
APPROVAL SHEET

Title of Thesis: Constraint Generation and Reasoning in OWL

Name of Candidate: Thomas H. Briggs, VI
Doctorate of Philosophy, 2008

Thesis and Abstract Approved:
Dr. Yun Peng
Professor
Department of Computer Science and
Electrical Engineering

Date Approved:



Curriculum Vitae

Name: Thomas Henry Briggs, VI.

Permanent Address: 203 Whitmer Road, Shippensburg, Pennsylvania.

Degree and date to be conferred: PhD, December 2008.

Date of Birth: September 29, 1971.

Place of Birth: Allentown, Pennsylvania.

Secondary Education: Parkland High School, Orefield, Pennsylvania.

Collegiate institutions attended:

University of Maryland Baltimore County, PhD Computer Science, 2008.
Shippensburg University, MS Computer Science, 2001.
Shippensburg University, BS Computer Science, 1996.

Major: Computer Science.

Professional publications:

Briggs, T. and Girard, C. D. Tools and techniques for test-driven learning in CS1.
J. Computing Sciences in Colleges, Volume 22, Number 3 (Jan.2007), pp. 37-43.

Wellington, C. A., Briggs, T., and Girard, C. D. 2005. Examining team cohesion as
an effect of software engineering methodology. In Proceedings of the 2005 Work-
shop on Human and Social Factors of Software Engineering (St. Louis, Missouri,
May 16 - 16, 2005). HSSE ’05. ACM Press, New York, NY, 1-5..

Carol Wellington, Thomas Briggs, C. Dudley Girard, The Impact of Agility on a
Bachelors Degree in Computer Science, agile, pp. 400-404, AGILE 2006 (AG-
ILE’06), 2006
Wellington, C., Briggs, T., Girard, D., Comparison of Student Experiences with
Plan-Driven and Agile Methodologies. In proceedings of the20th Frontiers in Ed-
ucation Conference, 2005. Indianapolis, IN. IEEE Press, ISBN: 0-7803-9077-6.

Briggs, T. Techniques for Active Learning in CS Courses, Presented to the Eastern
Conference of the Consortium for Computing Sciences in Colleges (CCSCE 2005),
October 11, 2005, New Rochelle, NY.
Briggs, T., Oates, T. Discovering Domain Specific CompositeKernels, In Proceed-
ings of the Twentieth National Conference on Artificial Intelligence and the Sev-
enteenth Annual Conference on Innovative Applications of Artificial intelligence,
732-739. Menlo Park, Calif.: AAAI Press.



Professional positions held:

Assistant Professor of Computer Science. (2002 – Present)
Shippensburg University, Shippensburg, PA.

Academic Information Manager. (1999 – 2002)
Shippensburg University, Shippensburg, PA.

Regional Hub Administrator. (1997 – 1999)
Shippensburg University, Shippensburg, PA.

Library Systems Manager. (1996 – 1997)
Shippensburg University, Shippensburg, PA.

PC & Network Specialist. (1995 – 1996)
Shippensburg University, Shippensburg, PA.

Systems Administrator. (1991 – 1993).
Joseph Ciccone & Sons, Inc., Whitehall, PA

2



ABSTRACT

Title of Thesis: CONSTRAINT GENERATION AND REASONING IN OWL

THOMAS H. BRIGGS, DOCTORATE OF PHILOSOPHY, 2008

Thesis directed by: Dr. Yun Peng, Professor
Department of Computer Science and
Electrical Engineering

The majority of OWL ontologies in the emerging Semantic Web are constructed from

properties that lack domain and range constraints. Constraints in OWL are different from

the familiar uses in programming languages and databases, and are actually type assertions

that are made about the individuals which are connected by the property. These assertions

can add vital information to the model because they are assertions of type on the individ-

uals involved; and they can also give information on how the defining property may be

used. Three different automated generation techniques areexplored in this research: dis-

junction, least-common named subsumer, and vivification. Each algorithm is compared for

the ability to generalize, and the performance impacts withrespect to the reasoner. A large

sample of ontologies from the Swoogle repository are used tocompare real-world perfor-

mance of these techniques. Finally, using generated facts,a type of default reasoning, may

conflict with future assertions to the knowledge base. Whilegeneral default reasoning is

non-monotonic and undecidable a novel approach is introduced to support efficient retrac-

tion of the default knowledge. Combined, these techniques enable a robust and efficient

generation of domain and range constraints which will result in inference of additional

facts and improved performance for a number of Semantic Web applications.
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Chapter 1

INTRODUCTION

The Semantic Web is an evolving set of technologies used to publish data to enable

intelligent agents. One major step in the development of thefuture Semantic Web must be

a set of enabling technologies that will ease the transitionfrom data to knowledge. This

research explores one frequently overlooked aspect of thistransition: property constraints.

This chapter provides an introduction to the issues and an overview of the proposed so-

lutions. The chapter is organized as follows: a descriptionof the problem appears in

Section 1.1, the formal thesis statement appears in Section1.2, and an overview of the

dissertation outline appears in Section 1.3.

1.1 Problem Description

The Semantic Web languages, such as OWL, allow encoding and organization of do-

main specific knowledge in ontologies in order to support efficient reasoning processes.

A domain is described with a collection of classes, properties, and individual definitions.

Classes describe groups of individuals and define their criteria for membership. Properties

describe relationships between individuals and between individuals and simple data values.

Individuals describe specific instances of classes throughassertions of class membership

and properties. The terminological and assertional description contained in the ontology is

1
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expected to be neither complete nor minimal. The reasoner isused as a tool to infer the

missing information.

One specific area that is problematic for ontology development is the role of property

domain and range constraints. In OWL, a constraint specifiesthe types of individuals which

fill a particular property. These constraints are not interpreted as restrictions about which

individuals can be used with a property, rather they serve asassertions about the types of

individuals connected by the property. There is valuable information that can be inferred

from domain and range constraints.

In many cases, constraints are not specified by ontology developers. The result of

unspecified constraints are vague semantics for that property and the individuals that it

connects. This work explores several reasons for this and provides techniques to construct

constraints from the ontology.

1.1.1 Domain and Range Constraints in OWL

There are some subtleties to the current revision of OWL and its implementation of

domain and range constraint definition and use. There are three main pitfalls when using

domain and range constrains in OWL: the default domain and range areowl : Thing, the

problematic interpretation of constraints between traditional programming languages and

OWL; and the lack of specific mapping from a domain to a ranges.

When an OWL property’s domain or range is left blank it defaults to be the concept

owl : Thing, which is equivalent to the Description Logic concept top(⊤) and is a concept

that represents everything. This says very little about what types of individuals that are

related to a property. These individuals are already a generic thing and this assertion does

not add any information. This results in a potential loss of information if there are no

other statements to stand in for the missing constraints. This also results in looser set of

semantics to check for inconsistencies in the fillers of a property.
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For example, we may see an assertion that individualALICE PROP BOB. If this is

the only information we have about these individuals then weknow nothing else about

ALICE or BOB, except that they are anowl : Thing and are connected through property

PROP. Without knowledge of the domain being modeled (and depending on the names of

the symbols used here), these are not very meaningful semantics.

Domain and range constraints are interpreted differently in OWL than they are in other

traditional database and programming languages. In these traditional languages, when a

method is restricted to allow only certain types of values, then any invocation of that method

will check the types to see that they match and throw an error if they do not. In OWL,

when an individual fills the slots of a property (either as subject or object) that individual

is asserted to be of a type of the domain or range. The distinction is subtle. In traditional

languages, domain and range statements describe a restriction on the valid types that may be

used. In Description Logics, these statements are assertions about the type of the individual

that are connected.

These differences cause real problems for users familiar with the traditional database

and programming systems transitioning to OWL and other Description Logics. They will

need to address the difference in interpretation of domainsand ranges to avoid creating

semantic errors in their knowledge bases (SWAD-Europe 2008). For example, suppose the

propertydrivesCar is described as having a domainPerson and range ofCar. Later, the

assertion thatYELLOW is aColor, andYELLOW drivesCar HONDA is added to the knowledge

base. In a traditional language this would cause an exception (YELLOW is aColor, not a

Person). In the Description Logic case, the reasoner will makeYELLOW a Person unless

there is some assertion that prevents this situation.

In the current 1.0 version of OWL, domain and range constraints are specified as a

collection of statements and cannot be paired with each other. For example, OWL 1.0

cannot describe that propertyhasRank has a range ofArmyRanks when the domain is
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Soldier, andNavyRanks when the domain isSeaman. Modeling this situation requires

one of two choices. The domain ofhasRank could beSeaman ∪ Soldiers, and the range

could beArmyRanks ∪ NavyRanks. The other option is to split the thehasRank property

into hasNavyRank andhasArmyRank. Neither of these options faithfully expresses the

same concept as the original concept.

1.1.2 OWL in the Wild

The theoretical interpretations and implications of domain and range constraints are

clear and well studied (World Wide Web Consortium 2005b). However, in practice, the

way OWL domain and range constraints are actually being usedby ontology developers is

surprising. A survey of over 200,000 semantic web documentsretrieved by the Swoogle

semantic web crawler showed that nearly 75% of the object properties were defined without

property constraints (see Section 6.1).

There are many reasons why these properties are not constrained. First, the informa-

tion may not have been known to the ontology developer. For example, if the ontology

were developed incrementally, the property may be defined before the classes that make

up the domain and range. Second, the lack of constraints may have been an artifact of

the ontology generation processes used to construct these OWL documents. For example,

suppose an ontology generator is used to automatically translate data from a non-semantic

source. The ontology generator found evidence of a role but did not find evidence of any

valid constraints. Other reasons could include: missing information, user error, or incom-

plete specification of the property itself. In some cases, itcould be the intention of the

ontology author that a particular property does not have a constraint.

Given an ontology containing a property with an unconstrained domain or range, is

there a way to determine whether the property should have been constrained to something

more specific thanowl : Thing? The answer depends on the assumptions made about the
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universe being described. The Open World Assumption statesthat what is not stated cannot

be assumed to be true or false - it is unknown. The lack of a domain or range constraint

neither implies that a property is really unconstrainable nor does it imply that there is

some constraint that is not known. This is a very unsatisfactory position. Without external

domain knowledge, an examination of an ontology cannot determine whether the lack of a

constraint is intentional or not, or even if the constraintsexist or not.

1.1.3 Generating Domains

The way properties are used can provide hints about which domain and range con-

straints could apply. This work proposes three different techniques to generate domain and

range constraints:

• Disjunction,

• Least Common Named Subsumer,

• Vivification.

These constraint generation algorithms share a method of collecting evidence for the do-

main and range constraints for a property. First, the list ofproperties in the ontology is

computed. For each propertyP in the list, each class definition in the ontology is evaluated

to determine if it contains a restriction involving the propertyP . If it does, then the defined

class is added to the domain ofP and the restricted class definition is added to the range of

P . Each of the generation algorithms use a different method toconstruct the final domain

and range constraints forP . The disjunction method computes the least specific subsumer

of the set of classes in the domain and range. The least commonnamed subsumer computes

the least specific named concept that subsumes all of the terms in the constraint list. The

vivification algorithm computes a heuristic guided summaryof the concept list.
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A domain or range constraint can be computed from the source ontology with any of

these three methods. Using the computed domain and range statements can add previously

unstated information to an ontology. The problem is that each of these approaches creates

different semantics for the generated domain and range constraints. These differences have

an impact on the quality of the resulting reasoning and on theperformance of the reasoner.

Another additional difficulty with this approach is determining whether the computed

domain and range constraints match the intentions of the ontology’s authors. Therefore,

there needs to be a way to manage the derivation of new facts from the knowledge base and

to efficiently retract information from the knowledge base if later assertions clash with the

generated domain and range.

1.1.4 Default Reasoning

Default reasoning is a form of non-monotonic reasoning, in which facts are known by

default or are assumed due to a lack of information to the contrary. In this line of research,

the domain and range constraints are computed and used in thereasoning process as if they

were assertions made by the author. After those constraintsare computed, information is

subsequently entered into the knowledge base. These statements are the result of default

rules and may clash with current or future facts causing the knowledge base to become

inconsistent. In order to correct the inconsistency, theremust be a way to distinguish be-

tween facts that were asserted, default, or inferred. If theinconsistency is caused by facts

that were either default facts or inferred from default facts then which should be removed

from the knowledge base. This is a form of default reasoning.

Most default reasoning is undecidable. In an undecidable logic, there are well-formed

valid formulae that cannot be proven to be correct. A simple strategy to avoid undecid-

ability while supporting very limited default reasoning will be described. The strategy

will consist of two principle parts: tracking the derivation of facts and supporting contrac-
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tion. The inference rules will be modified to handle the presence of default rules and will

propagate the origin of a statement in the database through the inference process. The con-

sistency criteria of the reasoner will be modified to handle the case of inconsistency due

to default facts. When a default statement causes the inconsistency a contraction operation

will remove the necessary facts to restore the knowledge base to a valid state.

1.1.5 Summary

Although domain and range constraints are important assertions when developing an

ontology, they are frequently overlooked. Because of this,there is a great deal of latent

information in an ontology that cannot be inferred by the reasoner. Generating default do-

main and range constraints can help restore this information. Construction of an algorithm

to do this will help maintain reasoner performance and manage the size of the knowl-

edge base. Default assertions can lead to problems with monotonicity which are addressed

through tracking whether a fact is asserted by the ontology author or default. Modifying

the reasoner’s inference rules to use this tracking information can lead to an efficient form

of default logic with contraction while preserving consistency and decidability.

1.2 Thesis Statement

The purpose of this research is to investigate methods for generating domain and range

constraints from its defining ontology and to evaluate the quality of this generation. This

work will also investigate the default reasoning necessaryto support generated constraints.

A specific focus will be on management of the default facts in the knowledge base including

tracking default facts and efficient retraction operationsto restore consistency.

The expected outcome of this research is an algorithmic framework to generate and

evaluate domain and range constraints. Another outcome is to use this algorithm to com-
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pare the generated constraints against the asserted constraints in existing ontologies to as-

sess the subsumption relationships between them. A third outcome is an inference pro-

cedure that will enable limited default reasoning to be added to the existing OWL infer-

ence rules to support these operations while maintaining the completeness, correctness,

and complexity results for traditional OWL reasoning tasks.

The intended audience for this research includes ontology developers, especially those

developing large ontologies where these rules can be used toiteratively improve their on-

tologies by generating constraints and using those constraints as guidance for asserted con-

straints. Another audience will be researchers using information extraction to generate

ontologies from non-semantic sources where specific domainand range information is not

readily available. One final audience for this research includes those interested in ontology

integration where presence of concise and meaningful domain and range constraints may

help identify overlapping concepts between two ontologies.

1.3 Dissertation Outline

The remainder of this document is organized as follows. Chapter 2 provides an in-

troduction to Knowledge Representation and Description Logics. Chapter 3 introduces the

semantic web language OWL. Chapter 4 describes domain and range constraint genera-

tion algorithms and their implementation. Chapter 5 describes the modifications of OWL

inference rules to support limited default reasoning. Chapter 6 provides results demon-

strating the performance of experiment. Finally, Chapter 7provides a final discussion and

suggestions for future research.
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Chapter 2

DESCRIPTION LOGICS

Knowledge representation is the field of Artificial Intelligence that focuses on the

design of systems that are capable of expressing knowledge about a particular domain.

Reasoning is concerned with the creating systems that discover new information through

an inference process. Together, knowledge representationand reasoning are two of the most

crucial issues in the development of intelligent systems. Representing human knowledge

and using it to solve problems has been at the heart of the Artificial Intelligence field since

its beginnings with the Dartmouth Conference (McCarthyet al. 1955) where the original

researchers were interested in how a “. . . computer can be programmed to use a language.”

Generally, there are two parts of this problem: how to represent knowledge and how to use

that knowledge to reason about the state of the world.

There are numerous approaches to solving this problem. Someapproaches are based

on crisp logics with well defined semantics using first-orderlogic. First-order logic pro-

vides clear semantics and sound inference mechanisms. Systems of this type include PRO-

LOG, Otter, and SPASS, (Colmerauer 1993), (Mccune & Wos 1997), (Weidenbachet al.

2002). Other approaches include probabilistic approaches. These systems frequently use

Bayesian reasoning to extend the semantics of the reasoner to handle uncertainty. Systems

of this type include Bayesian Networks (Pearl 1988), Probabilistic Logic, (Nilsson 1986),
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P-CLASSIC (Koller, Levy, & Pfeffer 1997) and BayesOWL (Ding2005).

Description Logics are a branch of crisp logics that are are being employed in the con-

struction of the Semantic Web with the definition of standardlanguages such asDAML+OIL

and OWL (Section 3.2.2). Description Logics were selected for a number of reasons. First,

they have a long history dating back to the frames systems in the 1970s (Baader & Nutt

2003). Second, they include well-researched and articulated languages such as KAON2

(Motik ). Third, they provide clear semantics in the definition of classes, property rela-

tionships between individuals, and type assertions on those individuals. Fourth, there are

existing web applications based on DL such asUNTANGLE andFINDUR; and the exis-

tence of DL languages designed for the web such as OIL (Horrocks, McGuiness, & Welty

2003). Finally, there are also a rich set of reasoners, such as Pellet and FACT (Parsia &

Sirin 2004), (Horrocks 1999). The combination of expressive logic with clear semantics

and efficient reasoning make Description Logics well suitedfor their work in the emerging

Semantic Web.

This chapter includes an introduction to Description Logics in Section 2.1, an

overview of types of Description Logics in Section 2.2, and the structure of a Descrip-

tion Logic knowledge base in Section 2.3. An overview of the reasoning process and types

of tasks supported by a reasoner are discussed in Sections 2.4 and 2.5. Finally, an overview

of Default Logics is discussed in Section 2.6.

2.1 Description Logics

Description Logics evolved from prior work in Semantic Netsand Frame based sys-

tems. The prior systems provided mechanisms to represent the generality or specificity of a

particular domain through IS-A links; but they typically lacked the ability to express other

types of relations. In comparison, Description Logics allow much more general expressions
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of relations between concepts (Nardi & Brachman 2003).

2.1.1 Overview

Description Logics are built from a set of classes (concepts), relationships (roles or

properties), and instances (individuals). Atomic concepts and roles are used to represent

some principle concept in the domain or a binary relationship between them. More com-

plex terms are built using operators such asintersection, union, complement, andvalue

restrictionsthat combine atomic and complex terms together to define new classes. Fig-

ure 2.1 shows an example of a pair of concept descriptions in aDescription Logic. The two

definitions use the intersection operator to combine existing atomic classes to create new

complex classes. The first represents the intersection ofPerson andProfessor and repre-

sents all people who are professors. The second example defines a class where everyone is

aPerson and notMale and areParent, which describes the concept of a mother.

Person ⊓Male

Person ⊓ ¬Male ⊓ Parent

FIG. 2.1. DL Example

Description Logics are a subset of First Order Logics (FOL).Like FOL, there is no

inherent semantic meaning in the names of the symbols. The convention is to select a

symbol whose name bears some relation to the concept it represents. In Figure 2.1, the

symbolPerson can represent anything. It is a recommended practice to select class names

that reflect the meaning of what they represent.

Changing the name of the symbol does nothing to change the truth of the relationships

between them. In the example of Figure 2.1, the symbolPerson could just as easily be
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named some randomly generated name, such asGEN3233. The semantic interpretation

would be unaffected by this change. The semantic interpretation is defined by the organiza-

tion of the classes and the relationships that connect them together. These relationships are

used to make inferences about new relationships between theclass definitions and to infer

type assertions for individuals in the knowledge base. A pair of isomorphic graphics with

different symbol names have identical semantics. The correspondence between symbol

names and what they represent is primarily a tool to make it easier for human knowledge

workers to maintain the knowledge base (Nardi & Brachman 2003).

2.1.2 Parts of a Description Logic

Classes (concepts) can be atomic, consisting of a single term, or can be be defined

as a set of value restrictions involving other concepts or roles. Atomic classes are usually

implicitly defined merely by referencing them in other classdefinitions or through type

assertions. More complex classes can be created through class definition constructors.

Individuals are specific instances of classes. Individualsrepresent specific instances of

some set of classes. Suppose there is a classCar that describes all cars, then an individual

YellowCar represents a specific car. Each individual may have a number of class assertions

that describe different aspects of the individual. For example, the individualYellowCar

could be a member of the classCar and the classJohnsThings, the collection of things

owned by John.

Properties are used to define relationships between individuals or between an indi-

vidual an literal data such as a string or a number. A role assertion has an individual that

is a subject and another that is the object. These individuals are often called fillers. The

property assertion acts as the predicate that ties the subject to the object. Together prop-

erties and individuals define the semantic structure of a specific instance of a knowledge

base (Nardi & Brachman 2003). For example, a propertyhasDoors could connect the
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individualYellowCar to the value4.

Different Description Logics may further extend the basic property constructor with

additional definitions. One common set of extensions include domain and range con-

straints. Another common extension is a statement that a property has an inverse property.

Properties can also be identified as being transitive, symmetric, and functional (Nardi &

Brachman 2003).

Domain and Range Constraints Domain and range constraints are of particular

interest to this research. The domain and range constraintsassert the types of the fillers of

a property. The subject filler is asserted to be a member of theclass of the domain, and

the object filler is asserted to be a member of the range. This use of constraints is different

than in other applications, such as databases, where the domain and range constraints are

interpreted as restrictions on the types of values that allowed to be used with that property.

For example, using traditional Object-Oriented Programming languages such as Java

or C++, a function may be declared to accept an object of classC. In essence, the domain

of this function isC. Calling the function with an object of any class that is notC or one

of its sub-classes will result in either a compilation erroror a run-time type exception. If

the instance is a sub-class ofC, it will be type-cast to typeC and will, temporarily, lose all

essence that is not part of classC.

The Description Logic interpretation of domain and range constraints is that they are

sufficient conditions to add a type definition to the subject or object individuals that fill a

property role assertion. Thus, for some property that has a domain of typeC, any subject

of that property becomes a member of the classC, or the ontology becomes inconsistent if

that causes a class with other assertions.
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Other Constructors Most Description Logics provide two class definitions con-

structors, a subclass constructor,⊑, and an equivalence constructor,≡. The difference is

in the interpretation of the relationships. The subclass constructor defines an inheritance

relationship between the super- and sub-classes. The sub-class inherits the properties of

the super-class and any instance of the sub-class necessarily has the properties of the super-

class. The equivalence relationship is a stronger assertion and describes necessary and

sufficient criteria for the two classes. In effect, it is sufficient to know that an individual is

a member of one class to know that it is a member of the other class as well.

Classes are also constructed using restrictions. Restrictions are descriptions of sets

of individuals that meet the criteria of the restriction. Common restriction types include

existential restrictions,∃, value restrictions,∀, and cardinality restrictions,≤, =,≥.

Let hasChild be a property that represents that two individuals that are related to each

other such that one is the parent and the other is the child. For example,hasChild(x,y)

states thatx is the parent ofy.

An existential restriction onParent could be∃hasChild.P erson. This states that for

eachParent there exists at least one individual that has typePerson and is related to the

Parent through thehasChild relationship.

The existential restriction does not mean that they in the hasChild(x,y) assertion

above is aPerson. There could be other individuals that fill the object of the property.

This assertion says that there must be at least one, possiblyunknown, individual that fills

this property.

A value restriction could be,∀hasChild.P erson. This defines a set, or sub-class, that

states that for all members of this class, they are subjects of the hasChild property, and

any objects they are connected to through this role must be oftypePerson. This does not

mean that thereareany fillers of this property. It just states thatif there arethenthey must

be of typePerson.
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ParentOfOne ⊑ Person ⊓ ∀hasChild.Person ⊓
∃hasChild.Person⊓ = 1hasChild

FIG. 2.2. Equivalent OWL Encodings

A cardinality restriction could be,= 1hasChild. This states that there is exactly one

one filler of this class. Cardinality restrictions are used to describe the sizes of the sets of

fillers for a particular class.

Figure 2.2 combines these class constructors to define a new class,ParentOfOne.

This class represents the subclass of all things that are in the setPerson, and who only

have children that are also inPerson, and who have some child that is aPerson, and who

have exactly one child. This demonstrates the capability ofa Description Logic to build

complex terminologies from simple constructors.

2.2 Types of Description Logics

Brachman and Levesque first demonstrated that the expressiveness of the DL drove

the runtime of reasoning and that for certain DL subsets, subsumption queries can be com-

puted in polynomial time (Brachman & Levesque 1984). Their work showed that the com-

putational complexity of the reasoner can be controlled through careful selection of the

language constructs. They showed that for basic Description Logics, a reasoner could be

constructed which operates in polynomial time, while adding that other more expressive

constructors can move reasoning with the DL to worst-case NPtime and space. This was

one of the most important contributions to the field.

Because of the complexity results of Brachman and Leveseque, different Description

Logics can define a set of constructors and operators to allowexpression of particular types

of relationships. For example, while all Description Logics allow the definition of subclass
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Table 2.1. Description Logic notation and meaning.
Symbol Meaning
AL Attributive Language
U Union of concepts
E Existential quantification of roles
N Numeric restrictions (cardinality constraints)
C Negation of concepts
I Inverse of roles
R Intersection of roles
S Stands forALCR+ , i.e. extension ofALC with transitive roles
H Hierarchy of roles
O Ability to define class by enumerating its instances
Q Qualified number restrictions

(D) Support for primitive datatypes (e.g. integer, string)

relationships between classes, not every language supports functional properties or cyclic

terminologies. The set of operators supported by a particular language determines the

reasoning properties of the language. Careful selection ofthese operators allows a DL to

maintain the necessary expressiveness for a given application domain while maintaining

the most efficient inference procedures.

Description Logics are commonly identified by the constructors that it supports. The

naming convention uses a symbol for each of the constructors. The DL name is the con-

catenation of these symbols. Table 2.1 contains the set of common symbols and their

meaning (Nardi & Brachman 2003), (Baader & Nutt 2003), (Horrocks, Patel-Schneider, &

van Harmelen 2003). Description Logics are all subsets of the family of Attributive Lan-

guage, noted by the standard symbolAL. Each extension is noted by appending a symbol

onAL, connecting the DL name with its set of extensions. One set ofDL extensions is

quite common, and is identified asS, which stands for the languageALCR+ .

Using the symbols from Table 2.1, the Description LogicALUC would support the

baseattributive language, union of concepts, andcardinality constraints. The language
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SHIQ extendsALCR+ with role hierarchies, inverse roles, and qualified number restric-

tions.

These extensions add expressiveness through inclusion of different constructors that

allow additional relationships to be defined. Different Description Logics have more in

common than differences, despite the variance in linguistic combinations. Despite their

differences, all Description Logics must provide a way to define terminological concepts

and roles; assert instances of those concepts; store those assertions in a knowledge base

(KB), and perform inferences using that KB (Nardi & Brachman2003).

One noteworthy consequence of the dependence of reasoning complexity on expres-

sivity is that complexity is independent of the actual language used to represent the con-

structors. A serialization of a Description Logic describes the language used to tell the

knowledge base new facts. The serialization can be based on traditional logic formulae or

be specific to an application such as FACT (Horrocks 1999). Aslong as the serialization

has some form for each of the supported DL constructors it hasno effect on the expres-

sivity of the DL or the reasoning hardness. In many cases, an ontology expressed in one

serialization can be translated to another serialization of the same Description Logic. This

is an important consequence for the development of the Semantic Web languages. The

semantics are determined by the DL and the reasoner, not the serialization.

2.3 TheT-Box and A-Box

There are two principle components of a Description Logic knowledge base. TheT-

Box is composed of the intensional knowledge in the form of terminological descriptions

of the domain. TheA-Boxis composed of the extensional, assertional knowledge specific

to individuals (Nardi & Brachman 2003). The syntax of these assertions depends on the

specific DL (and software) being used to implement the knowledge base (KB).
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T-Box Defintion
Professor ≡ Person ⊓hasGradStudent ≤ 1 ⊓ ∃hasStudent.Student

Student ⊑ Person
hasStudent ↔ studentOf

hasGradStudent ⊑ hasStudent
hasGradStudent ↔ isGradStudentOf

A-Box Defintion
Professor(JONES)
Student(ABEL)
Student(BELL)
isGradStudentOf(ABEL, JONES)
isGradStudentOf(BELL, JONES)

FIG. 2.3. DL knowledge base for a simplified University domain.

Figure 2.3 shows a knowledge base that defines a highly simplified university domain.

The language uses Tarski-style logic sentences (Stanford Encyclopedia of Philosphy 2008).

TheT-Boxexplicitly defines two concepts:Professor, andStudent. The atomic concept

Person is implicitly defined as a result of being on the right hand side of theProfessor

andStudent definitions. Four roles:hasStudent, studentOf, hasGradStudent, isGrad-

StudentOf are also defined. The conceptProfessor is defined to have the necessary and

sufficient properties of: aPerson, having at least one student (hasStudent), and having 0

or 1 graduate students (hasGradStudent). The conceptStudent is defined as a subclass

of Person. The rolehasStudent is an atomic role and defined to have an inverse role of

studentOf. The rolehasGradStudent is a sub-class of thehasStudent relationship, and

has an inverse role ofisGradStudentOf. TheA-Boxmakes five assertions:JONES is a

Professor, ABEL andBELL areStudents; andABEL andBELL are graduate students of

JONES. The seeming inconsistency ofABEL andBELL being students ofJONES will

be explored in Section 2.4.2.

Using the naming conventions of Table 2.1, the minimum DL that can express this

ontology isALEN+. This DL contains:Attributive Language, with Existential Quantifi-
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cation, andCardinality Restrictions, with Inverse Roles.

2.4 Basic Reasoning Tasks

The primary task of a Description Logic is to support the classification of objects

within a hierarchy of concepts (Baader & Nutt 2007). The constructs of the DL are used to

define concepts and roles and to make assertions regarding individuals within the domain.

Automated reasoners are able to use the stated assertions and terminologic statements to

infer new facts that were not explicitly specified during theKB construction. Reasoners

typically answer two different types of queries:subsumptionqueries against the T-Box,

andinstance checkingqueries against the A-Box.

Subsumption A conceptC is subsumed by a conceptD with respect to T-BoxT if CI ⊆
DI holds for every modelI of T . For example, we could use the KB in Figure 2.3 to verify

thatStudent ⊑ Person. Subsumption queries are used to answer other types of queries,

including:satisfiability, equivalence, anddisjointness(Baader & Nutt 2003).

Satisfiability Let C be a concept, and⊥ represent the null concept. A conceptC is satis-

fiable (denotedSat(C)) if C is not subsumed by the null concept:

Sat(C)⇐⇒ ¬(C ⊑⊥)

�

Equivalence Let C andD be two concepts in the domain. The concepts are equivalent

(denotedC ≡ D) if:

C ≡ D ⇐⇒ C ⊑ DandD ⊑ C

�
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Disjointness Let C andD be two concepts in the domain. The concepts are disjoint (de-

notedC ∩D = ∅) if:

C ∩D = ∅ ⇐⇒ C ∩D ⊑⊥

�

Using these definitions, we are able to answer questions about the T-Box of the KB.

For example, we can check if different concepts are satisfiable:

Example Check concept satisfiability by determining if the following is true.

Sat(Professor)⇐⇒ ¬(Professor ⊑⊥)

The satisfiability of classProfessor is true so long as there can be at least one member

of the class. Most reasoners implement this check by creating an anonymous individual and

executing the reasoning algorithm until the reasoner is complete or there is an inconsistency

created. In this case, with no further evidence the class Professor is satisfiable because there

is no other evidence to show that it is not.

This set of definitions can also be extended to answer queriesabout instances in the A-

Box. For example,instanceOf(JONES, Person) is true, becauseJONES is an instance

of Professor, andPerson subsumesProfessor.

Using these definitions, the worst-case efficiency of the algorithms can be computed

as the cost for subsumption checking and developers of knowledge-based systems can im-

plement systems using only a subsumption operator. One of the most useful contributions

of Description Logic is that the reasoner can be created using only a set of transformation

rules which are dependent on the expressivity of the DL. Extending these rules enables the
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same reasoner to work on more expressive knowledge bases. Due to the regularity of these

rules, many heuristics and optimizations have been developed to exploit common patterns

in ontologies to further improve the average case performance of the reasoner.

2.4.1 Open World Assumption

The Open World Assumption is simply stated as anything that isn’t asserted in the

KB (or that cannot be inferred) is considered to be unknown. Most implementations of

Description Logic reasoners choose the Open World Assumption (OWA). The Open World

Assumption is a departure from traditional databases and some other knowledge-based

languages like Prolog that make the Closed World Assumption. Any fact left unstated in

the Close World Assumption model is assumed to be false. Thisis frequently described as

Negation as Failure.

Suppose some traditional database contains a relation of parents and children. There is

a row indicating thatALICE is the parent ofBOB, and there are no other rows forALICE.

Under the Close World Assumption, selecting parents with more than one child would not

includeALICE. This is due to the lack of additional entries forALICE in the database. In

this case, not knowing about any other children forALICE is equivalent to the case where

ALICE is known to have no more children.

Now consider the same example using the Open World Assumption. The knowl-

edge base contains the assertionhasChild(ALICE,BOB). This assertion states that of all

possible worlds, the only valid worlds are those in whichALICE has a childBOB. Any

possible worlds in whichALICE has onlyBOB as her child are consistent, as are any

worlds in which ALICE has more than one child. Thus, asking the KB ifALICE is

InstanceOf(= 1(hasChild.Person)) returns false, indicating that there maybe worlds

whereALICE has one child, but there may also be ones where she has more. Because it is

not true inall worlds, then it is not true.
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2.4.2 Unique Name Assumption

One other area where DLs depart from other more familiar systems is that they do not

make the Unique Name Assumption (UNA). The Unique Name Assumption allows two

individuals with different identifiers to be assumed to be two different individuals.

The definition of the university knowledge base in Figure 2.3seems to contain a con-

tradiction regarding the number of graduate students assigned toJONES. The knowledge

base contains assertions thatJONES is a Professor, which carries with it the necessary

criteria that he have no more than one graduate student. The KB also asserted thatABEL

andBELL satisfy theisGradStudentOf relation forJONES.

If there are no possible models of worlds where every fact is true then the KB is

inconsistent and the reasoner stops. The ABox of Figure 2.3 does have a possible model that

is consistent with the assertions in the knowledge base. Dueto the lack of the Unique Name

Assumption, it is possible that individualsABEL andBELL are two different symbols for

the same individual. Without UNA, the reasoner cannot automatically infer thatABEL 6=
BELL, and with the Open World Assumption, it cannot be concluded that this is or is not

the case.

Description Logics frequently define operators to assert that specific concepts or in-

dividuals are not the same. For example, the university KB ofFigure 2.3 can contain an

assertion thatABEL is the same asBELL or that they are disjoint. Making extensive use

of these operators, to explicitly close possible unique names, can degrade reasoner per-

formance and cause quadratic growth in the size of the knowledge base. For a class ofn

individuals, to express that all individuals are distinct we needn(n−1)/2 = O(n2) disjoint

statements.
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2.5 Tableau Reasoners

Prior to the emergence of tableau algorithms, reasoners such as KL-ONE (Schmolze,

Beranek, & Inc 1985) and KRYPTON (Brachmanet al. 1985) relied on structural sub-

sumption algorithms (Baader & Sattler 2001). Structural algorithms rely on computing

normalized forms for each of the terms in the knowledge base.Subsumption checking

is simply a comparison of the normalized forms of the two concepts (Horrocks 2003).

Structural subsumption algorithms are generally decidable but frequently incomplete and

difficult to extend to expressive DLs (Horrocks 2003). Tableau algorithms were originally

proposed by Schmidt-Schuabß and Smolka in 1991 to address problems with structural

subsumption algorithms (Schmidt-Schaubß& Smolka 1991).

Tableau algorithms operate by constructing atableau graphwhere nodes represent

the individuals of the graph, and directed edges indicate relationships between them (Hor-

rocks 2003). The reasoner applies a set of expansion rules tothe tableau. The algorithm

terminates when there are no remaining expansions or when a clash is detected.

There are a number of optimizations and simplifications which can be applied to im-

prove the performance of a tableau reasoner, including: acyclic definitions in the TBox,

and an unfolding operation. The most important factor in theperformance of the tableau

reasoner is the set of consistency-preserving transformations that are available. The trans-

formations that are selected represent the logical constructs of the Description Logic. Un-

like structural subsumption algorithms, the tableau reasoner is easily extended through the

additions to set of transformation rules (Horrocks 2003).

2.5.1 Acyclic TBox

Multiply Defined Class When a terminology contains multiple, partial definitions for a

class, that class is said to be a multiply defined class. LetC, D be distinct class descriptions.
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Let classA be defined with two statements,A = C andA = D. Then classA is a multiply

defined class (Baader & Sattler 2001).

Cyclic Definition When a terminology contains a definition that depends on itself, it is

said to be a cyclic definition. For example, suppose there is aset of concept definitions in

a TBox: A1 = C1, A2 = C2, . . . , An = Cn whereAi occurs inCi−1, (1 < i ≤ n) andA1

occurs inCn. Then this is a cyclic definition. (Baader & Sattler 2001).

Acyclic Terminology A terminology (TBox) is an acyclic terminology if and only ifit is

a set of concept descriptions that neither contains multiple definitions of the same class or

cyclic definitions.

Ensuring that a TBox is acyclic is important in order to guarantee completeness of

the reasoner. Using an acyclic TBox allows the reasoner to use an unfolding operation to

collapse the terminologic definitions into instance assertions and to perform all reasoning

on those instance assertions. The result is a much more efficient reasoner and an avoidance

of the hardness associated with allowing arbitrary TBox constructs.

2.5.2 Unfolding

Unfolding Unfolding is a process that replaces references to defined concepts with their

definitions. If the TBox is acyclic, then all defined conceptscan be unfolded into ABox

assertions of atomic concepts (Horrocks 2003).

Using unfolding with acyclic TBoxes eliminates the need to do any reasoning with the

TBox. By applying unfolding rules such as those shown in Figure 2.4, the statements in

the TBox such as equivalence and subsumption can be applied to individuals in the ABox

(Horrocks 2003). In that figure,A represents the ABox,T represents the TBox,A is an

atomic, defined concepted,C is a defining concept.
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U1−rule if 1. A containsA(x) and(A ≡ C) ∈ T
2. C(x) /∈ A

then A → A∪ {C(x)}
U2−rule if 1. A contains¬A(x) and(A ≡ C) ∈ T

2. ¬C(x) /∈ A
then A → A∪ {¬C(x)}

U3−rule if 1. A containsA(x) and(A ⊑ C) ∈ T
2. C(x) /∈ A

then A → A∪ {C(x)}.

FIG. 2.4. Unfolding Rules

2.5.3 Consistency Preserving Transformations

Given a KB with an acyclic TBox which has been unfolded using the previous un-

folding transformations, then the tableau subsumption algorithm can proceed using only

the ABox. The transformation rules for a tableau reasoner that implements the Description

Logic ALC is shown in Figure 2.5 (Baader & Sattler 2001). The reasoner works by ap-

plying these rules and expanding the ABox until no further rules can be applied or until a

clash is detected.

The greatest challenge of this algorithm is in the⊔−rule, where disjunction creates

non-determinism with respect to which fact to add to the ABox. The non-determinism

caused by this rule is usually handled through search with backtracking. When the rule

is applied, it opens a set of ABoxes. For each ABox created in this step, reasoning con-

tinues until a clash occurs, then the reasoner backtracks and tries the next ABox in the

set. Thus, disjunction is the primary source of complexity and performance degradation in

these transformation rules and the cost of disjunction becomes a major motivation for this

research.

The rules shown in Figure 2.5 are a starting point for a reasoner. More expressive

Description Logics can be built by creating more expressivetransformation rules. This



26

⊓−rule if 1. A contains(C1 ∩ C2)(x),
2. C1(x) /∈ A or C2(x) /∈ A

then A′ → A∪ {C1(x), C2(x)}
⊔−rule if 1. A contains(C1 ∪ C2)(x),

2. but neitherC1(x) norC2(x)
then A′ → A∪ {C1(x)}
and A′′ → A∪ {C2(x)}

∃−rule if 1. A contains(∃R.z)(x)
2. but no individualz such thatC(z) andr(x, z) are inA

then A′ → A∪ {C(z), r(x, z)}
∀−rule if 1. A contains(∀R.C)(x) andr(x, z)

2. but notC(z)
then A′ → A∪ {C(z)}

FIG. 2.5.ALC Transformations

provides an efficient mechanism for the designer of a Description Logic to manage the

trade-offs between expressibility and reasoning performance.

2.6 Default Logic

Default logic refers to a form of logic where facts that are not explicitly described

in the knowledge base are held to be true by default. Considerthe following thought ex-

periment: suppose you were to model a class named ‘Tiger.’ What restrictions would you

define? Where would you place it in a taxonomy? By default, most people assume that

members of ‘Tiger’ have stripes, four legs, sharp claws, andeats people. Now, suppose you

were given additional information, namely that ‘Tiger’ is superseded by ‘Leopard’ and is

made by ‘Apple’. Now, our mental picture of the properties of‘Tiger’ is suddenly changed

to be relevant to an operating system. We must retract our previous beliefs about ‘Tiger’

and reshape them to the operating system sense of the word.

Default Logic plays an important role for this research. Default Logic describes the

process used to represent these default facts and how inference can combine these results
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together during reasoning. Default logic also must addressthe contraction of the knowledge

base to restore the KB to a consistent state.

2.6.1 Monotonicity

Monotonicity of a logic means that satisfying a valid formula can only result in the

addition of new information. A monotonic logic cannot invalidate prior information as a

result of adding new facts to the knowledge base. If it is possible to add a new assertion

to the knowledge base that invalidates a prior assertion, then the logic is non-monotonic

(WWW Consortium 2004).

As an example of monotonicity, consider an example where, bydefault, all dogs chase

cats. This default rule is a stand-in for asserted data. Until information is stated about the

instances, this rule is true. In addition to this default rule, the knowledge base contains

assertions that Fido is a dog and Fluffy is a cat. This will allow the reasoner to infer, by

default, that Fido chases Fluffy. Later, the statement ‘Fido is a Poodle’ is made. This is still

consistent with the knowledge base defaults so far. But whatif the fact that Fluffy is a Tiger

(the type with sharp claws) is added to the knowledge base. Atthis point, it is no longer

likely that Fido chases Fluffy, or if so, not likely for very long. Due to monotonicity, the

assertion that Fido chases Fluffy must be retracted. This isevidence of a non-monotonic

logic. The rule that dogs chase cats was a default rule. This default is considered to

be true until more information became available. With the addition of new information

there are instances that are no longer consistent with the ontology - not all dogs chase

cats. By including this default statement in the ontology the reasoner must now deal with

the potential clashes caused as a result of adding new known information that contradicts

default statements.
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2.6.2 Contraction

Contraction is an operation for restoring consistency to the knowledge base by re-

moving the facts that create the inconsistency (Antoniou & Williams 1998). This can be

a non-trivial process when the the facts that caused the inconsistencies are part of a long

chain of dependent facts. Simply removing a fact may leave other parts of the knowledge

base unjustified. Contraction is frequently implemented aspart of a larger belief revision

system for default logics. The typical operation is to find some formula,φ that is part

of the inconsistent ontology. Afterφ is found, the set of formulae that depend onφ are

identified. Bothφ and its dependences are retracted from the knowledge base. New state-

ments are added to preventφ from being reintroduced by the re-application of default rules

(Antoniou & Williams 1998).

Contraction is generally implemented as part of a strategy for dealing with the non-

monotonicity introduced through the inclusion of default logic. When a default fact must

be removed from the knowledge base, the contraction operation is used to remove only the

necessary facts to restore consistency in the knowledge base. The challenge is to keep the

cost of contraction to a minimum and to remove a minimum number of facts.

Different forms of the contraction operation are describedin the literature, such as

(Antoniou & Williams 1998), (Colucciet al. 2004). These approaches are based on the

need to carefully remove default facts from the knowledge base under the assumption that

the cost of rebuilding them is higher than the cost to remove them.

Contraction is an important component of reasoning with default logics. It is used

to manage the removal of facts to restore consistency to the knowledge base. Contraction

allows the reasoner to effectively handle the issues of non-montonicity.
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2.7 Relationship to Rule Languages

Description Logic languages, such as OWL, have been extended to include support

for rule-based languages, such as SWRL (Ian Horrocks 2004).SWRL is a rule language

that defines rules as pairs of antecedents and consequents. The rule is interpreted as any

time the antecedent is true, then the consequent is true as well.

For example, a SWRL rule takes on the form,Person(?p) ⊓ hasDog(?p, ?d) →
Dog(?d). This rule is triggered whenever there are objects,p andd, wherep ∈ Person, and

p ands are, respectively, the subject and object of the predicatehasDog. When the rule is

triggered, then the type assertion,Dog is added to individuald.

The previous example of a SWRL rule does not modify the terminological descriptions

of the ontology and thus conforms to the Open World Assumption. New individuals may

be added that fill the object of thehasDog relationship, but they will not be typed as aDog

unless the rule is re-executed. This rule demonstrates thatSWRL rules may obey the Open

World Assumption and monotonicity property of DescriptionLogics.

SWRL does support more expressive extensions, such as procedural attachment, that

do violate the monotonicity property. Procedural attachment is a type of rule that uses an

external procedure to compute some value to be entered into the knowledge base. The com-

putation is made with knowledge that is external to the representation in the ontology. The

procedural attachment represents a portion of the terminological construction that exists

in the world but is not expressed in the ontology. As such, this violates the Open World

Assumption and leads to non-monotonicity (Ian Horrocks 2004).

2.8 Conclusion

Description Logics are a family of logics that are conduciveto the development of

the Semantic Web. Description Logics have a trade-off between expressivity and reasoning
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complexity. This allows the construction of specialized Description Logics that can provide

efficient reasoning over large ontologies at the cost of weaker expressivity. This is essential

for the future development of the Semantic Web which will create a global knowledge base.

This facet of Description Logic is is of interest to this research, especially the efficiency of

the reasoner with disjunctions.

Default Logic is another family of logic that, unlike Description Logic, support rea-

soning over default rules. These logics play an important role in reasoning with data de-

rived from default rules. Description Logics may be extended to include certain aspects

of Default Logic. In the event that default rules conflict with the asserted information in

the knowledge base then there are operators such as contraction that can be used to restore

consistency.

Both forms of logic are of interest to this research which depends on using the termi-

nological evidence in a Description Logic to infer default statements about other parts of

the ontology. The default logic will provide useful operations to handle any inconsistencies

that arise as a result of this default knowledge generation.
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Chapter 3

SEMANTIC WEB

The World Wide Web has revolutionized the way we share information. The informa-

tion published on the Web is organized for human comprehension and visual appeal, with

information embedded in document formatting and natural language. To get order from this

markup chaos, the Extensible Markup Language (XML) was developed to create a strict

information markup language. XML has become the enabler of the Web 2.0 revolution and

the interactive web. While XML gives structure and semantics to the data, it does not give

the necessary structure for automatic, shared understanding of the information represented

in the document.

The Semantic Web is being built from a collection of technologies that enable infor-

mation to be exchanged between machines. At the core of thesetechnologies is the next

generation of mark-up languages that are based on formal logic languages. Automated

reasoners are able to use the formal semantics and clearly encoded knowledge of these se-

mantic languages to perform reasoning and semantic querieson a collection of documents.

Using the Web’s paradigm of linked documents, the Semantic Web will operate over the

global knowledge base. As simple as this idea sounds, there are a number of challenges

to answer before the greater benefits of this technology are fully exploited. This chapter

presents a brief overview of the Semantic Web in Section 3.1,describes standard repre-
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sentation languages Section 3.2, and the challenges facingSemantic Web development in

Section 3.3.

3.1 Overview of the Semantic Web

For many, the “Internet” began in August 1991, when CERN introduced the World

Wide Web project. The World Wide Web made the Internet user-friendly and accessible

to the general population. The World Wide Web represents a tremendous leap forward in

human communication. People use it to perform everyday tasks including communication,

banking, and shopping. In January 2006 an estimated 1 billion people world-wide used the

Internet. This figure represents 15.7% of the global population (Internet World Stats 2006).

The web was initially envisioned as a way for humans to communicate and as a plat-

form for software agents to carry out tasks for their users. The information published on

today’s web is mainly for human consumption. Web pages contain large amounts of docu-

ment formatting markup to control how the page is displayed on a screen. A large number

of documents contain structural errors that can make it difficult for machines to parse the

content of the page (Google 2006). Much of the information published on the web is ac-

tually content that was originally generated from a database. Even though the information

originally was stored in highly normalized and structured databases the semantics are lost

when the data is embedded in the formatting of the web page (Berners-Lee 1998).

The encoding of information into a browser markup makes it difficult for automated

processes to extract meaningful information from a web page. Systems typically resort

to customized text-extraction and mapping algorithms to find knowledge from web pages

(Cimiano & Völker 2005), (Abiteboulet al. 1997) and (Mooney & Bunescu 2005). Un-

fortunately, these systems have great difficulty overcoming the problems created by irreg-

ularity of natural language. If the information is encoded in an unexpected manner the
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information will be unusable. As a result, using exactly thesame set of web pages, differ-

ent extraction algorithms are likely to produce different descriptions of the world. Natural

language processing is a hard task and is not likely to be solved in the near future (Russell

& Norvig 2003).

Berners-Lee, the inventor of the World Wide Web, proposed the Semantic Web as a

way of publishing information specifically for machine consumption. The Semantic Web

uses markup languages, such as OWL, that express knowledge in a machine readable for-

mat. These languages define fixed semantics to describe concepts and their relationships

to each other (Berners-Lee 1998). Automated reasoners relyon the fixed semantics and

asserted knowledge to infer relationships between concepts. Use of languages designed

for the Semantic Web enables document linking much like the World Wide Web. In the

Semantic Web, linked documents allow the sharing of a commondescription of some part

of the world. This common set of semantics make an ontology that will allow reasoners to

work over large collections of documents spread throughoutthe world.

The Semantic Web has the potential to revolutionize the way humans use computers.

Instead of using them to communicate with each other, the Semantic Web promises to

usher in a new generation of intelligent agents. The expectation is these agents will be able

search the internet for knowledge, not substrings; communicate with each other, not just

other humans; and understand the intention of the task they are carrying out, not just the

statement of it.

3.1.1 Growth of the Semantic Web

There has been considerable growth in the number of SemanticWeb Documents

(SWDs) published on the Semantic Web. In January, 2006, there are over three hun-

dred thousand SWDs defining over four thousand ontologies, almost one hundred thou-

sand classes, and over seven million triples in the Swoogle database (Swoogle 2006). In
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comparison, there are over nine billion pages in Google’s database (Google 2006).

One trend stands out in Swoogle’s statistics. The number of documents in Swoogle’s

database showed almost no growth throughout 2005 (Swoogle 2006). This is contrary to

the exponential growth in the number of registered users of the Protege tool, a popular

ontology editor (Stanford Medical Informatics 2006). One plausible explanation is that

many of the new ontologies are being used internally, or being embedded in information

systems that aren’t publicly accessible, that is, they are part of the ‘deep web.’

The wide-spread adoption of the Semantic Web is delayed by a more fundamental

factor: cost. Presently, highly trained knowledge engineers are employed to construct the

high quality ontologies for use on the Semantic Web. This work requires training with

logic and reasoning and domain knowledge. Some skeptics claim that in its current form,

the Semantic Web “may work well for targeted vertical applications where there is a built-in

economic incentive to support expensive mark-up work (suchas biomedical information),

such a labor-intensive platform will never scale to the Web as a whole” (Wright 2008).

There is a well-established need for tools to help automate this process. Automating

the process of generating ontologies will help reduce the cost of publishing semantic data

and help open the creation process to a large audience. This research describes a process

that generates property constraints based on the terminology of a knowledge base. Future

tools like this may help encourage acceptance of the Semantic Web and lead to a fulfillment

of Berners-Lee’s vision.

3.2 Semantic Web Languages

The World Wide Web Consortium (W3C) (W3C 2008) is an international consortium

dedicated to maintaing the standards used on the World Wide Web. This body is responsible

for maintaining standards for languages such as the Extensible Markup Language (XML)
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1 <datebook_entry>
2 <date>Mar 3, 2005, 10:30am EST</date>
3 <title>Dentist Appointment</title>
4 <descr>Go to the dentist for a check-up</descr>
5 </datebook_entry>

FIG. 3.1. Example of an XML date book entry.

and Resource Description Framework (RDF). The W3C also maintains the standard for the

Web Ontology Language (OWL). OWL has become thede factostandard Semantic Web

Language. OWL is based on an encoding that uses the RDF and XMLlanguage to markup

data and constructors borrowed from Description Logics. This section explores the roots

of the OWL language and provides an overview of its major constructs.

3.2.1 Base Languages

The Semantic Web is based on a pair of languages, the Extensible Markup Language

(XML) and Resource Description Framework (RDF). They are used in a wide range of

applications beyond the Semantic Web. For example, XML is used by a growing number

of applications to interchange data, and it is used as a base language for the emerging

XHTML markup language that is set to replace HTML.

Extensible Markup Language The Extensible Markup Language (XML) was de-

veloped as a data interchange language (World Wide Web Consortium 2005a). A sample

appears in Figure 3.1. This sample describes an entry from a date book that includes the

time and a brief description of the event. This representation is only useful if some pro-

gram is coded to interpret the semantics of this entry. A typical system that uses XML to

exchange data requires a manual mapping between the XML and that application.

Really Simple Syndication (RSS) is an XML based mark-up thatallows the encoding
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of news feeds (Wikipedia 2008). A developer must map source data to the RSS format.

This allows applications to display those news feeds in a variety of fashions. For example,

the RSS format specifies concepts such as feeds and articles.It also specifies components

of each concept such as titles and descriptions.

XML does not satisfy the needs of the Semantic Web. XML does not enforce a consis-

tent schema for assertion of common facts. The sample shown here asserts an entry from

a Date Book. Humans can readily interpret the meaning of the entries in this example.

To a software agent these are just symbols without any meaning. There is an unspecified

relationship between a datebook entry, in the example, and an appointment in some other

application. It is up to the developer to define the relationship between the two concepts.

The way RSS evolved is a good example of the lack of semantics in XML. RSS was

designed to support news feeds. Presently, it is used to share many types of data, including

video ‘podcasts’ and hurricane forecast graphics (Apple, Inc. 2008),(National Hurricane

Center 2008). Apple’s popular iTunes service uses a modifiedversion of RSS (Apple,

Inc. 2008). There are no built-in semantics to automatically infer relationships between

the standard RSS types and the Apple extended types. If a developer chooses to include

application support for Apple’s extended RSS tags they mustbe coded into an application.

If every vendor made their own version of RSS then an application developer would need

to encode for all of the different standards. The lack of a clear framework to express

relationships between extended types can void any benefit ofusing XML and standard

schemata.

This does not mean that XML does not have a place in the future of the Web. The con-

cept of wrapping data in XML as opposed to the past practice ofusing unstructured files

represents a major advancement for machine representationof data. Using XML as a rep-

resentation language allows complex data to be representedin a consistent manner, justifies

development of XML schema, and promotes the development of standardized tools.
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1 <?xml version="1.0"?>
2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3 xmlns:exterms="http://www.example.org/terms/">
4 <rdf:Description rdf:about="http://www.example.org/index.html">
5 <exterms:creation-date>August 16, 1999</exterms:creation-date>
6 </rdf:Description>
7 </rdf:RDF>

FIG. 3.2. Example of an RDF entry.

Resource Description Framework The Resource Description Framework (RDF) is

based on the XML format, and is the basic building block of theSemantic Web. Resources

are uniquely identified by a Uniform Resource Identifier(URI) and their relationships to

other resources. Resources are described as a set of triplesof subject, propertyor predicate,

and avalueor object.

Figure 3.2 shows a basic RDF entry. Line one specifies the version of XML com-

patibility. Lines 2-3 specify the RDF namespace alias to URI’s, such that the prefixrdf

maps to the URIhttp://www.w3.org/... and the prefixexterms maps to the

URI http://www.example.org. Line four introduces a new resource with a subject

of http://www.example.org, a predicate ofexterms:creation-date, and a

value ofAugust 16, 1999. Note thatexterms is really an alias for the full URI

http://www.example.org/terms.

The Resource Description Framework has several advantagesover the simpler XML

language. Objects are described using simple sets of properties (i.e. the RDF triple). Re-

sources are identified by their URI, allowing linking between resources across the web, and

allowing resource descriptions to be re-used (World Wide Web Consortium 2005c). How-

ever RDF lacks a common vocabulary for describing key properties needed by inference

procedures (e.g. isA). This is addressed in the Resource Description Framework Schema

(RDFS) extension. Even with these extensions, RDFS is not expressive enough to capture
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1 <rdf:RDF
2 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
4 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
5 xmlns:owl="http://www.w3.org/2002/07/owl#"
6 xmlns="http://www.owl-ontologies.com/unnamed.owl#"
7 xml:base="http://www.owl-ontologies.com/unnamed.owl">
8 <owl:Ontology
9 rdf:about="Describes simple car and driver relations."/>

10 ...

FIG. 3.3. Example of a OWL-DL ontology header

all class relationships (World Wide Web Consortium 2001).

3.2.2 OWL

The Web Ontology Language (OWL) was recently recommended tothe W3C for ac-

ceptance as a standard. OWL is based on RDF and DAML+OIL, another Semantic Web

Language. There are three flavors of OWL:Full, DL, andLite, forming a hierarchy, such

that an ontology using OWL Lite is also in OWL DL, and an ontology using OWL DL is

also in OWL Full (World Wide Web Consortium 2005b).

The three flavors of OWL support different degrees of expressiveness and reasoning

properties. OWL Lite provides for a very basic classification hierarchy and simple con-

straints. OWL DL supports highly expressive ontologies andalso admits complete and

decidable reasoning. OWL Full supports the maximum expressiveness, but looses the ef-

ficient reasoning capabilities of OWL DL, since it is unlikely that there will ever be an

efficient reasoner for OWL Full (World Wide Web Consortium 2005b). This research con-

siders only OWL DL. It is the only one of the three versions that contains the necessary

expressiveness for this project and supports efficient, complete, and decidable reasoning.

OWL-DL ontologies contain an optional RDF/RDFS style header and a set ofclass,

property, and individual descriptions. A sample header appears in Figure 3.3. The
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RDF/RDFS header contains a set of aliases that define the namespace (and also link on-

tologies together). This header imports several differentname spaces and associates each

with an alias. It also contains an annotation which allows expression of ontological meta-

data, similar to comments in programming language source code. These annotations are

meant for developers and are not used by reasoners.

3.2.3 OWL Classes

A class in OWL is described using formal descriptions that state requirements for an

individual to be a member of the class. These requirements are specified as sets of prop-

erties that are either necessary and sufficient for membership (allowing class membership

to be inferred), or simply necessary (allowing individual properties to be inferred based on

class membership assertions). Classes are organized into an inheritance hierarchy (using

rdf:subClassOf), such that one class that is a subclass of another class inherits the

properties of the super class.

OWL-DL allows multiple inheritance, where a class is definedas a sub-class of mul-

tiple super-classes. Multiple inheritance allows extremely expressive class concepts to be

developed, linking various branches of the class hierarchytree. It also creates the potential

to introduce inconsistencies into the knowledge base. For example, a sub-class may share

two super-classes with mutually exclusive role restrictions. Ontology developers must be

wary of unintended relationships and the possibility for inconsistencies caused by multiple

inheritance.

Figure 3.4 shows a simple class definition of a class namedVehicle. Lines 2-9 assert

that aVehiclehas thehasDriverproperty, which is satisfied if an individual is defined with

an individual that is a subclass of theDriver class. Line 10 is important, as it asserts that

a Vehicleis disjoint from other sibling classes, in particular, thata Vehiclecannot also be a

Driver. Finally, line 11 asserts that aVehicleis a sub-class ofowl:Thing.
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1 <owl:Class rdf:about="#Vehicle">
2 <rdfs:subClassOf>
3 <owl:Restriction>
4 <owl:onProperty>
5 <owl:ObjectProperty rdf:ID="hasDriver"/>
6 </owl:onProperty>
7 <owl:someValuesFrom rdf:resource="#Driver"/>
8 </owl:Restriction>
9 </rdfs:subClassOf>

10 <owl:disjointWith rdf:resource="#Driver"/>
11 <rdfs:subClassOf
12 rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
13 </owl:Class>

FIG. 3.4. Example of an OWL-DL class definition ofVehicle

1 <owl:ObjectProperty rdf:ID="isDriverOf">
2 <rdfs:domain rdf:resource="#Driver"/>
3 <owl:inverseOf>
4 <owl:ObjectProperty rdf:about="#hasDriver"/>
5 </owl:inverseOf>
6 </owl:ObjectProperty>
7 <owl:ObjectProperty rdf:about="#hasDriver">
8 <rdfs:range rdf:resource="#Driver"/>
9 <owl:inverseOf rdf:resource="#isDriverOf"/>

10 </owl:ObjectProperty>

FIG. 3.5. Example of an OWL-DL property definition ofhasDriver

Defining a class without creating inconsistencies using OWLcan be complex. For

example, in the previous example, it is recommended that allsibling classes assert that they

are mutually disjoint with each other. Consider the definition of another primitive class,

Boat that also has the propertyhasDriver. Using this simple criteria, a reasoner would

conclude thatVehicleandBoat are the same class. There are a number of design issues

that apply to defining OWL classes, and this discussion is beyond the scope of this work.

See (Horridgeet al. 2004), (Stanford Medical Informatics, Stanford University School of

Medicine 2006), (Noy & McGuiness 2005) for a more detailed discussion of these issues.
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1 <Driver rdf:ID="Tom">
2 <isDriverOf>
3 <HondaPilot rdf:ID="TomsHondaPilot">
4 <hasDriver rdf:resource="#Tom"/>
5 </HondaPilot>
6 </isDriverOf>
7 </Driver>
8 <owl:AllDifferent>
9 <owl:distinctMembers rdf:parseType="Collection">

10 <Driver rdf:about="#Tom"/>
11 </owl:distinctMembers>
12 </owl:AllDifferent>

FIG. 3.6. Example of an OWL-DL instance definition of aDriver

OWL Properties Properties in OWL are binary relationships between a class and

other classes or values. They may be defined as invertible, symmetric, and transitive. Fig-

ure 3.5 is an example of a definition of a simple propertyhasDriver and its inverse,is-

DriverOf.

Classes can be defined using complex combinations of properties, including:

• owl:intersectionOf,

• owl:unionOf, and

• owl:complementOf.

Asserting these relationships actually implies the existence of an anonymous class that

carries the properties described by the property (Horridgeet al. 2004).

In addition to these basic properties, OWL-DL also supportsmultiple inheritance of

properties. OWL-DL allows the definition of a property as a sub-property of a parent,

where the sub-property inherits the domain and range restrictions, as well as the inversion,

symmetry, and inversion properties of its parent.
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OWL Individuals OWL allows definition ofindividualsby defining their properties

and assigning corresponding values. Individuals are consistent only when their values meet

the defined constraints. In Figure 3.6, an individual with anID of Tom is defined to be of

classDriver. Lines 2-6 assert thatTomis a driver of another individual,TomsHondaPilot.

Finally, lines 8-12 define a collection of individuals that are all mutually distinct from one

another. This is necessary since OWL-DL does not make the Unique Name Assumption

for individuals: objects with different names are not automatically assumed to be distinct

(see Section 2.4.2). (World Wide Web Consortium 2005b)

Semantic Web Languages Summary The preceding description of Semantic Web

languages represents a brief sample of the many different languages being developed or

proposed as standards to the W3C. The Semantic Web is and willbe a multilingual space,

where developers may select the appropriate language for anapplication.

3.3 Semantic Web Development

Publishing information to either the traditional web or theSemantic Web seems to

follow a similar path. First, a view of the data to be published must be selected. Then, a

markup language must be selected. The data must encoded using that markup language.

The final result must be placed on a web server and made accessible to a selected group of

users.

The similarity between these two tasks vanishes quickly upon closer inspection. The

intended audience completely differentiates these two tasks. When the audience is a human

in the traditional web, data is frequently summarized and loses much of its internal struc-

ture. When the data is published for the Semantic Web, the data should be published in full

context, complete with its relationships to other data elements. The markup language that

is selected will either help create visually appealing web pages or effectively encode clear
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semantic relationships between knowledge. The actual markup tools used will either help

the user maintain consistent styles across pages of a website and check for link errors; or it

will use the reasoner to help ensure that the ontology is consistent.

This section provides an overview of the current development tasks and tools that

are being developed to support the emerging Semantic Web andmake interoperability of

reasoning tasks seamless. The development tasks, many of which are also active research

areas, are: ontology generation, ontology linking and reuse; ontology integration, merging

and mapping; and trust and provenance.

3.3.1 Generation

Ontology generation refers to the process by which domain knowledge is encoded

into an ontological representation. The goal is to encode knowledge in such as way as

to allow automated reasoning procedures to obtain meaning and useful results through

symbolic manipulation (Embley 2004). Currently ontology generation is a manual process,

requiring individuals with domain expertise and knowledgeof description logics in order to

develop ontologies that are applicable to the relevant domain and are correct and consistent

representations of the domain with respect to the description logic framework being used.

3.3.2 Linking and Reuse

Reuse describes the process where existing ontologies are reused to publish new on-

tologies. The RDF name space mechanism allows a single ontology to be composed of

existing ontologies, creating a global database of linked schemas. Linking to, and thus

reusing existing ontologies, may reduce the development costs associated with ontology

development, and ideally helps improve the semantic representation of the published infor-

mation.

One example of a frequently used ontology is the Friend-of-a-Friend (FOAF) schema
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(Brickley & Miller 2008). According to Swoogle, this is the most frequently referenced

ontology schema in the Semantic Web (Dinget al. 2004). Tools such asFOAF-a-Matic

simply prompt the user for information and generate an RDF document that imports the

FOAF schema adds the appropriate values RDF entries based onthe user’s input (Dodds

2008). Using this tool, users with little or no experience with description logics are able to

populate the form and generate an RDF document that describes their personal information.

Reusing ontologies has many challenges similar to reusing source code that can lead

to errors (Noy 2005). These errors may include: ontology revisions, incorrect reuse, and

finding appropriate ontologies.

3.3.3 Revisions

Revisions to existing ontologies may cause dependent ontologies to become inconsis-

tent. The RDF, through its name space mechanism, allows an ontology to import external

ontologies and define members using those external schema. Consider the following ex-

ample of how revisions and reuse can create inconsistencies:

Example Suppose Alice published an ontologyOA, that contained a propertyP , defined

with a minimum cardinality of one,|P | ≥ 1. Bob found ontologyOA and imports it into his

ontologyOB, along with some other set of ontologiesOother, such thatOB = OA⊕Oother,

where the binary relation⊕ represents the composition of two ontologies through a union

operation. Later, Alice modifiesOA, and alters the cardinality constraints onP , such that

|P | ≥ 2. Any individuals inOB that do not meet the new constraints will be inconsistent

with OA.

Currently, the best solution is to strongly enforce abest practicesapproach toward

semantic revisions (World Wide Web Consortium 2005c). The suggested practice is to in-

clude a version number in the URI of the schema (for example, see the previous FOAF
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URI). In so doing, a developer can create new versions of existing resources without break-

ing any linked documents.

3.3.4 Integration, Merge, and Mapping

Integration is commonly used to describe three different tasks including: building on-

tologies by reusing existing ontologies (we called this linking / reusing - see Section 3.3.2),

when building an ontology by merging existing ontologies (not linking), and building an

application using one or more different ontologies (Pinto 1999). We refer to integration

as the process of defining a new ontology by conglomerating, in whole or in part, a set

of different ontologies (possibly from different domains)into one new ontology (Pinto &

Martins 2001).

There are five different strategies for solving this problemfor developing integrated

ontologies (Ding 2005):

One Centralized Global Ontology This strategy would impose a global schema over the

Semantic Web. This removes the loosely federated development processes of the

current semantic web and forces development of new ontologies to some central au-

thority. While it is tempting to speculate that this would remove semantic ambiguity,

it is unlikely that this would be the case. This is clearly unsupportable without con-

siderable investment of resources and is in disagreement with the stated design goals

of Semantic Web.

Merging Ontologies Merging derives a new ontology from a set of candidate ontologies.

Generally, a candidate is selected based on some heuristic,such as linguistic / natural

language processing, syntactic analysis, or some hybrid system. Classic examples

include Chimera (Zhuet al. 1999), and PROMPT (Noy & Musen 2001).
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Mapping Ontologies Mapping ontologies uses a process to map between entries in two

ontologies based on a manual, semi-automatic, or fully automatic process. Auto-

mated processes often rely on NLP or statistical approachesto identify mappings in

the structure or contents of the two ontologies. Example systems include Anchor-

PROMPT (Noy & Musen 2001), BayesOWL (Pan 2005), and GLUE (Doan et al.

2002).

Ontology Translation Ontology translation takes two ontologies and attempts to translate

the structure and individuals from one to the other. OntoMerge is an example system

that uses a set of refactoring rules to translate from one ontology to another. (Dou,

Mcdermott, & Qi 2002).

Runtime Ontology Resolution Each of the previous strategies happens during ontology

creation. Runtime resolution is designed to detect and handle conflicting information

that is identified during the reasoning process.

These tasks each depend on the evidence in the ontology and make particular use of

finding relationships that have the same or similar semantics. Consider the problem of

mapping two ontologies to each other. The mapper must be ableto find similar concepts,

properties, and individuals and add assertions to map them onto each other. The lack of

well-defined assertions, or worse, unequally defined assertions will be problematic.

Suppose two ontologies are to be mapped to each other. The first ontology contains

a property,ownsCar, which has a domain ofPerson and a range ofCar. The second

ontology contains a property,hasTitleTo, which does not have a domain and range at all.

What conditions must be met for the mapping agent to join these two properties? In

order for the mapping agent to even consider these two for mapping there must be evidence

that they are related. These two properties have different applicability. One clearly applies

to people and cars, while the other is not related to any specific concepts (no domain or
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range). The mapping agent will external external knowledgethat car ownership is identical

to having the title to the vehicle.

To continue this thought experiment, consider the situation where the property

hasTitleTo has a domain and range that the mapper identifies as being identical to the

ownsCar property’s domain and range. Now there is strong internal evidence that these

properties are similar.

Well defined property constraints are important for the successful operation of many

of these algorithms. Further, the success of these algorithms is important for the successful

growth of the Semantic Web. Therefore well defined property constraints are important for

the successful growth of the Semantic Web.

3.4 Conclusion

The Semantic Web is an evolving research and development enterprise. Developed for

the representation and reasoning about information, the Semantic Web is a major departure

from today’s visual web. By marking up information for machines, the goal of the Semantic

Web is no longer how to render information on a screen, but to make sites contain relevant,

complete, and accurate information.

New languages, extensions, reasoners, and tools are continually being developed. In-

terest in Semantic Web technology is spreading beyond academic interest, and systems are

beginning to be deployed with semantic technologies at their core.

However there are significant challenges that must be addressed before wide-spread

acceptance of the technology can occur. Some of these areas,including generation, reuse,

and mapping, put demands on the quality of the structure of the ontologies that are to be

used by those processes.

Ontology generation techniques may be able to bridge the divide between the large
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amount of data and semantic knowledge. Generation techniques may also be able to im-

prove existing ontologies to either increase the amount of knowledge that may be inferred

from the ontology, or improve the performance of the reasoner to infer those facts.

Without consistent, well-defined, and structured ontologies to reuse or map to, then

the quality of the mapping and reuse will suffer. Ontologiesthat are missing information

or are not fully developed to maximize the amount of information that can be inferred from

them are going to be less useful to semantic services.



Chapter 4

DOMAIN AND RANGE CONSTRAINT GENERATION

Domain and range constraint generation is the process of automatically creating con-

straints for the properties of an ontology based on the evidence contained in that ontology.

The strongest evidence for domain and range constraints comes from the terminological

statements, specifically in the role restrictions used in class definitions. Individual role

assertions are problematic for a number of reasons that willbe explored in this work.

Constraint generation is an important task for a number of reasons. Proper constraints

on a property act as type assertions that add valuable information about the individuals

that participate in those roles. Well defined constraints can help define the intention of

a particular property, which is especially useful for manual or automated ontology tasks.

Despite these benefits, empirical evidence gathered from a large collection of ontologies,

an overwhelming number of properties do not contain constraints. Generating property

constraints may be able to fill in the missing constraints or be used as a tool to suggest new

or verify existing constraints.

There are many different ways to approach constraint generation. In particular, the ap-

proaches described here will rely only on the terminological evidence contained in the def-

inition of class restrictions. Three different approaches: disjunction, least-common named

subsumer, and vivification will be explored.

49



50

In certain circumstances, constraint generation can lead to the inference of new in-

formation which was previously unavailable in the ontology. In other circumstances, the

use of the constraint generation will provide direct evidence of concepts which the rea-

soner would discover through inference. In this case, the direct assertions contained in the

constraints will reduce the work required by the reasoner togenerate it. The determining

factor depends on the relationships between the terms in theinheritance hierarchy. The

most extreme cases of generated constraints will be createdthat are long chains of disjunc-

tions of terms or else the top concept. In the best cases, constraints can be determined that

accurately model the domain and range of the property with the least number of useless

disjunctions.

Section 4.1 provides a detailed overview of domain and rangeconstraints and explains

why they are an important feature of a description logic. Section 4.2 presents an overview

of the generation process and available sources of information. Section 4.3 describes the

disjunction algorithm, Section 4.4 presents the least-common named subsumer algorithm,

and Section 4.5 presents the vivification algorithm. Finally, concluding remarks about

constraint generation appear in Section 4.6.

4.1 Domain and Range Constraints

OWL properties are based on roles in Description Logic (Section 2.1.2). Properties

are interpreted as a mapping between instances of two classes or a class and a datatype. A

propertyP , written in OWL asObjectProperty(P ) or DatatypeProperty(P ) defines a

mappingP ⊆ O × O or P ⊆ O × LV whereO is some class andLV represents a lit-

eral value (World Wide Web Consortium 2005b). When defining the terminology (TBox)

for an ontology, a property is described in terms of its relationship to other properties (a

property may be a sub-property of another property), or usedin a role restriction in the defi-
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nition of another class. In the assertional section of the ontology (ABox), property relation-

ships are associated with specific instances, for example,hasName(JOHN, ‘JOHN ′), or

teaches(SMITH, ABEL).

Property descriptions are translated into generalized concept inclusion (GCI) axioms.

A GCI defines a subset of the universe and is used to compute setmembership. The prop-

erty definition itself does not directly translate into a GCI, but its domain and range con-

straints do. Restricting the domain of a property to conceptC is translated into a GCI of

∃R.⊤ ⊑ C, and restricting the range of a property to conceptD is translated into a GCI of

⊤ ⊑ ∀R.D (Tsarkov & Horrocks 2004).

Asserting that some unconstrained property relates two individuals but does not pro-

vide any further direct evidence about either the subject orobject of the property. The only

information given is that the individual is either aThing or a literal value and it shares a

relationship through the property to another individual.

OWL extends both object and datatype properties with constructors to optionally de-

fine domain and range constraints. An object property definition which includes a domain

and range is written in OWL as:

ObjectProperty(P domain(d1) . . . domain(dn) . . . range(r1) . . . range(rn))

and is interpreted as a mapping:

P ⊑ (O × O) ⊓ (d1 ×O) ⊓ . . . (dn × O) ⊓ . . . ⊓ (O × r1) . . . (O × rn)

A similar OWL syntax and interpretation exists for a datatype properties as well (Grau &

Motik 2008).

When an object property connects two individuals, one individual is the subject and
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the other is the object. The subject is interpreted as a subclass of each of the domains

defined for the property and the object is interpreted as a subclass of the ranges. If there are

multiple domain or range definitions then they are treated asa single intersection of each

of the types. In the case of a datatype property, the propertyconnects an individual and a

literal value. The subject continues to be a subclass of the domains and the literal values

are matched to the specific range of the property.

Treating multiple constraints as an intersection is counter-intuitive. Suppose a prop-

erty, hasLegs is defined with a domain ofAnimal andFurniture. Any subject of this

property will be asserted to beboth Animal andFurniture. Ontology developers fre-

quently create a single constraint that is a disjunction of anumber of concepts. This is such

a common practice that tools like Protege do this by default.

4.1.1 Unconstrained Properties

Unconstrained properties are of little value when references to them occur only in

direct assertions between individuals. The presence of an assertion states that a relationship

between the two individuals exists. Since there are no domain or range statements and no

other reference to the property, there are no further type assertions that can be inferred. The

meaning of the relationship is subject to the external interpretation of what the symbolic

property name represents.

Domain and range constraints on properties can provide valuable information to on-

tology developers and reasoners. Constraints are not strictly necessary according to the

OWL specification. Including a constraint definition provides a tighter set of semantics for

the property and stronger typing of those individuals that are fillers of the property.

Domain and range constraints provide important information regarding the intentions

of the original author of the property to a developer reusingthe ontology. One of the

fundamental design goals of the semantic web is the reuse of ontologies. Specifying the
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domain and range constraints for a property helps communicate exactly how this property

is supposed to be used. Based on these constraints an engineer can decide if the given

property is applicable to classes in their ontology.

The accompanying class assertions of stated domains and ranges add valuable axioms

to the reasoner. In some cases, this helps reduce the work of the reasoner by asserting

instance information directly that would otherwise need tobe inferred. When the reasoner

encounters a property assertion on a pair of individuals, the subject individual immedi-

ately becomes a subclass of the domain and the object becomesa subclass of range of the

property.

There are many reasons why these constraints may be left out.Some of these reasons

are:

• Information is unknown

• Faulty model of the world

• Artifact of ontology generator

• User error

• Intention of developer

• To avoid conflicts with reuse of the ontology

One reason the constraints may not be specified is that the information may simply

not be known to the ontology developer. The developer may only have partial information

about a domain and is therefore unable to fill in the domain andrange with necessary

precision. This may happen if the developer is unfamiliar with the domain he is modeling

and unable to accurately describe appropriate constraints, or the constraints may not even

exist in the ontology.



54

One signal that there are faulty semantics in an ontology is that the ontology lacks

concepts that adequately describe key concepts in the ontology. For example, the ontology

lacks concepts that describe the domain and range for a property. For example, suppose the

ontology consists of a propertyhasLegs. The developer uses this property to describe two

disjoint concepts: the number of legs of aDog and aTable. The domain of the property

hasLegs becomesDog ⊓ Table because OWL combines multiple statements as an inter-

section of those classes. Because these are disjoint classes, the intersection is unsatisfiable,

and the ontology is inconsistent. Although this is a rather overly simplified and egregious

example of the problem, it is clear that the inability to select a concept for the domain hints

at a larger problem with the model of the world. In this examplehasLegs should probably

be split up into different properties.

Ontology generators take data from some non-semantic source such as a relational

database and restructure the data into an OWL ontology (Velardi, Fabriani, & Missikoff

2001), (Modica 2002). These systems typically do well at organizing the data into classes,

individuals, and properties based on the relations of the original schema. They frequently

have difficulty accurately constructing the domain and range concept descriptions from

these sources (Modica, Gal, & Jamil 2001). In Section 2.1.2 the differences in interpreta-

tion of domain and range constraints between Description Logics and RDBMS was intro-

duced. Using the domain and rangetype restrictionin an RDBMS may not be equivalent

to thetype definitionsemantics of Description Logics.

The lack of a domain and range constraint could simply be due to user error. Using

tools like Protege, one must first create the classes for the domain and range and then create

the properties. In a complicated, large ontology, it is veryeasy for the developer to add the

properties and not return later to fill in the constraints.

The final reason for the lack of constraints is that it could bethe intention of the

developer. The developer may be using a property as a very broad property assertion and
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does not intend it to be used to automatically create class inclusion axioms with a particular

property assignment. There are good reasons why a developermay intentionally choose to

leave a property with under-specified constraints. Two suchreasons are that there is not

sufficient expressivity in the chosen language to support the intended constraints and that

the ontology is expected to be used by other developers and there is no way to extend

constraints in an imported ontology.

The present version of OWL does not support domain to range mapping. In the def-

inition provided above, the domain and range can be specifiedas a collection interpreted

as the intersection of the members. A specific domain and range cannot be specified as a

pair. Consider thehasLegs example above. If the domain and range could be paired, then

the property could contain a pairing ofBiped has range2, while domain ofQuadruped has

range 4.

OWL is designed to be a language for the Semantic Web. A critical part of this lan-

guage is the support for linking to other documents in the Semantic Web. With the present

version of OWL it is easy to import another ontology and integrate and extend its classes,

properties, and individuals. One thing that cannot presently be done is to modify the do-

main and range constraints of a property. There is not a mechanism to extend the definition

of an imported property’s constraints to include classes inthe importing ontology. To do so

may result in a non-monotonic operation where facts that were dependent on the domain

and range constraints will need to be retracted as a result ofadding additional definition to

the constraints.

There are many reasons constraints may be left off a particular property. Several of

these reasons, as previously shown, were unintentional omissions, while others are inten-

tional and key to the representation of the ontology. The problem, with respect to this work,

is that there is no way to tell the difference.
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4.2 Domain and Range Generation

What remains to be explored is whether anything can be statedabout the domain and

range constraints that may apply to a given property. The wayin which a property is used

provides some hint of what constraints may apply to that property. There are two sources

for this information: the class descriptions, specificallythe role restrictions in the TBox

and the instance assertions in the ABox.

4.2.1 Generating Constraints from Individual Assertions

Instance assertions are property and type definitions applied to individuals in the

ABox. They are problematic for determining what constraints may apply. The domain

and range constraints must be extracted from the set of classmembership assertions for

each of the individuals in the knowledge base that are related by a property. This creates

a two-fold problem: the property assertions on individualsmay be missing, and the set of

concepts may be overlapping.

First, there must be individuals in the ABox that are relatedby a property. If there

are individuals, there may be a number of different type assertions for the individual, some

directly asserted, while others are inferred. Because of the Open World Assumption, we

cannot conclude that the set of type assertions is complete.Because of the Unique Name

Assumption, there may be two or more individuals that represent the same real instance

and the set of type assertions may be distributed across eachindividual. With a complete

set of type assertions and property memberships for a singleindividual, there needs to be a

method to determine which types of the individual are related to any one particular property

assertion. This is an open and on-going area of research.

The example shown in Figure 4.1 demonstrates the difficulty with using instance as-

sertions to generate property constraints. Using the assertional data, what can be stated
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1 Class: Person
2 Class: Vegetarian, subClassOf: Person, ...
3 Class: Driver, subClassOf: Person, drives some Car, ...
4

5 ObjectProperty: drives
6

7 Individual: Fred
8 Types: Driver, Vegetarian
9

10 Individual: George
11 Facts: drives(SportsCar)
12

13 Individual: SportsCar

FIG. 4.1. Individuals may have many classes. Using instance assertions is problematic.

about the domain and range constraints fordrives? There are two individuals,Fred and

George. The individualFred is a member of a number of different classes, but does not

have an explicit property assertion involvingdrives, soFred contributes no information

for the constraints.George does have an explicit property assertion ondrives, but nei-

ther George nor SportsCar have any class memberships; the reasoner cannot infer any

memberships aside fromThing.

4.2.2 Generating Constraints from Terminological Descriptions

Information stored in the terminological assertions (the TBox) is more useful for cir-

cumscribing the domain and range for a property. Figure 4.2 shows a simple ontology defin-

ing three classes:Man, Woman, andFighterPilot; and two object properties:hasGender

anddrives.

Lemma 4.2.1.LetP be a property in some ontology, andC1, C2, . . . Cn be defined classes

in the ontology which are subclasses of a role-restriction,Ci ⊆ P.Di involving property

P , whereDi is the object of role restriction. The domain ofP must subsume the setC ′ =

C1⊔C2⊔. . .⊔Cn. The range ofP must subsume the set of objects,D′ = D1⊔D2⊔. . .⊔Cn.
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1 Class: Man EquivalentTo Person and hasGender male
2 Class: Woman EquivalentTo Person and not (hasGender male)
3 Class: FighterPilot EquivalentTo Officer and hasGender male and drives some Airplane
4

5 ObjectProperty: hasGender
6 ObjectPropety: drives

FIG. 4.2. Terminological Assertions for Constraint Generation

Proof. Let δ andρ be the domain and range of some propertyP , respectively. LetC ′ =

C1 ⊔ C2 ⊔ . . . ⊔ Cn represent the set of classes which are subsumed by role-restrictions

involving propertyP . Either theC ′ is the domain forP andδ ⊆ C ′, or it is not. Assume

δ * C ′. This implies that for some conceptCi ∈ C ′, Ci * P.Di, that is that a concept

is not a subset of its own definition. This implies thatCi 6= Ci, which is a contradiction.

Therefore, the domain of a propertyP must subsume the union of the classes which are

subclasses of a role-restriction involvingP . A similar proof usingρ andD′ will show the

same results for the range of a property.

Lemma 4.2.1 states that the domain for a property must subsume the set of all classes

defined in terms of a role restriction on that property. For the example shown in Figure 4.2

this implies that the domain forhasGender is a class that must subsumeMan, Woman, and

FigherPilot. Lemma 4.2.1 and Open World Semantics do not preclude other classes that

are not yet represented from being subsumed by the domain. The lemma does not make as-

sertions about the relationships between the classes themselves. The Lemma simply serves

as a starting point for generation. By momentarily closing the world, then a domain and

constraint can be generated from this terminology. The Lemma does not require the gener-

ated constraint to be minimal and does not enforce any futurerestriction on the relationship

of the classes involved in the constraint description.

Lemma 4.2.1 provides a simple method of constructing a domain and range con-
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straint for each property in a given ontology. These are not the only constraints possible.

Lemma 4.2.2 shows that there will be either exactly one trivial constraint, or there will be,

in the worst case, an exponential number of constraints.

Lemma 4.2.2. When constructing a constraint from the available evidencein an ontol-

ogy, for any property in that ontology, there is either a single, trivial constraint definition,

or there are an exponential number of possible constraints based on the combinations of

classes in the ontology and connectives used in the species of OWL.

Proof. For the first case, for a single, trivial constraint definition, such asThing or

Nothing. The property’s domain and range either subsumes everything or the constraint is

inconsistent. For the second case, a constraint that cannotbe applied to the entire ontology,

the number possible domains is determined by the number of combinations of classes that

the constraint can be applied to. If there aren classes (including all direct and indirect

super-classes) which are defined in terms of the property, with the standard set of connec-

tives: 〈∪,∩, and¬〉, then there are3n ways to combine the terms to describe the constraint.

Neither will all of these combinations be valid, nor will they be unique.

There are three classes that are defined in terms of role-restrictions onhasGender of

the ontology shown in Figure 4.2. Lemma 4.2.1 shows that one domain could beMan ⊔
Woman ⊔ FigherPilot. This is not the only possible domain. Lemma 4.2.2 shows that

there may be other domain descriptions. For example, another domain could bePerson ⊔
FighterPilot, which generalizes the descriptions forMan⊔Woman. The domain could also

bePerson ⊓ FighterPilot, or evenPerson ⊓ ¬FigherPilot. The point that is being

made by Lemma 4.2.2 is that exhaustively checking all of these possible combinations is

intractable for large ontologies.

When generating domain or range constraints for a property,there is either one, many,

or an unknown number of possible constraints. Since the goalis of improve the semantics
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of the model, the trivial case ofThing can be removed from further consideration. In each

of the subsequent ontology generation methods, the Open World Assumption is suspended

during the generation process. The implication of doing this is to give up the monotonicity

property of inference and shift the reasoning process to a form of default reasoning. This

will be explored in more detail in Chapter 5.

Three different constraint generation approaches will be discussed in the following

sections, including:

• Disjunction,

• Least Common Named Subsumer, and

• Vivified Subsumer.

4.3 Disjunction Approach

One method of generating constraints relies on the creationa the disjunction of all

dependent classes. This generation method is fast and efficient. It tends to have very weak

reasoning results and may even create serious performance problems for reasoners.

An algorithm for generating constraints by disjunction is shown in Figure 4.3. First,

the algorithm enumerates all of the properties of an ontology. For each property, the algo-

rithm generates a list of role restrictions. For each role restriction, the subject and object

of a role restriction is added to the domain and range lists respectively. After each role

restriction is processed, the Least Common Subsumer (LCS) is computed. Because OWL

supports the disjunction of concepts, the LCS of a concept description is the disjunction of

its subsumers (Baader & Nutt 2003). Thus, a disjunction listof concepts is added to the

property’s definition as a domain or range constraint.
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This algorithm runs in time that is polynomial to the number of properties and re-

strictions. Letp be the number of properties, andr be the number of restrictions, then the

growth-class can be characterized asO(pr) to maintain the content of the lists.

GENERATE-DISJUNCTION(O)

1 P ← ENUMERATE-PROPERTIES(O)
2 for p ∈ P
3 do
4 R← ENUMERATE-RESTRICTIONS(O, p)
5 δ ← {}
6 ρ← {}
7 for r ∈ R
8 do
9 if subject [r] * δ

� Add subject of r to domain
10 then
11 δ = δ ∪ subject [r]
12 if object [r] * ρ

� Add subject of r to range
13 then
14 ρ = ρ ∪ object [r]
15 domain[p]← owl : UnionOf (δ)
16 range[p]← owl : UnionOf (ρ)
17

FIG. 4.3. Disjunction Generator

4.3.1 Disjunction Examples

Using the disjunction approach may generate useful constraints. The problem is that

disjunctive statements are frequently of little use for thereasoner. Knowing that some class

subsumes the disjunction of a set of classes does not allow the reasoner to draw many more
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1 Class: A SubClassOf: Thing, P some C
2 Class: B SubClassOf: Thing, P some C
3 Class: C SubClassOf: Thing
4

5

6 ObjectProperty: P
7 Domain: Thing Range: Thing
8

9 Individual: J
10 Individual: I
11 Facts: P(I,J)

FIG. 4.4. Example Ontology. Example where disjunction of constraints may be useful.

conclusions. There are times where the disjunction can provide the necessary information

to draw new conclusions, such as that shown in Figure 4.4.

This example shows an ontology with three classes in a simplehierarchy. There is a

single object propertyP, which has no domain or range constraint. ClassesA andB are both

defined as subclasses ofThing, and are defined with a role restriction that there is some

individual who is the object ofP. Two individual instances are also defined,I is the subject

of propertyP with J as an object.

A reasoner will (correctly) fail to find any additional factsabout this simple ontology.

The situation changes after the application of the disjunction constraint generator. For

propertyP, the algorithm will construct a domain ofA ∪ B, and a range ofC. A reasoner

will now classify J as an instance of classC. The reasoner still does not classifyI as a

member of any named class, it belongs to a sub-class of the disjunctionA∪ B. If there were

an assertion thatI belonged to a class that was disjoint from eitherA or B, then the reasoner

would be able to close the disjunction.
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4.3.2 Disjunction Discussion

The symbols used in this example were chosen to be vague. Adding the domain and

range constraints clearly changed the model of the ontology. The generator cannot know

whether this change is a meaningful modification to the ontology or not. Can humans do

better by looking at the symbols?

SupposeP represents the concept “teaches,” C represents “student,” andA andB rep-

resent “professor” and “adjunct.” The modification of the domain and range would be

meaningful in this case. With the domain and range constraints, I is inferred to be some

form of a teacher andJ is inferred to be a student. This is not the only interpretation of this

isomorphism of symbols.

Another problem with this method of ontology generation results from the way tableau

reasoners handle disjunction. Tableau reasoners were described in Section 2.5. Disjunction

introduces a type of non-determinism that is handled using the→ ∪rule, which creates

new potential models from each term in the disjunction. The non-determinism is resolved

through search and backtracking through each of these models. The resources required for

the reasoner increases exponentially with the size and number of disjunctions encountered

by the reasoner. This is demonstrated in Figure 4.5.

The statistics in this figure were generated using a stochastic simulation with param-

eters chosen to generate reasonable sizes for the model. Foreach data point, a num-

ber of classesNC , object propertiesNP = NC

2
, and individualsNI = 2NC where cre-

ated. For each property, the domain constraint was set to a disjunction or intersection of

a random number of randomly selected classes. The expected size of the domain lists,

E(|Dom(Pi)|) = 1
3

√
NC . Individuals were assigned a random number of property as-

sertions with probabilityPPI = .1NP . The results were computed for50 ≤ NC ≤ 300.

The y-axis is a logarithmic scale. The time required for reasoning over the models for
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FIG. 4.5. Reasoner comparison of disjunction and intersection.

both types increased exponentially (linear on a log-axis graph), but the time required by the

disjunction was several orders of magnitude greater than for the intersection.

This illustrates a problem with this generation strategy. As the number of role-

restrictions involving a property increases, the number ofterms in the disjunction will

increase linearly. As the number of properties with large disjunct constraints grows, the

time and space resources for the reasoner will grow exponentially.

In conclusion, the disjunction method of generation is the fastest and simplest gen-

eration method described here. It generates disjunction constraints from each set of role

restrictions on a property. These disjunction clauses may add little additional information.

The current generation of tableau reasoners have difficultywith long chains of disjunctions

and their performance degrades exponentially.

4.4 Least Common Named Subsumer

The Least Common Named Subsumer (LCNS) approach to generating constraints for

a property operates by finding the named concept that is the least common subsumer for

the set of role-restrictions. The key difference between this approach and the disjunction
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generator of Section 4.3 is that the disjunction generator allowed an unnamed common

subsumer while this approach selects a named subsumer. The requirement to select a named

subsumer is an attempt to improve on the results of the previous disjunction algorithm by

removing the disjunctions and the non-determinism they create in the reasoner.

There is a trade-off from the “exact” LCS of the previous algorithm to the “named”

concept used by this approach. The LCS created in the disjunction algorithm is an exact

representation of the least-common subsumer of the set of concepts. The named subsumer

represents an approximation of the subsuming set of concepts. It should be noted that while

the disjunction algorithm created an exact representationof the least-common subsumer it

did not necessarily create the most exact definition of the constraint. For example, suppose

there is a class,A with n direct subclasses. Suppose the LCS for a concept wasA2 ⊔
A2 . . . An, where for eachAi ⊑ A. The classA1 was missing. A more concise, and

ignoring open world semantics, description would beA ⊓ A1.

An algorithm which uses the LCNS to generate domain and rangeconstraints is shown

in Figure 4.4. The algorithm first determines whether the existing constraint subsumes the

current role’s subject or object. If it does not, the LCNS algorithm is used to find the least

common named subsumer for this pair. The domain and range areupdated after all roles

are processed.

The reasoner is the determining factor in the performance ofthe GENERATE-LCNS

algorithm. The algorithm calls on the reasoner to compute the full taxonomy of the ontol-

ogy O. The algorithm makes repeated calls to the reasoner to subsumption relationships

between concepts. LetNc represent the number of classes in ontologyO, Nrp
represent

the number of role-restrictions with propertyp, andNp represent the number of properties

in O. Let N⊑ represent the number of calls to the reasoner’s subsumptionchecking proce-

dure. For eachNc classes,C ∈ O there are three subsumption checks made on line 4 of the

LCNS algorithm to compute whetherC subsumes the concept descriptions. Equation 4.1



66

GENERATE-LCNS(O)

1 P ← ENUMERATE-PROPERTIES(O)
2 for p ∈ P
3 do
4 R← ENUMERATE-RESTRICTIONS(O, p)
5 δ ← ⊥
6 ρ← ⊥
7 for r ∈ R
8 do
9 if subject [r] * δ

� Get current LCNS
10 then
11 δ ← LCNS(O, δ, subject [r])
12 if object [r] * ρ

� Get current LCNS
13 then
14 ρ← LCNS(O, ρ, object[r])
15 domain[p]← δ
16 range[p]← ρ
17

FIG. 4.6. Least Common Named Subsumer Generator

shows the total number of subsumption checks made by the algorithm.

(4.1) N⊑ =

Np∑

i=1

Nrp∑

j=1

3Nc

There will be a polynomial number of calls made to the reasoner’s subsumption check-

ing algorithm, and there will be one call made to the reasoner’s classification algorithm.

Let R⊑ andRclassify represent the complexity for the reasoner’s subsumption checking

and classification procedures respectively. The total run-time of the algorithm will be in
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LCNS(O, A, B)

1 L← ⊤
2 for C ∈ classes(O)
3 do
4 if A ⊑ C & B ⊑ C & C ⊑ L
5 then

� C subsumes both A and B and is more specific than current LCNS
6 L← C
7
8 return L

FIG. 4.7. Compute Least Common Named Subsumer

O(Rclassify + N⊑R⊑). As discussed in Section 2.5, the time required by the reasoner will

depend on the expressivity of the description logic being used.

LCNS Examples Figure 4.4 described a simple ontology. The disjunction algorithm

created a domain for propertyP of A⊔B and the reasoner was not able to infer any additional

type assertions for individualJ. The LCNS algorithm will find the least-common named

subsumer ofA⊔ B. In this simple ontology, there is only one named concept that subsumes

bothA andB namely:Thing. Surprisingly, for this simple example there are no differences

in the types inferred for individualsI andJ.

Figure 4.8 shows a more complex class hierarchy. The classA is a super-class to

classes〈B1, B2, . . . , Bn〉. Using the disjunction algorithm of Section 4.3 would create ann

element disjunction ofB1∪B2∪. . .∪Bn. If the domain ofP were to be set to this disjunction

the reasoner would provide little additional information about individualI except that it

was one of those classes. As the size of these disjunctions increases the time and memory

costs of the reasoner will increase. In spite of this long disjunction the reasoner is not able
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1 Class: A SubClassOf: Thing
2 Class: B1 SubClassOf: A, P some C
3 Class: B2 SubClassOf: A, P some C
4 Class: B3 SubClassOf: A, P some C
5 ...
6 Class: Bn SubClassOf: A, P some C
7 Class: C SubClassOf: Thing
8 Class: D EquivalentTo: P some C
9

10 ObjectProperty: P
11 Domain: Thing Range: Thing
12

13 Individual: J
14 Individual: I
15 Facts: P(I,J)

FIG. 4.8. Example Ontology. Example where LCNS constraints maybe useful.

to infer any additional type assertions for individualI.

The situation is different with the LCNS-based generator. The range ofP will continue

to beC, but the domain ofP will becomeA. Using this new fact the reasoner will conclude

that individualI is an instance of classA. Because the disjunction is replaced with a simple

type assertion the performance of the reasoner will be improved over the previous example.

4.4.1 LCNS Discussion

The LCNS-based generator defines the domain and range constraints to be the least-

common named subsumer. The LCNS is the most specific named class that subsumes a set

of classes. The LCNS of a concept description can be computedby an algorithm that makes

a polynomial bounded number of calls to a reasoner. The overall complexity depends on the

reasoning costs and expressivity of the Description Logic.The LCNS approach represents a

trade-off in specificity and run-time performance from the disjunction-based approach. For

many practical applications the LCNS-based approach will not provide much improvement

over the current default domain approach.

Figure 4.4 demonstrated the trade-off in specificity. Because the domain ofP was
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A ∪ B, the least-commonnamedsubsumer of the domain ofP wasThing. In the ontology

of Figure 4.8, the LCNS-based approach assigned the domain of P to be simply classA.

The domain ofP will be a class that is not defined in terms of a role-restriction involving

propertyP. BecauseA is more general than the sub-classes that are defined in termsof

a role-restriction onP there is a possibility that some sub-class ofA does not include a

restriction onP. The LCNS algorithm selected a class definition that was moregeneral

than the individual defining properties. In effect, it traded specificity for performance.

The specificity as compared to the more accurate statement ofthe LCS of the defining

properties. The performance is measured in the time and resources required be the reasoner

to compute additional inferred facts about the individualswho fill propertyP.

The LCNS algorithm has a problem in how it generalizes acrosstop-level branches

of the inheritance tree. When the least-common subsumer must include two branches of

the inheritance tree whose only common ancestor isThing, then the only common named

subsumer isThing. The disjunction approach effectively handles this situation by including

both sets of classes in the disjunction. If the length of thisdisjunction is small then the

disjunction algorithm may be more informative than the LCNSin this situation.

In certain instances the LCNS approach to generating domainand range constraints

represent an improvement over the disjunction approach. The LCNS is able to summarize

concept descriptions by finding the named concept that subsumes some set of classes. The

result is a concept description made of exactly one concept name. There is a trade-off in

specificity and performance. The major drawback is that the LCNS may over-generalize

and discard too much information. There are times when the LCNS is preferable, and

others when the disjunction approach is preferable. These times may occur in the same

ontology.
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4.5 Vivified Subsumer

The vivification approach is proposed as an alternative to the disjunction and LCNS

based approaches. The approach is designed to avoid the longstrings of disjunctive clauses

while avoiding the over-generalization of the LCNS approach. The concept of vivification

describes removing disjunctions with the least common subsumer of the disjunction (Cohen

& Hirsh 1992). For example,Pianist∪Organist could be vivified into the least common

subsumer ofKeyboard − Player.

The vivification approach proposed used here takes a disjunction and, using the class

structure of the TBox, summarizes the term into a definition that replaces subsets of dis-

junctive terms with a common direct super-class. The goal isto arrive at a description of a

domain or range that includes most of the original detail while avoiding the long and often

meaningless disjunctive strings.

The original algorithm, proposed by Cohen, requires complete subsumption of the

children by the parent to trigger an absorption of children.The algorithm presented here

allows for partial subsumption of the children. The degree to which this algorithm will

accept partial subsumption is controlled by the parameter at runtime.

The vivification approach initially generates disjunctivestrings for a constraint and

then replaces subsets of concepts with subsuming super-concepts until the constraint is

vivified. The process of replacing a subset of concepts will be calledabsorptionwhich is

defined in the following pair of definitions.

Absorption A subset of named concepts in a disjunction may be replaced ifthey share a

common and direct named super-class; and they must meet theabsorption criteria. If any

concept which is part of the subset to be absorbed has more than one direct super-class it is

not removed from the disjunction unless each of its super-classes is subsumed by a member

of the disjunction list.
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Absorption Criterion Let L be a disjunctive list of concepts to be summarized, andA ⊆
L be a subset ofL to be absorbed by concept descriptionD. Let m = |A| andn be the

number of direct subclasses ofD. If m ≥ βn then the absorption is accepted, or it is

rejected otherwise. The parameterβ represents a hyper-parameter, with values0 < β ≤ 1,

to control the degree of concept inclusion necessary to accept an absorption.

The absorption criterion represents a heuristic to govern how aggressive the vivifica-

tion process will be in summarizing concept descriptions. The criterion is based on the

proportion of sub-classes that are actually included in thelist to be summarized. The intu-

ition of the heuristic is based on the fact that information may be incompletely specified in

a large ontology. If a sufficiently large proportion of sub-classes is present in a list to be

summarized then it is likely that a description which includes only the super-class will be

sufficient for reasoning.

ABSORB(L, A, C, β)

� L is disjunction list,A ⊆ L, classes to be summarized,0 ≥ β ≥ 1 is criteria
1 m← size[A]

� All elements inA share same super-class
2 B ← FIND-DIRECT-SUBCLASSES(C)
3 n← size[B]
4 if m ≥ βn
5 then
6 L′ = L−A ∪ C
7 else
8 L′ = L

9 return L′

FIG. 4.9. Absorption Pseudocode
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4.5.1 Vivification Algorithm

Figure 4.9 shows the pseudo-code for the absorption process. Let L represent the list

of properties to be vivified. LetA ⊆ L be a list of terms that share a direct super-class

C, and are to be conditionally absorbed. Letβ represent the absorption criteria. Given

L, A, C andβ algorithm ABSORB will determine if the absorption criteria is met. The

algorithm computesD, the set of direct-subclasses ofC. The absorption criteria is met

if |C|/|D| ≥ β. If the absorption criteria is met, then the absorption is performed and

L← L−A ∪ C. If the absorption criteria is not met thenL is left unchanged.

Figure 4.10 shows the pseudo-code for a process that will vivify a given list of con-

cepts. LetL represent the list of properties to be vivified andβ represent the absorption

criteria. The algorithm proceeds by building a mapping of classes that are inL and their

direct sub-classes (stored in arraysC andS respectively). This mapping is used to select

a member,A ∈ L which should be considered for absorption. AfterA is selected, the

ABSORPTIONalgorithm is called (see Figure 4.9) to perform the absorption. If the absorp-

tion occurs then the arraysC andS are modified to include the new absorbing classC and

L is updated to reflect the new state of the concept description.

The final procedure is the actual vivification-based constraint generator. The code is

largely the same as the disjunction-based generator. The candidate domain and range lists

are built up from the disjunction of the role restrictions like the previous approaches. The

main difference occurs in the final two lines where VIVIFY-CONCEPT is used to perform

the summarization.

4.5.2 Vivification Performance

The vivification algorithm presented uses the taxonomy of the knowledge base to de-

termine direct sub-class relationships. It does not make any subsumption checks as the
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V IVIFY-CONCEPT(L, β)

1 i← 1
2 for c ∈ L
3 do
4 for s ∈ direct-superclasses[c]
5 do
6 C[i]← c
7 S[i]← s
8 i← i + 1
9

10
11 done ← false
12 while done = false

do
13 done ← true
14 A← SELECT-NEXT-SUBSET(C, S)
15 L′ ← ABSORB(L, A, β)
16 if L′ 6= L
17 then
18 DELETESUBSET(A, C, S)
19 for s ∈ direct-superclasses[S ]

do
20 C[i + 1]← S
21 S[i + 1]← s
22 done ← false

FIG. 4.10. Vivify Concept pseudocode
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GENERATE-V IVIFICATION (O)

1 P ← ENUMERATE-PROPERTIES(O)
2 for p ∈ P
3 do
4 R← ENUMERATE-RESTRICTIONS(O, p)
5 δ ← ⊥
6 ρ← ⊥
7 for r ∈ R
8 do
9 if subject [r] * δ

� Add subject of r to domain
10 then
11 δ = δ ∪ subject [r]
12 if object [r] * ρ

� Add subject of r to range
13 then
14 ρ = ρ ∪ object [r]
15 domain[p]← V IVIFY-CONCEPT(owl : UnionOf (δ))
16 range[p]← V IVIFY-CONCEPT(owl : UnionOf (ρ))
17

FIG. 4.11. Vivification Based Generator
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LCNS algorithm did. The results of vivification do depend on whether the taxonomy was

classified prior to invocation of the algorithm or not. If thereasoner is not used to classify

the taxonomy then any inferred sub-class assertions will not be available to the algorithm.

This may result in differences in absorption acceptance between classified and unclassified

taxonomies. Despite these differences, the algorithm itself does not require the use of the

reasoner, either before or after to operate.

The performance of the algorithm depends on the number of classes, properties, and

restrictions. TheGenerate-Vivification algorithm creates a list of restrictions on

that property, and invokes theVivify-Concept algorithm twice for each property.

Theorem 4.5.1.The vivification algorithm runs in polynomial time,O(Np max(Nr, Nc
2))

whereNc, Nr, Np represent the number of classes, restrictions and properties in an ontol-

ogy.

Proof. Let Nc, Np, Nr represent the total number of classes, properties and restrictions in

an ontology respectively. The runtime of algorithmAbsorb is in O(Nc) due to the cost

of finding the direct-subclasses ofC. The algorithmVivify-Concept makes at most

Nc calls toAbsorb. This can be seen from the case whereSelect-Next-Subset

always selects one class from the ontology and replaces it with a single classC. If C is

already in the listL, it is not added again. Therefore, the most times this will becalled

is bound above by the number of classes,Nc. Thus,Vivify-Concept is in O(Nc
2).

The algorithmGenerate-Vivification has two parts, the first part builds the list of

restrictions and the second calls the vivification algorithm on the domain and range lists.

In some degenerate ontology there could be a disproportionate amount of restrictions than

properties. Because of this,Generate-Vivification is in O(Np max(Nr, Nc
2))

4.5.3 Vivification Discussion



76

1 Class: A SubClassOf: Thing
2 DisjointWith C
3 Class: B1 SubClassOf: A, P some E
4 Class: B2 SubClassOf: A, P some E
5 Class: B3 SubClassOf: A
6

7 Class: C SubClassOf: Thing
8 DisjointWith A
9 Class: D1 SubClassOf: C, P some E

10 Class: D2 SubClassOf: C, P some E
11 Class: D3 SubClassOf: C
12

13 ObjectProperty: P
14 Domain: Thing Range: Thing
15

16 Individual: J
17 Individual: I
18 Facts: P(I,J)

FIG. 4.12. Example Ontology. Example where vivification of constraints may be useful.

Figure 4.12 demonstrates the ability of the vivification algorithm to balance specificity

for performance. The disjunction approach generates a domain for P of B1∪ B2∪ D1∪ D2.

This accurately reflects the fact that the four classes each have a restriction onP . The LCNS

algorithm generates a domain forP of Thing. This is due to the disjointness of classesA

andC and the fact that the disjunction cross over this disjoint branch of the inheritance tree.

The vivification generates a summary domain ofA ∪ C. This domain statement is more

concise than the disjunction result and it preserves at least some of the information lost in

the over-generalization of the LCNS result.

4.6 Conclusion

This chapter introduced the concept of constraint generation for properties in OWL.

It is important to generate property constraints when they are missing to and validate the

integrity of existing constraints. As described in Section4.1, there is more information for

constraint generation in the terminological definitions, specifically class restrictions, than in
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instance assertions of the ontology. This chapter introduced several algorithms to generate

property constraints from the terminological definition, namely: disjunction, least-common

named subsumer, and vivification.

A simple disjunction of concepts can be created for each of the domain and range

constraints from the restrictions used to define the classesin the ontology. Long chains of

disjunctions lead to weak generalization, inability to create useful information, and ineffi-

cient reasoning. The Least-Common Named Subsumer attemptsto address this weakness

by selecting classes defined in the ontology. This approach tends to over-generalize. The

over-generalization of the LCNS approach does avoid the cost of reasoning with disjunc-

tions but it also fails to add useful information. The vivification algorithm was developed

as a trade-off between the other two approaches.

Domain and range constraints can be generated from the terminological statements

in the ontology. The structure and quality of the generated statements depends on the

completeness of the restrictions present in the terminology and in the algorithm selected.

The assertions inferred from the addition of these constraints depends on the ability to

create constraints that are not so specific as to become long disjunctive chains of statements

that prevent the reasoner for picking any one of them. At the same time, a competing

goal is to ensure the constraints are not so generic as to becomeowl : Thing or other top-

level concepts that are likely already present in the assertion list for the individuals which

participate in the properties.



Chapter 5

DEFAULT REASONING EXTENSIONS FOR OWL

Description Logics, which were introduced in Chapter 2, area type of logic that trades

expressibility for decidability, completeness, and monotonicity. The memory and time re-

quirements of a reasoner can be controlled through careful selection of the types of con-

cepts that can be expressed in a particular Description Logic. Default rules are a type of

concept that is not included in most Description Logics. Allowing default rules to be part

of the reasoning process often leads to non-monotonicity. Default facts may not always

hold with specific instances. It is the process of reconciling these clashes that frequently

lead to undecidability and complications reconciling the knowledge base.

In many cases algorithmic knowledge generation is a type of default reasoning which

invokes the problems of non-monotonicity. The algorithms described in Chapter 4 is an

example of a knowledge generator. In effect the computed domain and range constraints

are equivalent to default statements about the constraints. These default statements are

consistent with the current set of facts in the knowledge base but they may not hold given

future facts. The order in which the ontology is built may alter the constraints that are

created because the default statements depend on the state of the knowledge base when

they are invoked. As future facts are added to the knowledge base they may conflict with

earlier default constraints. These conflicting statementsmust be reconciled to return the

78



79

knowledge base to a consistent state.

This chapter presents a technique to manage the retraction of facts derived from de-

fault assertions. The defaultness of a statement is propagated to any derived facts. The

result of this operation is that the modified DL reasoner willbe able to keep track of which

statements that were added or inferred from default knowledge. Using this knowledge,

the reasoner can contract the knowledge base to restore consistency. The result is a rea-

soner that provides limited default reasoning, maintains decidability, completeness, and

efficiency.

The remainder of this chapter presents a strategy for modifying the existing OWL

reasoner. Section 5.2 presents modifications to the OWL reasoner to implement the con-

traction operation. Section 5.3 shows the correctness of this approach. Finally, Section 5.4

describes modifications to the OWl language to support this operation.

5.1 Introduction

The constraint generation operation described in Chapter 4is not compatible with

monotonic reasoning. The process of adding general class inclusion axioms (GCI), state-

ments that describe class membership, from existing facts in the knowledge base is equiv-

alent to a default rule regarding the domain and range of a property. The generator creates

constraints based on the information that is present, at that time. However, new information

can be asserted about the universe of discourse that contradicts the generated constraints.

Other facts may be inferred from the generated constraints and added to the knowledge

base, making it difficult to resolve conflicts.

Figure 5.1 shows an ontology with a simple class structure including classesA, B, and

C. Each of these classes is a sub-class ofThing. There is one propertyP, without domain

and range constraints. There are two individualsI andJ, that are related through property
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1 Class: A SubClassOf: Thing, P some B
2 Class: B SubClassOf: Thing
3 Class: C SubClassOf: Thing
4

5 ObjectProperty: P
6 Domain: Thing Range: Thing
7

8 Individual: J
9 Individual: I

10 Facts: P(I,J)

FIG. 5.1. Example Ontology. Example where default reasoning creates contradiction.

1 Class: A SubClassOf: Thing, P some B
2 Class: B SubClassOf: Thing
3 Class: C SubClassOf: Thing
4

5 ObjectProperty: P
6 Domain: A Range: B
7

8 Individual: J
9 Types: B

10 Individual: I
11 Types: A
12 Facts: P(I,J)

FIG. 5.2. Example Ontology. Example of Figure 5.1 after reasoning.

P. ClassA is defined in terms of a property restriction on propertyP. For propertyP, any of

the generation procedures described in Chapter 4 creates a domain ofA, and a range ofB.

The reasoner would then conclude that individualsI andJ were members of classesA anB

respectively. The result of classification is shown in Figure 5.2.

Now, suppose new information is added to the knowledge base.The restrictionC ⊑
PsomeB is added to the first ontology shown in Figure 5.1. No information is lost as a result

of this process and the ontology remains consistent. Recallthat the second ontology shown

in Figure 5.2 was the result of applying a default rule. Adding the same statement to it will

result in the reasoner concluding that classC is a subclass ofA. This is because the domain

for P states that every individual that fills the restrictionPsomeB must be anA. If it is not
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1 Class: A SubClassOf: Thing, P some B
2 Class: B SubClassOf: Thing
3 Class: C SubClassOf: Thing
4

5 ObjectProperty: P
6 Domain: A Range: B
7

8 Individual: J
9 Types: B

10 Individual: I
11 Types: A
12 Facts: P(I,J)

FIG. 5.3. Example Ontology. Example of Figure 5.2 after new factis added.

the case thatC is a subclass ofA then the old default domain and range must be revoked

and so must the inferred facts that individualsI andJ are instances ofA andB respectively.

Recomputing the default domain and range for propertyP results in the domain being

A ⊔ C. Invoking the reasoner on the modified knowledge base will not add any new facts

about individualI. The previously type assertions had to be removed because the default

facts that allowed for their inference was also removed. Nowbecause of the additional facts

added to the knowledge base there is a reduction in the known facts about the knowledge

base.

In each of these cases, the application of the constraint generation algorithm changed

the semantics of the ontology. Because most Description Logics support monotonic rea-

soning, there is no defined operation to retract facts which depend on default beliefs. The

result is that knowledge that was inferred from default beliefs, which were later revised,

remains in the knowledge base. If the order of operations were altered, as this example

demonstrates, the results of reasoning with default rules could be very different.

The preceding automated process is different from a manual revision to the ontology.

Suppose the author of the ontology makes a revision to the ontology that changed the

semantics of the world. There is a presumption of rationality in the actions of the ontology’s
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developers. If the ontology is a description of some world model, then that ontology is

expected to be consistent with that world model. If there arechanges that are inconsistent

with that model then the developer will make the necessary modifications to return it to a

consistent state.

The source of a change in an ontology makes a big difference with respect to mono-

tonicity. If a change is initiated by a human and there is a presumption of rationality to

that change, then it is fair to assume that the human will apply changes that are consistent

with the world being modeled. When there are changes the human can make appropriate

decisions to correct any errors that may occur. When a changeis initiated as a result of a

conflicted default rule then an algorithm must make assumptions about the world without

being able to observe the full state of that world. The algorithm cannot possibly know

more about the world than what is currently asserted in the knowledge base. As a result

the reasoner rules will be created and applied that are consistent with the present state but

which may conflict with statements that will be entered in thefuture.

5.1.1 Managing Non-Monotonicity

The assertions contained in a description logic knowledge base restrict the possible

states of are universally true in all possible worlds. The inclusion of default rules and rea-

soning created assertions describing the present state of the world and which may not be

consistent in all future worlds. There are now two differenttypes of assertions with differ-

ing values of commitment associated with them. One set are based on external evidence

and asserted by the ontology’s developers and the other set of assertions are believed true

based on the internal evidence in the ontology.

Using default rules to derive new knowledge results in a set of at least two plausible

worlds. One where the set of facts derived from the default rules holds and one where it

does not. When the modeling language allows open, incremental descriptions of the world
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then there exists the potential for future assertions to clash with previous default beliefs.

Non-monotonic systems address these potential clashes.

The constraint generation procedures defined in Chapter 4 create constraints that are

believed to be correct and accurate. These constraints may immediately clash with existing

facts in the knowledge base or may clash with future facts that either have not yet been

derived or entered. There is a difference between a clash of generated knowledge and

asserted knowledge.

If there is a clash between generated and asserted knowledgethen the generated

knowledge is immediately assumed to be inconsistent. If thegenerated fact has not yet

been added to the knowledge base, then the operation is considered a failure and the state

of the knowledge base is unchanged. If a new asserted fact conflicts with an existing gen-

erated statement, then that statement and any statements inferred from it must be removed

from the knowledge base. This is the basis of a contraction operation was introduced in

Section 2.6.

5.2 Modifications to the Reasoner

Section 2.1 introduced the concept that Description Logics, including OWL, are based

on tableau reasoners. Tableau reasoners presently use two basic types of production rules

to reason and answer queries: unfolding and transformationrules (see Section 2.5). Un-

folding replaces concept references with their definitions. Transformation rules derive new

facts from existing statements in the knowledge base. Theseprocesses are defined for the

traditional monotonic Description Logics and do not support the desired contraction oper-

ations described in the previous section.

A contraction will be initiated to resolve some clash in a knowledge base. In order to

complete a contraction request, the reasoner must be able toremove any default statements
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and any statements derived from those default statements from the knowledge base. If

the clash remains after a contraction then it remains solelywith asserted statements and

is beyond the scope of the default reasoning presented here.After contraction, the default

generation procedure may be reapplied to recreate the rules.

Definition Default Descriptor is a descriptor which indicates that a statement,Cd, is either

added as a result of a default rule, or is derived from a default statement. A classC, is

equivalent to its default assertionCd, C ≡ Cd. The descriptor only notes the origin of

the statement and does not alter the semantics of the description. The default descriptor

will propagate through inference, such that for any derivedclassE, which was derived in

whole or in part from a default class, will be added to the knowledge base with the default

descriptor,Ed.

A default descriptor is attached to any statement that is added to the database as a

result of a default process. The default descriptor is used to differentiate statements added

by a default rule from those that are asserted through the normal OWL process. This is

just the first step to supporting a contraction. In order to implement a proper contraction

operator those statements that were inferred from the removed statement must be retracted.

5.2.1 Default Descriptor Propagation

Without modification to the reasoner, the inference procedure will use default state-

ments and asserted statements equally. The result is that inferred facts will be added to

the knowledge base. These new facts may be derived from either default or asserted state-

ments. In some cases, there may be long chains of dependencies linking the default facts

to their final statements. The unmodified reasoner will not track the origin of those state-

ments that were derived from default statements from those that were not. Contracting the
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→⊓-rule If A contains(C1 ⊓ C2)(x), but it does not contain bothC1(x) andC2(x), then
A′ = A ∪ {C1(x), C2(x)}.

FIG. 5.4. A tableau reasoner transformation rule.

default statements without also pruning the dependent statements will defeat the purpose

of contraction and leave unsupported facts in the knowledgebase.

The first proposed modification to the reasoner is to include awareness of the default

descriptor into the inference procedures. As facts are inferred the default descriptor will

propagate to inferred facts. Figure 5.4 shows one of the transformation rules commonly

used to build a tableau reasoner. These consistency preserving transformations typically

have an antecedent and a consequent. In this rule, the antecedent is ‘If A contains(C1 ⊓
C2)(x) but does not contain bothC1(x) andC2(x),’ and the consequent is ‘Then addC1(x)

andC2(x) toA.’

Default Propagation Rule During inference the reasoner applies an transformation rule to

the tableau. If any part of the antecedent has a default descriptor then the default descriptor

will propagate to the consequent when it is added to the tableau.

5.2.2 Existential Verification

The tableau transformation rules define the criteria that must be met before the rule

can be applied to augment the knowledge base. Figure 5.4 shows an example of a trans-

formation rule for a tableau reasoner. A complete version for the Description LogicALC
appears in Figures 2.4 and 2.5. The existential check that determines whether an assertion

is present in the knowledge base is a common criteria in everyone of the rules. The existen-

tial check will also be used when constructing a union list ofconcepts to prevent duplicate

concepts from being entered into the knowledge base.
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Without modification to the existential verification step the reasoner will treat default

statements and asserted statements equally. For example, suppose the knowledge base

contains a concept descriptionPersond which was derived from a default rule. During

inference the reasoner infersPerson, a non-default concept description. Default statements

represent information that has not yet been entered into theknowledge base. In this case,

the information that was previously only known by default isinferred by the reasoner. The

reasoner should replace the weaker default fact with the stronger non-default fact.

Concept Strength Let C and D be two concept descriptions which describe identical

classes, then one of the following concept strength relationships must hold:

• C ≻ D if C is not default andD is,

• C
.
= D if both C andD have the same default descriptor,

• C ≺ D if C is default butD is not.

Using the definition of concept strength suggests that a weaker concept should be

replaced by a stronger concept. Using the example above, thestrength relationship between

the two classes is:Person ≻ Persond. Modifying the existing check of the reasoner

to obey theContains Rulewill control the activation of the transformation rules. Using

the modified rule will prevent the activation of a rule when the existential check in the

antecedent of the transformation would replace a stronger concept.

Contains Rule The contains(X) predicate will be modified to return true if and only if

one of the following conditions is true:

• the knowledge base does not containX at all, or

• the knowledge base contains a class,Y , which describes the same class asX, and

X ≺ Y .
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If a rule is triggered and a new concept is inferred then the concept must be added

to the knowledge base. If the existential check of the transformation rule ignored weaker

members of the knowledge base then the new, stronger inferred members must be added

to the knowledge base without creating duplicate statements. The goal is to avoid creating

situations where the same concept is present as a default andnon-default fact. To preserve

uniqueness the union operator will be modified using the union rule.

Union Rule Theunion operator will be modified to replace an existing term in the knowl-

edge base if the term being added describes the same class andis stronger than the term in

the knowledge base.

For example, supposeKB = A(x)∪Bd(x)∪(C(x)∩B(x)). The reasoner selects the

expression(C(x)∪B(x)) for transformation. The reasoner checks if KBcontains(C(x)),

it does not, soKB = KB ∪ C(x). Next the reasoner checks if KBcontains(B(x)). In

this case, it does, butB(x) ≻ Bd(x), soB(X) will be added to the KB using the modified

unionoperator, replacingBd(x).

The Default Propagation Rule, Contains Rule, and Union Ruleare the only necessary

modifications to the tableau reasoner to support this limited version of default reasoning.

These rules allow the reasoner to infer default facts and propagate the defaultness of those

facts through the inference process. They also favor non-default facts that are otherwise

equivalent to existing default facts. In doing so the knowledge base will tend toward elimi-

nation of default facts.

5.2.3 Contraction Triggering

If the knowledge base enters an inconsistent state during reasoning then the unmodi-

fied reasoner simply notes the cause and indicates the inconsistent state to the caller. The
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presence of default statements in the knowledge base implies that there are now two possi-

ble types of clashes in the knowledge base, clashes that depend on default statements, and

those that do not.

Lemma 5.2.1.If a knowledge base becomes inconsistent and the clash occurs between two

non-default statements then the clash is atrue clashand is not caused by default facts.

Proof. Statements in the knowledge base are either default or not. The inference procedure

propagates default descriptors to all statements that are derived from other default state-

ments. Default statements are replaced with equivalent non-default statements when they

are asserted or inferred. Every statement that is inferred from a default statement is also

a default statement. If a statement is not a default statement it is either in the set of direct

assertions in the knowledge base or it was inferred from other non-default statements. If the

inference rules are consistency preserving (see Section 2.5.3) then the clash is a legitimate

clash and not due to the presence of default statements.

If the clash is atrue clashthen there are errors in the non-default facts and recon-

ciliation is beyond the scope of this work. If the clash is dueto default statements, then

the default reasoner should restore consistency. Lemma 5.2.2 shows that contraction will

restore consistency to the knowledge base.

Lemma 5.2.2.A knowledge base containing a clash that is not atrue clashcan be returned

to a consistent state by retracting all default statements.

Proof. Given a knowledge base that contains a clash that is not atrue clash, then all default

statements can be revoked. The statements to be removed can be identified using default

descriptors. Because the clash is not atrue clashthe statements that caused the clash are

no longer present in the knowledge base. The knowledge base must be consistent.
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1 Class: A SubClassOf: Thing, P some B
2 Class: B SubClassOf: Thing
3 Class: C disjointWith(A)
4

5 ObjectProperty: P
6 Domain: Thing Range: Thing
7

8 Individual: J
9 Individual:

10 Facts: P(I,J)

FIG. 5.5. Example Ontology.

Contraction can be triggered by the reasoner based on the internal evidence of the

cause of a clash. A clash is detected by the reasoner when the it generates an inconsistent

statement. For example, suppose the Abox includes a statement, A(x) for some individual

x. If the reasoner generates a statement,6 A(x), then there is a clash in the knowledge

base. Lemma 5.2.1 states that the reasoner can stop and report the cause of the inconsis-

tency when the cause are two non-default statements. When the clash is caused by default

statements the reasoner can invoke the contraction operation to retract all default facts.

Lemma 5.2.2 states that the resulting knowledge base will consist of only default facts and

will be consistent.

5.2.4 Rebuilding Default Knowledge

In the event of a clash, the reasoner can invoke a contractionoperation in order to

restore consistency. Contraction results in removal of alldefault statements. The next

step for the reasoner is to re-apply the generation of default statements. The rebuilding

operation will reevaluate the default rules based on the newinformation, which may add a

new set of default statements. The inference process can then restart from the beginning.

The resulting reasoning process is either consistent or it is not. If the resulting knowledge

base is consistent then the reasoner is complete.
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If the resulting knowledge base is not consistent then thereare incompatibilities with

the default rules and the stated facts in the knowledge base.Resolving these types of errors

requires knowledge that is external to the ontology being modeled. An intelligent decision

on how to reconcile the rule / knowledge incompatibility is required and likely requires an

external view of the world being modeled. Most importantly,the work of the reasoner is

finished. There is no point in attempting to repeat contraction or reasoning.

Suppose the constraint generation algorithm did not check for consistency as it gener-

ates constraints. Figure 5.5 shows a simple ontology that isinitially consistent. Using the

vivification procedure on propertyP creates a domain and range ofA andB respectively.

Later, the statement thatI is− a C is added to the knowledge base. Invoking the reasoner

on the modified ontology results in a conflict. IndividualI is a type ofC which is disjoint

from classA. The default domain ofP is A. By default, individualI is a member of both

A andC. This conflict depends on default facts so the knowledge baseis contracted. The

domain and range for propertyP are restored toThing, and the knowledge base is returned

to a consistent state. Because there were no changes to the TBox, which the constraint gen-

eration procedure uses, a reapplication of the domain and range rules restores the original

default domain and range statements. The ontology remains in an inconsistent state.

The inconsistency demonstrated in this example is difficultto reconcile. In this case,

there is a type assertion on an individual in the ABox that conflicts with the default con-

straints generated from the class restrictions in the TBox.There is insufficient evidence in

the ontology to detect whether the inconsistency is caused by a faulty TBox description,

namely thatA is disjoint fromC; or whether there is a fault in the type assertions for individ-

ualI; or whether there is missing information in the TBox that would cause the constraint

generator to build a different set of constraints.
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5.3 Reasoner Correctness

The modifications described in Section 5.2 will preserve thecompleteness and sound-

ness of the reasoner. The modified existential predicate andconcatenation operator do not

alter the fundamental operation of the tableau algorithm. The modifications do not alter the

generation of the tableau for type assertions over individuals.

The following proof of completion of the unmodified tableau algorithm is shown in

Theorem 5.3.1 and comes from Baader and Nutt (Baader & Nutt 2007). The theorem shows

that there is a finite sequence of transformation rules that can be applied to a knowledge

base. The reasoner can terminate when there are no additional statements that can be

derived and reasoning is complete.

5.3.1 Completeness

Theorem 5.3.1.LetA be an ABox contained inSi for somei ≥ 1.

• For every individualx 6= x0 in A, there is a unique sequence:R1, R2, . . . , Rl where

(l ≥ 1) of role names and a unique sequencex1, x2, . . . , xl − 1 of individual names

such that{R(x0, x1), R2(x1, x2), . . . , R(xl−1, x)} ⊆ A. In this case, we say thatx

occurs on levell of A.

• If C(X) ∈ A for an individual namex on levell, then the maximal role depth ofC

(i.e., the maximal nesting of constructors involving roles) is bounded by the maximal

role depthC0 minusl. Consequently, the level of any individual inA is bounded by

the maximal role depth ofC0.

• If C(x) ∈ A, thenC is a subdescription ofC0. Consequently, the number of different

concept assertions onx is bounded by the size ofC0.
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• The number of different role successors ofx in A (i.e., individualsy such that

R(x, y) ∈ A for a role nameR) is bounded by the sum of the numbers occurring

in at-least restrictions inC0 plus the number of different existential restrictions in

C0.

Theorem 5.3.1 can be extended to the modified reasoner by simple extension. First, if

the knowledge base contains no default statements, then themodifications to the reasoner

are not invoked and the results are unchanged. Since the default descriptor only notes the

origin of the statement and carries no other semantic meaning, the results of reasoning will

remain the same, which gives the following theorem:

Theorem 5.3.2.Completeness of Default Reasoner. LetCd(x) ∈ A be a default concept

description. IfCd(x) is not replaced by any non-default reasoning process, thenCd(x)

is treated like any other concept description in Lemma 5.3.1. If Cd(x) is replaced by a

stronger, non-default concept,C(x), then all occurrences ofCd(x) are replaced withC(x).

No additional assertions are added as a result of the replacement. SinceCd(x) ≡ C(x),

there will be no possible, additional transformation ruleswhich result from the substitution.

Theorem 5.3.3.Completeness of Default Reasoner With Contraction. A reasoner that

supports default inference with contraction and knowledgerengeneration will be complete

if the default knowledge generation is a finite process and the default inference procedure

is complete.

Proof. Theorem 5.3.2 shows that the inference procedure will be complete. If the inference

procedure terminates in a consistent knowledge base then there is no contraction and the

completeness results are unchanged. If the knowledge base is inconsistent then it must

be contracted. There are finite number of default statementsthat can be removed from the

knowledge base. Lemma 5.3.1 shows that inference to verify consistency of the non-default

knowledge base is also complete. If the knowledge regeneration process is a finite process
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then the knowledge base can be repopulated with default facts in a finite time. The final

invocation of the default reasoner is complete. Therefore,the whole default inference with

contraction and knowledge regeneration is complete.

5.3.2 Reasoner Soundness

The soundness of these results are derived from the soundness of the tableau transfor-

mation rules that are used. Baader and Nutt proved that the soundness of a tableau reasoner

is derived from soundness of the transformation rules (Baader & Nutt 2003).

Because of the inclusion of disjunction there is an element of non-determinism in

the reasoner. The result of a transformation of an ABox is a finite set of ABoxes. The

reasoner deals with these sets and non-determinism by searching through the individual

ABoxes. The original ABox is consistent if and only if one of the generated ABoxes is also

consistent. LetS = A1, . . . , Ak be such a set. Then the setS is consistent if and only if

there is somei, 1 ≤ i ≤ k, such thatAi is consistent. The application of a transformation

rule to anA in S generates by one, two, or finitely many ABoxes (Baader & Nutt 2003).

Lemma 5.3.4(Baader’s Soundness Lemma). Assume thatS ′ is obtained from the finite set

of ABoxesS by application of a transformation rule. ThenS is consistent if and only ifS ′

is consistent.

The default reasoner described here uses the same transformations that are described

by Baader. To show that the default reasoner is sound requires establishing whether the

modified contains and union operations alter the soundness of the transformation.

Theorem 5.3.5.Assume the transformation rules defined for a non-default Description

Logic are truth-preserving. Assume the ABoxS ′ is obtained from a finite set of ABoxesS by

application of a transformation rule including the modifiedcontains and union operations.

ThenS is consistent if and only ifS ′.
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Proof. The modified contains operator does not change the truth preserving property of

the transformation rule. The antecedent of a transformation rule depends on the the non-

existence of a particular item. If the item is not in the ABox,then both the original and

modified contains operation will return false. If the item isin the ABox and has equal

strength, then both the original and modified contains operation willreturn true. The dif-

ference is when the item is present and stronger than the itemin the ABox. In this case,

the contains operator will return false allowing the transformation rule to be applied. The

difference between the two contains operators is correctedby the modified union operator.

This operator will ensure that the weaker concept is overwritten with the stronger concept.

The truth of the transformation is thus unaffected. The generated ABox,S ′ is consistent,

therefore the original ABox,S is also consistent.

The default reasoner is shown to be complete and sound. The strength of these re-

sults is that neither do they depend on a particular set of transformation rules nor do they

depend on the default statements that are available to be generated. Thus this method can

be extended to future Description Logics that require support for default reasoning where

the contraction operation depends only on the presence of anindication and transformation

rules that propagate the defaultness through reasoning.

5.4 Modifications to OWL

The primary application for this technique is the semantic web language OWL. OWL

does not have a construct to represent the origin of a statement. In order to represent the

default descriptor in OWL, the language must be modified to identify the default descriptor.

There are several approaches to this problem that are worth exploring, namely: the class in-

heritance mechanism, the annotation property mechanism, and a defined class construction

mechanism.
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Class Inheritance Mechanism One possible way to represent default information

is to create a new classOWL : Default, and declare each default concept description to be

a sub-classs ofOWL : Default. The problem with this approach is that the reasoner will

require modifications to perform the strength-based rewrite rules described above. When a

non-default assertion is added to the knowledge base the reasoner will not replace the ex-

isting default class description. The replacement operation requires a subsumption check

by the reasoner, which must be carried out while the reasoneris building the taxonomy of

the knowledge base, which will have to be carried out recursively. This will cause a serious

degradation in the performance of the reasoner because it must try to connect every new

inferred statement to the default class definition. One finalreason for not using the inher-

itance mechanism is that the default nature of an assertion is not part of the world being

described. The defaultness of an assertion is really metadata about that assertion. Repre-

senting such metadata as a class description is a fundamental alteration to the semantics of

the model being developed.

Annotation Properties Another approach is to rely on the existing class and ob-

ject annotation property mechanism. Either by direct use ofthe existing syntax or a new

parallel syntax. This method is very attractive since it would avoid requiring a change to a

standard language. The problem with using the existing annotation property is that it would

allow multiple assertions about defaultness to be made since there is not a limitation on the

number of content of annotations made about a class in OWL. There would need to be a

well-defined but non-standardized agreement detailing howthe property would be used.

The inference rules would need to be modified to look for the default annotations in the ter-

minology and to create new default annotations when necessary. Finally as an annotation

property the reasoner would need to interrogate these properties, which are otherwise out

of bounds to the reasoner, to answer questions about defaultness.
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5.4.1 Default Constructor

The proposed solution is to create a modification to OWL that parallels the deprecation

flag given to a class, object, or individual property. Presently, an OWL statement can be

marked asdeprecatedwhich is a hint to other developers that this description hasbeen

replaced with an updated version. A similar flag can be added to the OWL language, such

asdefaultto indicate that the description is a default statement.

This has the advantage that the default descriptor can be removed easily, resulting in

the statement becoming part of the asserted knowledge base.Another advantage is that the

overhead is reduced to a single statement in the knowledge base (or a triple) and readily

available during parsing. Finally the OWL language could stipulate that there will be only

one modifier on any given class which is an improvement over the potential for multiple

annotations in the previous method.

The main drawback is that this approach would require a modification to the language.

This requires submitting the change for a future revision ofOWL. This would also be an

upward compatible change since old language parsers would invalidate any ontology that

included the constructor. This could be a major problem if backward compatibility is a

concern.

5.5 Reasoner Implementation

A tableau reasoner that implements the Description Logic, ALC, was created to

demonstrate a reference implementation of the default reasoner described in in this chap-

ter. This reasoner is meant as a proof of concept to demonstrate the basic functionality that

must be implemented by the reasoner. It is not meant to be a production-ready reasoner

that works with the suite of OWL languages. This approach wasselected as opposed to

modifying an existing reasoner such as Pellet.
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TBox
A ⊑ (∀R.B) ⊓B ⊓ (∃S.C)
R role
S role
S has-domainD (*)

ABox
I1 type-ofA
I1 type-ofB (*)

FIG. 5.6. KB Before Reasoning

Reasoners such as Pellet are complex software packages involving many thousands

of lines of code and many compilation units. These tools are meant to support a variety

of purposes and include support for more than just the basic reasoning services, such as

SWRL rules. Modifying this reasoner to include support for this research would require a

significant amount of effort that is only tangential to this work.

The reasoner was implemented to take constructs similar to the OWL class construc-

tors, with class definitions, object property definitions, and instance assertions. The con-

structs take an optionaldefault indicator. The default indicator is tracked as meta-data with

each construct. Each of the consistency preserving transformations is implemented as de-

scribed in Section 5.2. Reasoning preserves and propagatesthe default indicator throughout

the reasoning process.

5.5.1 Reasoning Results

The example shown in Figure 5.6 shows a simple ontology. There is a single defined

class,A, and two properties,R andS. A single individual,I1 is asserted to have two

types: A andB. The notation ‘(*)’ shows that a particular statement is asserted default

or derived from another default statement. Thus, the assertion thatI1 is a type ofB is a

default statement.
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The ontology shown in Figure 5.7 shows the ontology after reasoning. The first action

taken by the reasoner is to apply the unfolding rule, which adds the definition ofA to

the list of facts known aboutI1. Since this is anon-defaultstatement, the result of the

unfolding is alsonon-default. The⊓−rule is applied next, resulting in each of the clauses

of the intersection being added to the list of facts known about I1. Normally, the reasoner

would not add or replace the assertion thatI1 is a type ofB, because it is already present in

the knowledge base. The default reasoner will add the non-default fact,I1 type ofB, and

replace the existing default fact. This occurs because of the modifications to the reasoner’s

rules with respect to thecontainspredicate.

The next interesting action taken by the reasoner happens when domain operation is

applied toI1. When the∃−rule is applied, the reasoner generates an anonymous individ-

ual,genid1 to satisfy the rule; and at the same time applies any domain and range assertions

associated with the rule. Here, the property,S has a domain ofD, which is specified as a

default domain. The reasoner adds four statements for this one rule:

1. genid1 is created as an anonymous individual to satisfy the∃−rule.

2. I1 is related togenid1 through propertyS to satisfy the∃−rule,

3. genid1 is a type ofC due to the∃−rule

4. I1 is a type ofD, due to the domain of propertyS.

This last statement is interesting because the domain was asserted to be a default

statement. Because of this, the type assertion thatI1 s a type ofD becomes a default

statement. This example shows that the reasoner is able to properly derive facts while

maintaining the default descriptor to the inferred facts. This example also shows that the

reasoner is able to properly replace any default-fact when an appropriate non-default fact

is inferred from the KB.
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TBox
A ⊑ (∀R.B) ⊓B ⊓ (∃S.C)
R role
S role
S has-domainD (*)

ABox
I1 type-ofA
I1 type-of(∀R.B) ⊓ B ⊓ (∃S.C)
I1 type-of∀R.B
I1 type-ofB
I1 type-of∃S.C
genid1 type-ofC
I1 S genid1
I1 type-ofD (*)

FIG. 5.7. KB After Reasoning

5.6 Contraction

The semantics of the ontology in the previous example are identical to one that does

not contain default statements. However, this may not be thecase as future information

is applied to the knowledge base. In the event that some future assertion causes the rea-

soner to detect a clash with a default statement, or one derived from a default statement,

the reasoner must take action to restore consistency to the knowledge base. At a minimum,

contraction must remove the statements which cause the clashes (or cause information to be

lost). Following the procedure described in Section 5.2.3,the contraction operation imple-

mented here simply removes all default assertions from the knowledge base, leaving only

those statements that were asserted by the ontology’s author. The result of the contraction

operation is shown in Figure 5.8.

The contraction removed the result of the default domain assertion but left all other

remaining statements. The contraction does not necessarily take the knowledge base back

to a pre-inference state. The example clearly shows the remnants of the previous inference
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TBox
A ⊑ (∀R.B) ⊓B ⊓ (∃S.C)
R role
S role

ABox
I1 type-ofA
I1 type-of(∀R.B) ⊓ B ⊓ (∃S.C)
I1 type-of∀R.B
I1 type-ofB
I1 type-of∃S.C
genid1 type-ofC
I1 S genid1

FIG. 5.8. KB After Contraction

in the knowledge base. The contraction only removes the default statements.

Without the default statements, the knowledge base should once again be consistent.

The processes which were used to build the default facts can again be applied. For example,

the domain and range constraint generation process could beapplied to the ontology again.

5.7 Conclusion

The use of default rules to create new statements can lead to unexpected clashes in the

knowledge base. These clashes may not be evident until a reasoner is invoked on such a

knowledge base. A clash in default statements should be handled differently than a clash

based on asserted statements. In the latter, this is considered a true clash, and the knowledge

base is described as inconsistent. Conversely, if the clashoccurs as a consequence of the

default statements then this indicates that the problem arises with the default statements.

In order to restore the knowledge base to a consistent state,the knowledge base must be

rolled-back or contracted to a valid, consistent state.

As implemented here, contraction describes the process to remove default statements

from the knowledge base. The contraction operation must notonly remove the statements
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added directly by the default rules, but also any statementsthat were inferred by the rea-

soner. In order to support this process, the defaultness of the statement must be tracked

with the statement. The default descriptor was introduced to show the origin of a statement

as being the result of a default statement or the result of inference using a default statement.

Contraction can remove any statement tainted by this process.

The inference procedures of the reasoner must be modified to propagate the default

descriptor when a default statement is used to produce a new statement. The reasoner must

also replace a weaker, default statement with a stronger, non-default statement. A set of

minor alterations to the traditional tableau reasoner, specifically the contains and union

operations, implement the necessary changes to the reasoner to support propagation of the

default descriptor. Further, it was shown that this modification can be implemented without

changing the soundness or completeness of the tableau reasoner.

A reasoner was implemented to support a very limited set of default reasoning. A fact

derived from another default statement will, itself be default. At the same time, any fact that

is non-default will replace an equivalent default fact in the knowledge base. This reasoner

also supports a minimal version of contraction which removes all default facts (asserted or

inferred) to restore the knowledge base to a consistent state.

This reasoner was not developed as a full default logic reasoning engine. Instead,

the intent was to provide the minimal set of features necessary to track default descriptors

through the reasoning process. This is more of an engineer’sapproach than a logicians.

The result is a simple reasoning model that maintains the characteristics of the description

logic it is built upon, such as completeness, decidability,and efficiency.

The OWL specification does not currently allow a default descriptor to be stored with

the concept hierarchy. A simple and efficient modification tothe OWL specification to tag

each concept with a default descriptor is proposed. If this strategy were accepted to the

OWL standard, the OWL language would have a standard notation to track the origin of a
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statement and to allow the reasoner to support the contraction operation.
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Chapter 6

CONSTRAINT GENERATION ON REAL

ONTOLOGIES

This chapter explores the application of the different generation algorithms on a col-

lection of real-world ontologies. In Chapter 4 the algorithms were applied to a few synthetic

examples. This chapter will apply the algorithms to a large collection of real world results.

It is easy to construct synthetic examples that demonstratesome desired property. This

experiment will demonstrate that the generation techniques described here can be applied

on real-world ontologies to generate domain constraints.

Section 6.1 presents an overview of the collection of documents and testing envi-

ronment used for this experiment. Details about how constraints were generated for this

experiment are described in Section 6.2. A comparison of thealgorithms is presented in

Section 6.3. Real world examples are explored in Section 6.4. Runtime performance statis-

tics are discussed in Section 6.5.

6.1 Swoogle

The Swoogle project, created by the eBiquity group at the University of Maryland-

Baltimore County, results in a collection of semantic web documents (Dinget al. 2004). A

snapshot of the Swoogle documents was used for this research. The Swoogle snapshot con-
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Table 6.1. Swoogle Statistics
Count Description

2,236,147 Total Number of Semantic Web Documents
395,584,533 Total Number of Triples

Table 6.2. Swoolge OWL Counts
Count Document Type

2,236,147 Total SWD’s including RDF, FOAF, and OWL
133,920 OWL Documents
11,662 OWL SWD’s with properties
7,080 Valid OWL Ontologies

sists of 2,236,147 semantic web documents harvested between January 17, 2005 through

April 28, 2007. A summary of these statistics appears in Table 6.1.

OWL documents make up a relatively small subset of the total number of documents

in the Swoogle repository. A document was determined to be anOWL document if it

imported a namespace abbreviated ‘owl.’ The set of documents was further reduced to

only those documents that contain properties, since they would be of little use to this study

otherwise. A summary appears in Table 6.2.

Only 7,080 of the 11,662 OWL ontologies were found to be valid. Some documents

could not be loaded by the ontology tools, and can become invalid due to version drift,

communications error, or structural errors in the ontologyitself. Other documents became

invalid as a result of invoking the reasoner because they were inconsistent.

6.2 Building Constraints

Three different algorithms to constraint generation were described in Chapter 4: dis-

junction, least-common named subsumer (LCNS), and vivification. A program,JPDo-

mainGeneratorwas created to apply each of the three algorithms to a given ontology and

to compare the results. In order to assess the performance ofthe three algorithms, the
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process was applied to each of the valid ontologies in the Swoogle database.

The generator was implemented in Java using the Protege API and the Pellet reasoner.

The latest ‘beta’ release of Protege 3.4 was used for the experiment. This version was

selected due to its improved support to invoke the reasoner.Prior to this version, the Pellet

reasoner was available only through the DIG interface. In this ‘beta’ release, the Pellet

reasoner is available directly through the Protege and OWL APIs. This results in more

efficient reasoning and a single process to manage.

The generator operates by loading the ontology into a Protege model, invoking the

reasoner to classify the taxonomy and infer new instance types. For each property in the

ontology and for each generation type, the domain and range is constructed. The reasoner

is used to compute the subsumption relationship between theoriginal property’s asserted

domain and range, and each of the constraints created by the three generation methods. The

detailed results are stored in an XML database for later analysis.

RunningJPDomainGeneratorcould take as little as a few seconds to retrieve the

ontology from theSwoogleCache, invoke the reasoner, and generate and compare the con-

straints. In some cases, the reasoner would demand an unsatisfiable amount of memory or

CPU time. A total of 2GB of heap space and 30 minutes of time wasallocated toJPDo-

mainGeneratorto process each document. If either of these were exceeded then the task

would be killed and an error reported in the database.

6.2.1 Test Environment

Initially, the tests were conducted on a pair of computers, one a server for the Swoogle

meta-data and cache files; and another to run the JPDomainGenerator. Even though the ex-

periment ran on only 7,000 ontologies, it required multipleweeks to complete. The test

environment was shifted to a loosely coupled cluster consisting of 26 8-core PowerMac

workstations, with a total of 208 processors and 104GB of RAM. Each ontology was se-
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quentially evaluated on one core, with the cluster executing up to 208 evaluations simulta-

neously.

Using this test environment, all 7,080 OWL ontologies were processed in approxi-

mately seven hours. The speed-up is due to the independence of the constraint generation,

and the ability of the central server to serve the cached SWD’s to over 200 concurrent

processors.

6.3 Results

This section describes the results of generating domain andrange constraints over the

properties in the Swoogle database. For each of the three types of ontology generation

algorithms a domain and range was computed. The subsumptionrelationship between

the original and generated constraints was computed and recorded. The results for the

generation of domains is shown in Table 6.3, and for ranges inTable 6.4.

In each of the tables, when a constraint is not specified in theontology it is treated as

a special case, that of being unspecified, even though it is equivalent toowl : Thing. This

makes it possible for an ontology designer to explicitly assert that the domain and range is

owl : Thing.

6.3.1 Domains

The first row of Table 6.3 on page 107,‘Original Equals Generated’ shows the number

of properties in all of the ontologies where the original specified domain constraint is equal,

with respect to subsumption checking, to the generated constraint. Only those properties

whose constraints are explicitly stated to be something other thanowl : Thing are included

in this category.

In all cases, the finding that the generated constraint matches the original specified
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Table 6.3. Domain Comparison: Original to Generated Types
Relationship Disjunction LCNS Vivified

# props % # props % # props %
1 Original Equals Generated 801 2.8 833 2.9 808 2.8
2 Original More Specific Than Generated 7 0.0 7 0.0 63 0.2
3 Original More General Than Generated 141 0.5 103 0.4 74 0.3
4 Original⊤, Generated⊤ 800 2.8 1111 3.8 807 2.8
5 Original⊤, Generated More Specific 2427 8.4 2112 7.3 2412 8.4
6 Generated⊤, Original More Specific 27 0.1 71 0.2 25 0.1
7 Property Unused, Original Specified 3201 11.1 3204 11.1 3190 11.0
8 Property Unused, Domain Unspecified 21385 74.0 21406 74.1 21267 73.6
9 Processor Failed 64 0.2 46 0.2 201 0.7
10 Reasoner Failed 49 0.2 9 0.0 53 0.2
Total 28902 28902 28902
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constraint reflects that this algorithm correctly inferredthe constraints for the property.

The fact that both LCNS and Vivification were able to generatemore equal constraints

than disjunction is a novel outcome. For example, in one real-world ontology, the specified

domain for a propertyhas pathological type is defined by the author asDiseases (Ad-

vanced Computation Laboratory - Cancer Research UK ). The disjunction generator found

the set of diseases which are defined in terms of a restrictionon this property, namely:〈
Breast Cancer ⊔ Cancers ⊔ Adenocarcinoma of the Breast ⊔ . . . 〉. Both the LCNS

and Vivification algorithms summarized this disjunction toDiseases, the same as the orig-

inal specified domain.

The second row of Table 6.3, ‘Original More Specific Than Generated’ shows a small

number of properties where the original was more specific than the generated one. This

result was another novel outcome of this approach. In this case, it shows that the author

specified a domain or range that was more specific than the generator’s constraint which

was inferred from its usage. Stated another way, the author incorrectly constricted the

constraint beyond those classes which use it. For example, in another real-world ontol-

ogy, the author specified the domain for a propertyminute − of to be the intersection of

time− point andcalendar − date (Knowledge Media Institute, The Open University

). All three generation algorithms constructed a domain oftime− point . The class

time− point includes a restriction:(≤ 1 Thing ). The classcalendar − date is a

subclass oftime− point, and includes its own restriction:(≤ 1 Thing ), it is not in-

herited. In this case, the intersection oftime− point andcalendar − date is the the

classcalendar − date. Any instance of classtime− point would become an instance

of typecalendar − date. This result indicates that the disjunction method of constraint

generation may be used to detect inconsistent ontology design. The same cannot be said

for the other two methods because they may each over-generalize the constraints.

There is a significant difference between the disjunction and LCNS algorithms, each
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reporting seven properties in this category; and the Vivification algorithm which reports

sixty-three. This is a by-product of the summarization performed by the vivification ap-

proach. Where the disjunction of concepts can easily cross different branches in the inher-

itance tree, the vivification algorithm will summarize these to a set of common top level

concepts and any more specific concepts that could not be absorbed. The result is that the

Vivification approach will tend to generalize in more cases than the other two methods.

The next row, ‘Original More General Than Generated’ is a positive to neutral out-

come. The present usage of the ontology contains a property where the original, asserted

constraint is more general than its present usage suggests.There are many reasons for this.

This may be intentional: the author elected to leave open future possibilities; or this may be

unintentional: the author incorrectly specified the constraint to be overly general. There is

insufficient evidence to reliably identify which is the case. If the property were specifically

left general to support future work, then the combination ofthe constraint generation pro-

cess and default reasoning proposed here may help close the semantic gap for the reasoner

while leaving open future modifications.

The fourth row, ‘Original ⊤, Generated⊤’ is another form of the case that both the

generated and specified constraints are equal. In this particular case, they are both equal to

Thing, which is a group that was excluded in the first row of this table. This is a neutral

result and reflects the incomplete or under-specified natureof some real-world ontologies.

One interesting outcome of this case is the demonstration ofthe tendency of the LCNS to

summarize to⊤. Here, about three hundred more properties were summarizedto the top

concept. This will happen when the constraint must include portions of the inheritance

tree which cross branches at the first level. The least-common named subsumer is the top

concept. For these approximately three hundred properties(1111 − 800 = 311), this is a

negative result for LCNS.

The fifth row, ‘Original ⊤, Generated More Specific’ shows strong results for the
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generation algorithm. These are properties which the ontology author used in a restriction,

but did not specify a domain constraint. Because the original constraint was unspecified

there is little to compare between it and the generated constraint. It is interesting that the

numerical difference between the LCNS and disjunction methods is(2427− 2112 = 315),

which is almost identical to the 311 difference on the previous row. This illustrates how

the LCNS tends to over-generalize to the top concept. The main difference between the

disjunction and LCNS is that the LCNS tends to summarize toThing. The vivification

approach is almost identical to the disjunction approach inthe quality of generalization.

This is strong empirical evidence of the strength of the vivification algorithm over the other

two approaches.

The sixth row, ‘Generated⊤, Original More Specific’ can be a neutral or negative

result for all three algorithms. For a given property, the ontology’s author described con-

straints on a property, but the constraint generation algorithm created a constraint of⊤.

This is another case of that described in the third row of thistable. The same pattern

emerges, with the LCNS tending to generate concepts atThing where the other two tend

to be more specific; but all three generate results in this column.

In some cases, the generator creates a constraint that is equivalent the original, non-

top concept. After invoking the reasoner, the reasoner findsthat the generated constraint is

equivalent to the top concept. This peculiar situation may indicate an inconsistency in the

ontology, namely that a defined concept is found to encompassthe whole universe. This

is typically not an intended outcome when designing an ontology. In one real example,

an ontology’s author described a universe consisting ofPerson and its various subclasses

(Stanford Medical Informatics ). The property in question,hasAunt is defined by two

classes,Niece andNephew. These two classes are defined to be equivalent toWoman and

Man, respectively, andPerson transitively. The domain was specified by the author as

Person and based on the defined class restrictions the domain was generated to bePerson.
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The reasoner concluded that the property was equivalent toThing, even though it was

specified as non-Thing. The problem in this case was that there was a logical error inthe

definition of thePerson class such that it included the disjunction of a concept and its

negation.

The next two cases, appearing on lines seven and eight, are neutral results for property

generation. These two lines count properties that are defined in an ontology but are not

used in any class definitions. In the present state of definition of the Semantic Web, it is

clear that the majority of property assertions are made without domain constraints and are

not tied to any particular class definitions. This illustrates a clear problem in ascribing any

semantic meaning to the property or the individuals connected by it. In a graph-theoretic

interpretation of these properties, they represent an arc between a pair of individuals with a

label that represents some concept that connects them. It islikely that the ontology author

fell to the GENSYM fallacy and assumes that the semantic meaning of the property is

derived from the name of the property - it is not.

The final two lines of Table 6.3 represent processing errors.The first represents errors

of the generator itself. For example, the generator tried togenerate a concept that clashed

with the ontology, or there was an unspecified programming error, or in some rare cases,

ontologies that used data type properties as if they were object properties. The second

category of errors is generated by the reasoner itself. Wheninvoking the reasoner, the

reasoner is allocated a fixed amount of time and memory to perform (one half-hour of time

and 1.5 GB of memory). If the reasoner fails to complete within these resources then it is

terminated and counted as an error.

6.3.2 Ranges

Table 6.4 on page 112 shows the same type of results as Table 6.3, but for range con-

straints on properties. Based on these two tables, the results for range constraints are similar
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Table 6.4. Range Comparison: Original to Generated Types
Relationship Disjunction LCNS Vivified

# props % # props % # props %
1 Original Equals Generated 231 0.8 248 0.9 255 0.9
2 Original More Specific Than Generated 6 0.0 6 0.0 17 0.1
3 Original More General Than Generated 172 0.6 147 0.5 138 0.5
4 Original⊤, Generated⊤ 647 2.2 930 3.2 657 2.3
5 Original⊤, Generated More Specific 2113 7.3 1839 6.4 2097 7.3
6 Generated⊤, Original More Specific 361 1.2 392 1.4 365 1.3
7 Property Unused, Original Specified 3403 11.8 3428 11.9 3416 11.8
8 Property Unused, Domain Unspecified 21824 75.5 21834 75.5 20959 72.5
9 Processor Failed 102 102 63 0.2 955 3.3
10 Reasoner Failed 43 43 15 0.1 43 0.1

Total 28902 28902 28902
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to those for domain constraints. This stems largely from thefact that the set of subjects for

a property generalize differently than the set of objects for a property. For example, con-

sider a fictitious assertion,knowsStuff, which may have a domain ofPerson but a range

of Thing. Unsurprisingly, the generation of a domain will not be a topconcept, while the

range will be. In spite of the numerical differences, the same qualitative relationships hold

between the different categories of generation results.

6.3.3 Results Summary

Several of the rows in Tables 6.3 and 6.4 are irrelevant to theperformance of the

generation method. They are either errors or include properties which are not used. One

additional view of the data is shown in Table 6.5. This table shows the same statistics as in

the previous two tables; but with the irrelevant data removed.

This table shows that any of the three generation methods canreplace non-existent

constraints. Each of the three algorithms demonstrated different capability to generalize a

constraint at an appropriate level. The conclusion that theLCNS tends to over-generalize

those constraints is made even more clear on this table when comparing rows three and four

for the three generation methods. Of the three generation methods, this data shows that for

both domain and range generation, the disjunction and vivification approaches perform

similarly.

6.4 Results of Application in Different Domains

6.4.1 Plant Anatomy

One example that highlights the difference in generalization between the different al-

gorithms can be seen in Figure 6.1. This example comes from the Swoogle repository

(Mungall ) and is part of an ontology that describes the plantanatomy domain. The ontol-
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Table 6.5. Domain and Range Comparison: Original to Generated Types

Relationship
Domain

Disjunction LCNS Vivified
# props % # props % # props %

Original Equals Generated 801 19.1 833 19.7 808 19.6
Original More General Than Generated 141 3.4 103 2.4 74 1.8
Original⊤, Generated⊤ 800 19.1 1111 26.3 807 19.5
Original⊤, Generated More Specific 2427 57.8 2112 49.9 2414 58.5
Generated⊤, Original More Specific 27 0.6 71 1.7 25 0.6
Total 4,196 4,230 4,128

Relationship
Range

Disjunction LCNS Vivified
# props % # props % # props %

Original Equals Generated 231 6.6 248 7.0 255 7.3
Original More General Than Generated 172 4.9 147 4.1 138 3.9
Original⊤, Generated⊤ 647 18.4 930 26.2 657 18.7
Original⊤, Generated More Specific 2113 60.0 1839 51.7 2097 59.7
Generated⊤, Original More Specific 361 10.2 392 11.0 365 10.4
Total 3,524 3,556 3,512
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1 Property: sensu
2

3 Original Domain:
4 Thing
5

6 Disjoint Domain:
7 PO_0006456,PO_0006482,PO_0006460,PO_0006384,PO_0006478,PO_0006318,PO_0006468,
8 PO_0006450,PO_0006357,PO_0006447,PO_0006383,PO_0006461,PO_0006494,PO_0000041,
9 PO_0006444,PO_0006451,PO_0006476,PO_0006495,PO_0006462,PO_0006481,PO_0006485,

10 PO_0006474,PO_0006471,PO_0006499,PO_0006441,PO_0006448,PO_0006477,PO_0006487,
11 PO_0006455,PO_0006465,PO_0006508,PO_0006443,PO_0006489,PO_0006446,PO_0006507,
12 PO_0006457,PO_0006470,PO_0006445,PO_0006459,PO_0006467,PO_0006329,PO_0006469,
13 PO_0006466,PO_0006483,PO_0006458,PO_0006472,PO_0006449,PO_0006473,PO_0006484,
14 PO_0006454,PO_0006486,PO_0006475,PO_0006464,PO_0006497,PO_0006442,PO_0006453,
15 PO_0006496,PO_0006463,PO_0006506,PO_0006452,PO_0006493,PO_0006490,PO_0006498,
16 PO_0006491,PO_0006480,PO_0006500,PO_0006492,PO_0006479
17

18 LCNS Domain:
19 Thing
20

21 Vivified Domain:
22 PO_0009074,PO_0020006,PO_0020101,PO_0009067,PO_0020019,PO_0009066,PO_0020048,
23 PO_0009073,PO_0009046,PO_0009062,PO_0006204,PO_0009070,PO_0009027,PO_0020026,
24 PO_0020003,PO_0009014,PO_0009013

FIG. 6.1. Constraint Generalization. Example where constraint generation can improve
reasoning performance

Table 6.6. Performance Time for Plant Anatomy Processing
Generator Time (s)

Disjunction 59.8
LCNS 90.0

Vivification 50.3

ogy contains 734 classes, 8 object properties, and 1,068 sub-class axioms.

Table 6.6 timing statistics for each of the three methods. The time reported here is the

total time, in seconds, required to load, build constraint for all properties, assign constraints

to properties, re-classify the terminology and compute inferred types for all individuals.

This follows the same approach described in Section 6.3.

The disjunction method created the most specific and also thelongest descriptions

compared to the other methods. For example, for the property, senu, which is jargon
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from the plant anatomy domain, it created a property domain that was the disjunction of

68 different classes. Despite the fact that this method is the most efficient to compute

constraints, its overall performance was 19% slower than the vivification method. This is

mainly due to the classification costs associated with the large disjunctive sentences present

after constraint generation.

The vivification method demonstrated remarkable performance in this example. Its

ability to summarize disjunctive sentences enabled it to summarize the long disjunctions

into shorter, more concise descriptions which helped improve the performance of the rea-

soner. For example, for thesensu property described above, the vivification approach

created a more general concept description consisting of 17classes in disjunction. This

was a 74% reduction in the length of the domain description. As a result of efficient gen-

eration and more concise concept descriptions, vivification was the fastest method of the

three compared here.

The LCNS algorithm performed quite poorly in this case. The LCNS performed

poorly due to the very large number of subsumption queries that were required to sum-

marize the large and complex classes in this particular example. This is largely due to the

large number of the concepts and the deepness of the inheritance tree which required more

subsumption checks to compute the LCNS. The LCNS constraintfor thesensu property

was over-generalized toThing.

This result clearly shows the vivification method can efficiently create concise concept

descriptions, even with a reasonably complex ontology. This result also demonstrates that

there is a significant performance benefit to breaking down long disjunctions in real-world

ontologies. Finally, it shows that the vivification algorithm out performed the other two

methods.
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6.4.2 Machine Translated Data

The next example shows some of the challenges working with machine generated

ontologies. This example appears to be a machine generated ontology, based on the chosen

class names and the poor structure of terminological relations. This ontology is nearly

completely flat - there are two subclasses ofowl : Thing: Person and Thing. There are no

class restrictions in this ontology. There are 22 object properties and 44 individuals. While

there is a significant amount of data in this ontology, there is very little knowledge encoded

in it.

For each of the 22 object properties, the domain and range constraints of this ontology

areowl : Thing. There is simply not enough information to support the generation pro-

cess within the taxonomy. This degenerate case is illustrative of the case where a semantic

web document is simply a collection of data encoded in OWL rather than a rich taxonomy

describing knowledge. In this case, it is unlikely that withadditional external information

(e.g. a mapping to another ontology) that any generation method will be able to do much

better. Because of the lack of any evidence about the use of the properties in the terminol-

ogy, the algorithms used here were unable to generate a constraint for any of the classes in

this ontology.

6.5 Performance Comparison

This section compares the run-time performance of the threealgorithms. Run-time

performance is important for a number of applications, suchas future search engines. Ta-

bles 6.7 and 6.8 show a comparison of the run-time for each of the generation algorithms.

Table 6.7 shows run-time performance statistics of each of the generation algorithms.

A random sample of 100 ontologies was selected for this analysis. The same ontologies

were used for each sample. For each group, the time, in seconds, to load and classify the
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Table 6.7. Performance of Generation Algorithms
Algorithm Statistic Seconds

None

min 3.80
max 14.62
average 5.29
std. dev 1.71

Disjunction

min 3.85
max 23.37
average 5.43
std. dev 2.29

LCNS

min 3.79
max 23.92
average 5.34
std. dev 2.20

Vivification

min 3.79
max 22.56
average 5.29
std. dev 2.08

Table 6.8. Normalized Performance of Generation Algorithms
Method Average Std. Dev
Disjunction 0.22 1.16
LCNS 0.14 0.14
Vivification 0.08 .82

ontology, then generate the constraints, and then classifythe modified ontology is reported

as a minimum, maximum, average, and standard deviation. Thefirst group, labeled ‘None,’

reports base-line performance statistics, and omits the constraint generation step; but still

uses the reasoner.

This table suggests that the performance of the vivificationalgorithm is better (lower

is better) than the other two. In fact, based on these statistics, the performance of the

vivification algorithm is nearest the performance without generation. Standard hypothesis

testing shows that due to the high standard deviation, the four results are not significantly

different.
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The cost to load an ontology and invoke the reasoner on it is approximately constant,

and acts as a linear scaling of the data values. Subtracting this fixed cost leads to the results

shown in Table 6.8. This table shows the costs, in seconds, ofgenerating the constraints

and invoking the reasoner on the result. In this case, the difference between the algorithms

is statistically significant. The vivification approach is faster than the disjunction at the

92.6% confidence interval, and is faster than the LCNS76.4% confidence interval.

6.6 Conclusion

A significant collection of real-world ontologies collected from Swoogle were used

as the basis for this work. The normal mechanism for retrieving semantic web documents

proved unsatisfactory for this work due to a number of different types of errors, especially

due to communications and revisions. A ‘Semantic Web in a Box’ test environment was

created to improve the speed of data collection over this large collection of documents. One

outcome of this research is that this testing environment can be used for future studies and

may serve as a model for future semantic web agents which needto quickly perform tasks

for their masters.

Comparing the domain and range constraints generated by thethree different algo-

rithms shows significant differences between them. The disjunction algorithm is the sim-

plest of the three in that it does not perform any generalization of the constraint. These

results show that while disjunctive constraints provide the most specificity, they also tend

to reduce the performance of the reasoner. These results also show that the LCNS ap-

proach was relatively poor at creating useful constraints as it tends to over-generalize, in

most cases to the top concept. The vivification algorithm demonstrated generalization per-

formance that was nearly identical to the disjunction algorithm. Because concepts were

summarized, the long chains of disjunction were broken downby this algorithm reducing
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the time and memory required by the reasoner.

Not every ontology lends itself to this technique. Each of these algorithms depends

on the availability of a taxonomy which is built with class restrictions over the set of prop-

erties. In the extreme case where there is simply a set of classes without any restrictions

then these algorithms are unable to generate any constraints at all. As the complexity of

the taxonomy and availability of restrictions increases the evidence for constraint gener-

ation increases as well. For small ontologies with short chains of disjunctions, both the

disjunction and vivification algorithms are appropriate choices. As the size of the disjunc-

tive chains increase, the vivification algorithm is the bestall around choice. The LCNS

algorithm demonstrated such poor performance its use is discouraged in favor of the other

two algorithms.



Chapter 7

CONCLUSION

The research set out to provide a solution to the problem of missing domain and range

constraints in OWL ontologies. It was shown that this problem is pervasive: the vast ma-

jority of properties of real-world ontologies in present use do not include any domain and

range constraints. Several reasons why these constraints are not specified were presented.

In many cases, the information is available but not directlyencoded in the ontology.

This chapter provides a summary of the major results of this generation process. A

summary of the major results appears in Section 7.1 and and overview of possible future

work appears in Section 7.2.

7.1 Major Results

Given an ontology, an approach to create constraints was described. This approach

is based on inferring the usage of a property from classes defined in terms of restrictions

based on the properties. This approach quickly turned to methods of generating constraints.

The most direct way to generate a domain constraint from a list of restrictions on a property

is to construct a disjunction of the concepts. This researchfurther investigated the tendency

of disjunctive constraints to be overly specific and tend towards long chains of disjunctions.

This research also demonstrated how these long disjunctions would negatively impact the
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performance of the reasoner.

Two methods of summarizing the properties were described: the least-common named

subsumer and vivification methods. The least-common named subsumer builds a concept

description of the least-common (or least general) named class in the ontology that sub-

sumes every member of the domain or range. The vivification concept creates summaries

by allowing partial subsumption checking while constructing the list.

A comparison of the constraints generated by the three algorithms showed that the

LCNS algorithm tended to over-generalize and create constraints that were equivalent to

the top-concept or else were more general than the other two methods. The same results

showed that the vivification algorithm produces constraints that are closer to the specificity

of the disjunction algorithm while still creating useful summaries of common super-classes

in the constraint. This is beneficial to preserve as much of the available information as pos-

sible while breaking the long disjunctive chains that impacted the reasoner’s performance.

A time-based comparison showed that the vivification algorithm was statistically

faster than the other approaches. This is due to the amortization of the generation costs

over the improved reasoner cost of the final model. Thus, for certain ontologies, the vivifi-

cation algorithm is superior in generalization and in performance.

The problem with applying any of the three algorithms is thatit is equivalent to mak-

ing default assertions and introduces non-monotonicity and potential undecidability into

the ontology. A method to address a very limited form of default reasoning was introduced

which tracked the origin of a particular statement to be either default or non-default. A

set of modifications to the reasoner were described which propagated the defaultness of a

statement through any statements which were derived in whole or part from another default

statement; and which allowed a non-default statement to replace a default statement. In the

event of a clash in the knowledge base or to handle retractions due to non-monotonicity, a

retraction operation was built into the reasoner which allowed the default facts (and those
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facts derived from them) to be removed from the knowledge base. Because of the lim-

ited scope of this modification, the resulting reasoner was demonstrated to be complete,

decidable, and efficient.

7.2 Future Work

This research raises some additional questions that can be explored in future work:

such as role of instance data, domain and range pairings, useof class names for constructing

constraints, comparing ontologies, and improving search results.

One of the primary questions is whether individual instancedata can be used to im-

prove the results of the constraint generation process. At the present, there appears to be

a significant amount of variability in the amount of type assertions that can be extracted

from the instance data. As such, it is not clear that there is sufficient information to support

generation of additional constraints (or even to verify thecorrectness of constraints) from

the instantiation data. Assertional evidence may also be useful during contraction, such as

in the situation discussed in Section 5.2.4, when there is insufficient evidence in the TBox

to properly infer default constructs.

Another open question is how the new OWL 1.1 constraint pattern, where domain and

range statements are paired can be combined with this generation method. Specifically,

will vivification yield satisfactory results when the language allows multiple domain and

range pairings. Even if it does, the method in which the vivified concept is created would

need to be modified to take advantage of the new linguistic support.

One other area that warrants some exploration is the use of the class names and ex-

ternal meta-ontologies in constructing the domain and range constraints. The current work

ignores the name of the symbols used. However, there are somesystems that make use of

the symbol names to extend additional meaning into the ontology. This approach, often
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used by ontology mapping tools, may allow additional constraints to be generated even

when not supported by the usage within the ontology.

One final future application of this research is in the domainof semantic search en-

gines. Presently, search engines such as Google try to aggressively magnify the amount of

information from the given documents in the search base. They need to do this to over-

come differences in information representation in the various web documents. It is clear

from this research that different ontologies have different degrees of completeness and

specificity. Further, accurately mapping and linking documents will require a rich ontology

with clear semantics. Using this approach, property constraints can be generated during

the mapping or linking phases and improve the performance ofthe mapper and resulting

reasoner. Further, this approach can be used by the search agent to simplify and general-

ize long disjunction chains to gain additional reasoning performance and reduce memory

costs.

7.3 Conclusion

The research results presented here strongly support the original research thesis. It is

possible to generate domain and range constraints for properties. These constraints may be

used to find new information in existing ontologies, and it can be done efficiently. With

a few modifications to the reasoner the issues of default reasoning and non-monotonicity

can be addressed as well. This research is an exciting beginning for a number of different

application areas and future research areas. These methodsmay be extended into additional

areas and future Semantic Web languages.
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