAddress and a typo version ShpmetAddres.

Using these two versions of keywords, we use each of the four different methods

to search the Schema Library of 902 form components with the top 10 highest

similarity scores. If the sample form component exists in a search result, we call it

a hit. Hit rate is the ratio of the number of hits to the number of search queries

(i.e., 8). We compare the average hit rates of search for the eight samples. Table

5.1 shows the comparison results of the four search methods.

For search results of the synonymous version of search keys, WordNet-based

and synonym-based (both exhaustive and greedy) methods have the best hit rates

(i.e., 100%). This is to be expected because they both utilize semantics of word

synonyms. On the other hand, the search results of the typo version show n-gram

based and synonym-based methods are the better (i.e., 87.5% hit rate). This is

because WordNet-based and keyword-based search cannot deal with the similarity

of typo words, whereas n-gram based method can compute the similarity between

43

characters of words by edit distance [35]. Overall, the synonym-based search method

has the best performance in terms of hit rate and average computing time.

Table 5.1: Comparison of Search Methods with Synonymous Version of Search Keywords

Synonymous Version of Search Keywords

Matching Method Hit Rate Average Computing Time (millisec)

Keyword-based 0% 44

N-gram based 25% 45

WordNet-based 100% 20216

Synonym-based (exhaustive) 100% 2339

Synonym-based (greedy) 100% 2620

Table 5.2: Comparison of Search Methods with Typo Version of Search Keywords

Typo Version of Search Keywords

Matching Method Hit Rate Average Computing Time (millisec)

Keyword-based 12.5% 25

N-gram based 87.5% 43

WordNet-based 12.5 % 4345

Synonym-based(exhaustive) 87.5% 1840

Synonym-based(greedy) 87.5% 2016

However, the experiment conducted above only considers search queries with

one and two search words. For fair performance comparison, We conducted the

experiment to compare computing time of these methods considering |L(k)| > 2. In

this experiment, we only compare the computing time of WordNet-based, exhaustive

44

synonym-based and greedy synonym-based methods, since they have best overall

performance in terms of hit rates and they are computationally expensive.

Table 5.3 shows the comparison of computing time for these three search meth-

ods. Each computing time shown in Table 5.3 is the average computing time of eight

search queries. From the first row of Table 5.3, we can see that the computing times

for exhaustive synonym-based and greedy synonym-based search methods are almost

the same. This is because the concatenated word set of exhaustive synonym-based

method is relatively small when only two search keywords were inputted. However,

the computing time of exhaustive synonym-based search method increases signif-

icantly when the number of search keywords is beyond two. This is reasonable

because the algorithm complexity for exhaustive synonym-based search method is

O(MN), where N is the number of search keywords and M is the average number of

synonyms for each search keyword. Figure 5.5 represents the same result as that of

Table 5.3. This experiment demonstrates that greedy synonym-based search method

has the best performance in terms of computing time.

Table 5.3: Comparison of Computing Time

Synonym-based (exhaustive) Synonym-based (greedy) WordNet-based

Two words 2.5 2.6 20.2

Three words 32.2 3.7 21.1

Four words 210.8 4 23.8

45

Figure 5.5: Comparison of Computing Time

46

Chapter 6

XDF Output: XML Instance

XDF will output user-inputted data as XML instances, which can be either

supplier capabilities XML instance or customer requirements XML instance. These

XML instances will be taken as input for the process of supplier discovery.

6.1 XML Instance Generation

As explained in Chapter 4, XDF maintains the structures and constraints

defined in XML schemas. In other words, XDF is a web form representation of XML

schema, which provides a convenient way for users inputting data that conform

to rules defined in XML schema. Therefore, the XML instances generated from

user-inputted data adhere to XML schema automatically. Figure 6.1 illustrates an

example of how a form component is encoded as a XML instance.

In this example, the form component BasicInfo is encoded as a XML instance

with an element named ”Supplier”. The sub-elements of this ”Supplier” element

have the same hierarchical structure with the sub-form components of the ”Ba-

sicInfo” form component.

Chapter 7 will assess the performance of XDF by comparing XML-based

matching algorithm to some other supplier discovery approaches. This XML-based

matching algorithm, proposed by Kim [30], takes two XML instances generated by

47

Figure 6.1: Saving Dynamic Form as XML instances

XDF as input and computes the semantic-based similarity between them.

48

Chapter 7

Experiment on Supplier Discovery

In this Chapter, we assess the performance of XDF by comparing the search

results based on XML instances generated by XDF to other supplier discovery ap-

proaches including a keyword-based search and a ontology-based search.

7.1 Design of Experiment

For experimental data, we randomly choose 30 suppliers from Thomasnet, and

collected their capability data in the form of textual description. An artificially made

customer requirements was created. A human expert from DSN innovations Corp

provided a similarity ranking of the 30 suppliers for the requirement. We consider

this human expert generated raking as the ground truth for the experiment.

Using XDF, we encoded the textual descriptions of the requirements and capa-

bilities of the 30 suppliers and then generated their XML instances. XML instances

are analyzed by a semantic-based XML instance matching algorithm proposed by

Kim [30]. This method takes two XML schemas or instances as input and computes

the semantic-based similarity between them.

We compare results of XML-based method to two other approaches: keyword-

based search and ontology-based search. For Google keyword-based search, we used

Google custom search engine which allows user to create a customized search pref-

49

erences (e.g., search within specific website URL). We built a sample web site that

contains URL to multiple web pages, each of which includes the textual capability

description for one of the 30 suppliers. Then, we run the search of the web site using

the google custom engine. We choose multiple keywords of the given requirements.

For Ontology-based approach, we used a match-making algorithm proposed

by Ameri and Dutta [36]. The proposed match-making algorithm operates over

Manufacturing Service Description Language (MSDL), an ontology created for for-

mal representation of manufacturing capability. They also provide a quantitative

measure to connect customer requirements and suppliers capabilities based on their

semantic similarities. The textual descriptions of the requirements and capabili-

ties are encoded into instances of MSDL. The encoding process was performed by

domain experts

A total of 16 key words were extracted from the customer requirement as the

input to the Keyword based search. Ontology based search uses only 11 of the 16

key words (the other 5 are not defined in the ontology). For a fair comparison, we

ran two experiments for XML-based method, one creating requirement XDF form

using all 16 key words, the other using only the 11 key words defined in the ontology.

The results are called Full-XML and Partial-XML, respectively.

The experiments were conducted as following: Four search methods (i.e.,

keyword-based, ontology-based, Partial-XML based, and Full-XML based) were ex-

ecuted to discover suppliers whose capabilities satisfy customers requirements. The

result of each search engine is a ranked list of the 30 suppliers based on their similar-

ity scores. To enhance the accuracy of the discovery result, domain experts working

50

in the field of supplier discovery were requested to analyze the requirements and

capabilities, and manually produced a ranked list of matched (discovered) suppliers.

Then, the discovery result of each search engine was compared with the discovery

results from human experts. The comparison was measured by Recall/Precision

metrics [37], and normalized DCG (normalized Discounted cumulative gain) [38].

This experiment uses Top n Precision/Recall metric proposed by Kim [30] that

shows the result of both Precision and Recall with n = 30.

7.2 Experimental Results

Table 5.1 shows the performances of the four search results. The measures are

normalized to the 0-1 range. The first two rows give the Recall when comparing the

top 6 (and 10) of the search results with the list generated by the human expert.

The recall value 0.50 on the upper-left corner is read as: among the top 6 suppliers

found by the Keyword method, 3 of them are also in the top 6 from the human

experts list.

Table 7.1: Performances of Search Engines

Metrics Keyword Ontology Partial-XML Full-XML

Top 6 0.50 0.50 0.50 0.50

Top 10 0.60 0.50 0.60 0.60

nDCG 0.82 0.90 0.85 0.92

The results shown that for Recall metrics, the ontology-based search performed

51

slightly worse than both Key-word based and our XML-based search. In terms of

nDCG, which takes into consideration of relative ranking of all 30 suppliers, per-

formance of Keyword based search is significantly worse than the other two. More

interestingly, although the XML-based method performed worse than the ontology

based search when giving the same input of 11 key words (0.85 vs 0.9), its perfor-

mance improved to 0.92 when all 16 key words were used. This demonstrates that

the extensibility of XDF allows us to collect additional information beyond what

is defined in the ontology, leading to a more accurate discovery. Additional exper-

iments with different customer requirements and different human experts showed

similar results.

52

Chapter 8

Conclusions and Future Works

8.1 Conclusions

The objective of the research reported in this thesis is to design and implement

a form architecture that is flexible enough to capture a variety of customer require-

ments and supplier capabilities, and generate XML instances from user-inputted

data. These XML instances can be analyzed by advanced XML-based matching

algorithm to match suppliers and customers in the supplier discover process.

We implemented eXtensible Dynamic Form (XDF) to facilitate the process

of collecting manufacturing capability information of suppliers and requirements

of customers. XDF is constructed by a collection of form components that are

defined by several XML schemas, including domain ontology schemas, core com-

ponent, pre-defined manufacturing schemas and user-defined schema. XDF allows

users to extend the base form by creating their own form components. Thus, it

helps to better capture users domain-specific information. XDF also provides users

with a synonym-based search engine to search existing form components. Users can

dynamically add existing form components and newly created form components to

extend the base form. We compared four form component search methods and the

result shows that the synonym-based search method has the best overall perfor-

mance. XDF transforms data inputted on the form into XML instances, which will

53

be used in the supplier discovery process. We compared three supplier searching

methods including Keyword-based search, Ontology-based search and XML-based

search. XML-based search takes XML instances generated from XDF as input. The

experimental results demonstrate that the eXtensible Dynamic Form is valuable for

facilitating the supplier discovery process and in turn improving the search accuracy.

8.2 Future Works

There are several paths we would like to explore in the future. First, although

synonym-based search employed by XDF is faster than WordNet-based search, its

efficiency will still suffer when the number of words inputted by the user is large.

More efficient algorithms need to be developed and integrated into the synonym-

based search method. Second, it is necessary to investigate how to maintain and

utilize user-defined schemas to improve the reusability of XDF. The schema merg-

ing algorithms and social network techniques can be considered. Finally, Schemas

on manufacture domain used in XDF are quite simple and thus they are inefficient

to guide users to input useful information for large scale complex real world ap-

plications. Richer manufacturing schemas need to be integrated into current XDF

system.

54

Appendix A

User Manual

This manual is intended for new users with little or no experience using dy-

namic form interface. The goal of this document is to give a broad overview of

the main functions of the dynamic form and step-by-step instructions about how

to collect supplier profiles using the dynamic form interface. Our system provides

more flexible ways for suppliers to register their information using better-structured,

customizable, and better machine interpretable form architecture, called eXtensible

dynamic form (XDF). The XDF can customize the existing base form based on a

collection of reusable form components. The form components are modular so they

can be easily attached or detached to/from the existing base form. Each form com-

ponent is tree-like structured and may contain other form component as children.

There are four types of form components: ontology components, core compo-

nents, pre-defined components, and user-defined components. They are transformed

from domain ontology schema, core component schema, pre-defined manufacturing

schema and user-defined schema respectively.

Ontology component: provides a collection of manufacturing terminologies and

the semantically structured form components which are related to the manufacturing

ontology.

55

Core component: provides a collection of core form components which could

widely appear in many different circumstances of business information. This com-

ponent includes more common or general information than manufacturing domain-

specific information such as address, party, and id.

Pre-defined component: provides the basic form components defined by man-

ufacturing domain engineers.

User-defined component: provides the user-defined form components which

can be defined and shared by users. A user can search and reuse the user-defined

form components defined by other users. Or the user can create own form compo-

nents. Our system will be updated soon to support the social management capability

for users to create, publish, share, and reuse their form components.

A.1 Basic Form Interface

XDF helps you to construct a tree-like data form structure using the reusable

form components. Each form component can be extended by attaching or detaching

other form components as its children. This section explains the usage of basic form

interfaces for XDF.

A.1.1 Navigation Interface

The navigation sidebar assists users to visit different parts of the XDF web

site easily.

56

Through the list box at the top of the base form, you can add ”Service” and

”User Extension” to the base Form. All the ”Service” and ”User Extension” will be

listed at the left side of the base Form for helping user navigate through different

”Service” and ”User Extension”.

When you click the hyperlink, the corresponding web page will be showing on

the right side of the navigation sidebar.

57

Each page can be simply deleted by clicking button at the right side

of each ”Service” or ”User Extension”. Note that the initial basic information page

(i.e., BasicInfo) cannot be deleted.

A.1.2 Container Node

XDF consists of two types of nodes: container node and data input node.

The container node contains other nodes either other container nodes or data input

nodes. Container node has a text label indicating what the nodes it contains are all

about. Data input node has an input field which allows users to input their data

into the form. Each container node can be expanded or collapsed by clicking or

at the left of the node if it contains other nodes. If a container node is designed

for containing a node that might occur multiple times, it will be indicated by the

postfix (List) at the label.

A.1.3 Data Input Node

There are different types of data input nodes: Decimal, Integer, Double,

Boolean, DateTime, and String. However, the current prototype system of dy-

namic form only provides a single interface as shown above. You can input any text

data into the input node. Other data types will be supported later.

58

A.1.4 Data Input Node: List Type

This is a special type of data input node to represent the list type of data.

You should choose one of them listed in the combo box. It may contain other data

nodes as children.

A.1.5 Form Component Remove Button

Each form component has a remove button. You can easily remove the form

components by clicking at the right of the form components.

A.1.6 Extension

Each form component may include a button which allows you

to extend the form by adding the existing form components or creating new form

components. When you click the button, a pop up dialog will be shown

as follows:

First, you should input search keywords that represents the meaning of what

you want to add. These search keywords should be written as a string in the camel-

case or inputted separately by a white space. If you input search keywords as a

string in camel-case, these words should be joined without spaces, with each words

59

initial letter capitalized within the compound and the first letter is either upper or

lower caseas in ”PurchaseOrder”, ”shippingAddress”, or ”xPath”.

If you want to search the existing form components, then click but-

ton. A synonym-based search algorithm is currently used to find the matched form

components. The detailed process will be described in A.1.6.1.

If you cannot find any proper form components and you want to create new

form components using your input label, then click button. The

detailed process will be described in A.1.6.2.

If you want to return to your form, then click button. The dialog will

be closed.

A.1.6.1 Search Existing Form Components

If you click the button, then the system starts to search the existing

form components which matched to your input label. An example for the search

result of the input label Address is as follows:

60

The results can be grouped by different types of form components: ontology,

common core, pre-defined, and user-defined components. Each result only shows

the label of the form components.

Click to preview the form layout. An example for preview is as follows:

If you find the proper form component and want to add it in the current form,

then click at the left of the form component label as follows:

Each form component may occur more than once in the form. If you want to

add the form component only once, choose Single occurrence option as follows:

Otherwise, Multiple occurrence should be chosen. An example of the form

component added by Single occurrence option is as following:

61

An example of the form component added by Multiple occurrence option is as

following:

You can click to add additional Address form components.

A.1.6.2 Define New Form Components

If you cannot find any proper form component and want to create new form

components, click . The following dialog box will be shown to con-

firm the process.

62

The new form component is a container node. It can either contain multiple

data input node or be extended to contain other contain nodes. In following ”Choose

your form component type” dialog, you can choose your form component to be

simple type or extended type. Simple type user-created form component can only

contain multiple data input nodes with the same primitive type, while extended type

user-created form component can contain other user-created form components or

searched existing form components.

There are five different date types: Decimal, Integer, Double, Boolean, Date-

Time, and String. Note that current dynamic form generates the same data input

node regardless of those data types, but it will be updated.

The occurrence can be defined as MinOccurs and MaxOccurs indicators. The

MinOccurs indicator specifies the minimum number of times a data input node

can occur, while the MaxOccurs indicator specifies the maximum number of times

a data input node can occur. The default values for MinOccurs and MaxOccurs

are 1 and -1, respectively. Note that -1 means unbounded meaning that there is

no limitation to the occurrence of the data input node. An example of the form

63

component created as data input node with multiple occurrences is as follows:

If you set the new form component as extended type, choose the second option

as follows:

The newly generated ”DrillingMachine” form component with extended type

is as follow:

Then you can click button to further extend the ”DrillingMachine”

form component. An example is as follow:

64

A.2 BasicInfo Form Page

The initial form page of eXtensible Dynamic Form is ”BasicInfo” page as

shown below

You can input your basic profile (including supplier name, web site URL,

industry and product focus categories, certification, and more) into ”BasicInfo”

form page. The initial form page cannot be removed. Each data node is described

in the next subsection.

65

A.2.1 BasicInfo Nodes

• name: suppliers name.

• url: suppliers website URL.

• hasIndustryFocus: manufacturing industry types that supplier has focused

on. You can add multiple industry focus data node. Each data node provides

a list of industry types that is obtained from the manufacturing ontology.

You should choose the most relevant industry type of what supplier has been

involved in. If you want to input additional information, then you can click

to extend the form.

For other industry types that are not listed, you can choose ”UserDefinedIn-

dustry” in the list and then type the industry name in the form as shown

below.

• hasProductFocus: the manufacturing product types that supplier has pro-

duced.

66

Similar to hasIndustryFocus data node, you can add multiple product types,

extend the form, or input ”UserDefinedProduct” in the form.

• hasCertification: supplier quality certifications. You can add multiple certifi-

cations, extend the form or input ”UserDefinedCertification” in the form.

• Extension: you can add any other form components by searching the existing

form components or creating new form components. For details, please go to

section A.1.6.

A.3 Service Form Page

Multiple Service form pages can be added to the base form. Each form page

includes several data nodes: name, languageID, Description, Keywords, Special-

tyGroup, FacilityGroup, hasMaterial, and Extension. following is the screenshot

67

shows how to add a ”Drilling Service” Service.

After click the ”OK” button, the ”Grilling Service” is added to the Service

List on the right side of the base form. When you click the hyperlink of ”Drilling

Service”, the ”Drilling Service” will be showing on the right side of the navigation

sidebar.

A.3.1 Service Nodes

• name: manufacturing service name.

• Description: manufacturing service description.

• SpecilityGroup: a group of supplier core specialties for the specific manufac-

turing services. For example, supplier may specialize in precision machining,

prototype production, short-run production, quantitative production, assem-

68

bly, testing, and so on. You can specify multiple specialties by choosing them

from the given list or type in.

• FacilityGroup: a group of manufacturing facility for the specific manufacturing

services. You can choose the existing equipment list from EquipmentGroup

or define new equipment using Equipment as follows:

Add EquipmentGroups:

69

Add Equipments:

The Equipment form component includes several input fields as follows:

– name: equipment name

– type: equipment type or classification (e.g., Milling)

70

– Description: equipment textual description

– NumOfEquipments: the number of equipments that the facility has

– Addon: the additional parts/features of equipment (e.g. coolant addon

for CNC machine)

– Capability: max/min dimension capability supported by equipment. The

sub-components are as follows:

• hasMaterial

The Service page also includes the hasMaterial form component to specify the

materials that the service can handle with.

The list of material includes Inconel, Hastelloy, Magnesium, Polymer, Alu-

minum1200, Aluminum2030, StainlessSteel, Titanium, Aluminum2011, Alu-

minum2014, AlloySteel, Aluminum, Copper, Bronze, Nickel, CarbonSteel, Ca-

stIron, Brass, Metal, Plastic, and Rubber. If you want to define new material,

71

you can choose UserDefinedMaterial in the list as follows:

A.4 Example

In this section we will give a concrete example of transforming text description

of capability profile of LT Enterprise into XML instance vis XDF.

A.4.1 Raw Data of Supplier Capability Profiles

72

We first extracted information from the text description of capability profile.

There are four core services: Vertical CNC Milling, Horizontal CNC Milling, CNC

Turning and Water jet cutting. Eight materials have been used in the production

process. AS9100B and ISO 9001 certifications have been registered. Capabilities of

LT Enterprise are also described in this text description.

A.4.2 BasicInfo Page

In the ”Basic Info” page, we first inputted the name of the supplier, that is

LT Enterprise, and the industries it focuses on. Then we inputted the certifications

LT Enterprise registered. We extended the base form by adding several capabilities

of LT Enterprise.

73

A.4.3 Service Page

There are four services. We take ”Vertical CNC Milling” as an example. We

first inputted the name of the service and two specilities of this service: short-run

production and quantitive production. Then, we inputted equipments and capabil-

ities of Vertical CNC Milling. Finally, materials used in this service were inputted.

74

75

Following the same steps, we added all four services to the XDF.

76

A.4.4 XML Instance

After inputing all the information, We can click the ”GENERATE XML IN-

STANCE” button to generate the XML instance of the inputted data.

77

78

Bibliography

[1] M. Christopher and H. Peck, ”Building the resilient supply chain,” Interna-
tional Journal of Logistics Management, vol. 15, no. 2, 2004, pp. 1-14.

[2] Thomas Publishing Company, http://www.thomasnet.com/.

[3] MFG.com Corporate, http://www.mfg.com/en/.

[4] Engineering Search and Supplier Catalogs, http://www.globalspec.com/.

[5] C.S. Li, Y.C. Chang, and J.R. Smith, ”An e-marketplace infrastructure for
information,” Intelligent Multimedia, Video and Speech Processing, In Proc. of
International Symposium on 2001, pp.182-185.

[6] W3.org, ”Extensible Markup Language (XML) 1.0 (Fifth Edition),” Available
at http://www.w3.org/TR/xml/

[7] W3.org, ”XML Schema Part 0: Primer Second Edition,” Available at
http://www.w3.org/TR/xmlschema-0/

[8] W3.org, ”Resource Description Framework (RDF):Concepts and Abstract Syn-
tax,” Available at http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

[9] W3.org, ”OWL Web Ontology Language Guide,” Available at
http://www.w3.org/TR/2004/REC-owl-guide-20040210/

[10] B. Rensmann, H. Weigand, Z. Zhao, V. Dignum, F. Dignum, and M. Hiel, ”As-
sessing the value of mediators in collaborative business networks,” Establishing
the Foundation of Collaborative Networks, Springer, pp. 155-162, 2007.

[11] S. Colucci, T.D. Noia, E.D. Sciascio, F.M. Donini, M. Mongiello, ”Concept
abduction and contraction for semantic-based discovery of matches and nego-
tiation spaces in an e-marketplace,” Electronic Commerce Research and Appli-
cations, vol. 4, Summer 2005, pp. 345-361.

[12] M. Grieger, ”Electronic marketplaces: A literature review and a call for supply
chain management research,” European Journal of Operational Research, vol.
144, 2003, pp. 280-294.

[13] Aikins, Janice, R. Brooks, W. Clancey, et al. 1981. ”Natural Language Process-
ing Systems,” In the Handbook of Artificial Intelligence, Vol. I, ed. Barr, Avron,

79

and Edward A. Feigen-baum, pp. 283-321. Stanford/Los Altos, CA: HeurisTech
Press/William Kaufmann, Inc.

[14] R. Baeza-Yates, ”Challenges in the Interaction of Information Retrieval and
Natural Language Processing,” Computational Linguistics and Intelligent Text
Processing In Computational Linguistics and Intelligent Text Processing, vol.
2945, 2004, pp. 445-456.

[15] B. Kulvatunyou, H. Cho, and Y.J. Son, ”A semantic web service framework
to support intelligent distributed manufacturing,” International Journal of
Knowledge-based and Intelligent Engineering Systems, vol. 9, 2005, pp. 107-
127.

[16] J. Jang, B. Jeong, B. Kulvatunyou, J. Chang, and H. Cho, ”Discovering and
integrating distributed manufacturing services with semantic manufacturing ca-
pability profiles,” International Journal of Computer Integrated Manufacturing,
vol. 21, no. 6, 2008, pp. 631-646.

[17] H. Yu’an, Y. Tao, L. Lilan, and S. Haiyang, ”Research on manufacturing re-
source discovery based on ontology and QoS in manufacturing grid,” In Proc.
of the 2006 International Confe-rence on Cyberworlds, Lausanne, Switzerland,
Nov 28-29, 2006.

[18] E. Rahmand and P.A. Bernstein, ”A survey of approaches to automatic schema
matching,” VLDB Journal, vol. 10, no. 4, 2001 , pp. 334-350.

[19] P. Shvaiko and J. Euzenat, ”A survey of schema-based matching approaches,”
Journal on Data Semantics IV, LNCS 3730, 2005, pp. 146-171.

[20] E. Lai, ”Mapping between HTML form and XML data,” Available at
http://www.datamech.com/XMLForm/, 2006

[21] O. Chipara and A. Slominski, ”Xydra An automatic form gen-
erator for web services,” Extreme Computing Lab. Available at
http://www.extreme.indiana.edu/xgws/xydra/

[22] R. Raudjrv, ”Dynamic Schema-Based Web Forms Generation in Java,” Master
Thesis, 2010.

[23] F. Ameri and D. Dutta, ”A match making methodology for supply chain de-
ployment in distributed manufacturing environments,” Journal of Computing
and Information Science in Engineering, vol. 8, no. 1, 2008.

80

[24] The Open Application Group, ”Open Application Group IntegrationSpecifica-
tion,” version 8.0, 2002.

[25] Cay S. Horstmann and Gary Cornell, ”Core Java Volume I Fundamentals,”
Prentice Hall/Sun Microsystems Press, 2008.

[26] David Stephenson, ”XML Schema best practices,” Hewlett-Packard Develop-
ment Company, L.P. December 2004.

[27] C. Charras and T. Lecroq, ”Handbook of Exact String Matching Algorithm,”
College Publications, February, 2004.

[28] E. Ukkonen, ”Approximate string matching with q-grams and maximal
matches,” Theoretical Computer Science, vol. 92, no. 1, 1992, pp. 191-211.

[29] Grzegorz Kondrak, ”N-gram similarity and distance,” In Proc. of International
Conference on String Processing and Information Retrieval, 2005, pp. 115-126.

[30] J. Kim, Y. Peng, N. Ivezic, and J. Shin, ”An Optimization Approach for
Semantic-based XML Schema Matching,” International Journal of Trade, Eco-
nomics, and Finance, vol. 2, no. 1, 2011.

[31] A.L. Dulmage and N.S. Mendelsohn, ”Coverings of bipartite graphs,” Canadian
Journal of Mathematics, vol. 10, 1958, pp. 517-534.

[32] W.B. Douglas, Introduction to Graph Theory, Prentice Hall, Chapter3, 1999.

[33] WordNet, Available at http://wordnet.princeton.edu/

[34] D. Lin, ”An Information-theoretic definition of similarity,” In Proc. of the 15th
International Conference on Machine Learning, 1998, pp. 296-304.

[35] E. Ukkonen. ”Approximate string-matching with q-grams and maximal
matches”. Theoretical Computer Science ,1992, pp. 191-211.

[36] F. Ameri and D. Dutta, ”An upper ontology for manufacturing service descrip-
tion,” ASME 2006 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference, Philadelphia, Septem-
ber 10-13, 2006.

[37] Rijsbergen C.V. Van Rijsbergen, ”Information Retrieval,” 2nd Edition. Butter-
worth, London, Boston, 1979.

81

[38] J. Shin, N. Ivizic, J. Kim, F. Ameri, C. McArthur, S. De-Flitch, and T. Scac-
chitti, ”An experimental evaluation platform for state-of-the-art manufacturing
supplier discovery methods,” Electronic Commerce Research and Applications.

82

