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Abstract. A method of training multilayer perceptrons (MLPs) to reach
a global or nearly global minimum of the standard mean squared error
(MSE) criterion is proposed. It has been found that the region in the
weight space that does not have a local minimum of the normalized risk-
averting error (NRAE) criterion expands strictly to the entire weight
space as the risk-sensitivity index increases to infinity. If the MLP under
training has enough hidden neurons, the MSE and NRAE criteria are
both equal to nearly zero at a global or nearly global minimum. Train-
ing the MLP with the NRAE at a sufficiently large risk-sensitivity index
can therefore effectively avoid non-global local minima. Numerical ex-
periments show consistently successful convergence from different initial
guesses of the weights of the MLP at a risk-sensitivity index over 106.
The experiments are conducted on examples with non-global local min-
ima of the MSE criterion that are difficult to escape from by training
directly with the MSE criterion.
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1 Introduction

The local-minimum problem has plagued the development and application of
the neural network approach based on the multilayer perceptron (MLP) and
has attracted much attention since its inception [1–9]. A promising method to
alleviate the problem was proposed in [10, 11]. The method employs a new type
of risk-averting error (RAE) criterion, which is a transformation of the standard
mean squared error (MSE) criterion for training the MLP. By gradually increas-
ing the risk-sensitivity index, the convexity region of the RAE criterion expands
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strictly, thereby creating tunnels or wormholes for a local search method such as
the conjugate gradient and quasi-Newton algorithm to escape non-global min-
ima. However, the method has two shortcomings. First, the RAE is a sum of
exponential functions of the risk sensitivity index. Computer overflow occurs in
evaluating the RAE at a large risk sensitivity index. Second, it is not always easy
to select an appropriate value of the risk-sensitivity index to start the gradual
convexification. In the following, a remedy is discussed.

A standard formulation of training a multilayer perceptron (MLP) under
supervision follows: A set of pairs, (xk, yk), k = 1, ...,K, of which the vectors xk
and the vectors yk are related by an unknown function f

yk = f (xk) + ξk

where ξk are random noises. Find the weight vector w of a MLP f̂ (x,w) such
that the mean squared error (MSE) criterion,

Q(w) =
1

K

K∑
k=1

∥∥∥yk − f̂ (xk, w)
∥∥∥2 (1)

is minimized. If the MLP f̂ (xk, w) is nonlinear in w, the MSE criterion Q(w) is
usually nonconvex and has non-global local minima.

It is proven in [11] that the convexity region of Jλ(w)/λ, where Jλ(w) is a
new type of risk-averting error criterion,

Jλ(w) :=

K∑
k=1

exp

(
λ
∥∥∥yk − f̂ (xk, w)

∥∥∥2) (2)

expands strictly as λ increases, and that limλ→0
1
λ ln

[
1
K Jλ (w)

]
= Q (w). Here

:= means “denote” or “be defined to be”. These properties confirmed the effec-
tiveness of the adaptive training method reported in [10] for avoiding poor local
minima. However, note that the RAE is a sum of exponential functions of the
risk sensitivity index λ.

The normalized RAE (NRAE)

Cλ (w) :=
1

λ
ln

[
1

K
Jλ (w)

]
is a strictly increasing function of Jλ(w)/λ2, whose Hessian matrix is Hλ(w)/λ2.
A formula (i.e., equation (8) in [11]) for the Hessian matrix Hλ(w) shows that
limλ→∞Hλ(w)/λ2 is a positive semi-definite matrix. It follows that the convexity
region of Jλ(w)/λ2 expands to nearly the entire weight space as λ increases to
nearly infinity. Moreover, Jλ(w)/λ2 does not have a non-global local minimum
in the convexity region for λ sufficiently large, although limλ→∞ Jλ(w)/λ2 does
not exist.

Since Cλ (w) is a strictly increasing function of Jλ(w)/λ2, it does not have a
non-global local minimum in the convexity region of Jλ(w)/λ2 for λ sufficiently
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large. As the convexity region of Jλ(w)/λ2 expands to nearly the entire weight
space as λ increases to nearly infinity, Cλ (w) does not have a non-global min-
imum in nearly the entire weight space for λ sufficiently large. This is the first
and primary reason for using Cλ (w) as the training criterion.

As will be seen later in this paper, for λ >> 1, Cλ(w) and its gradient vector
gλ(w) := ∂Cλ(w)/∂wj and Hessian matrix Hλ(w) :=

[
∂2Cλ(w)/∂wi∂wj

]
can be

computed without evaluating the exponential function exp

(
λ
∥∥∥yk − f̂ (xk, w)

∥∥∥2),

for λ >> 1, k = 1, . . . ,K. This is the second reason for using Cλ (w) as the train-
ing criterion.

If the MLP has enough hidden neurons to approximate the target function
nearly perfectly, global minima of Cλ(w) and the MSE criterion Q (w) are both
nearly 0. This is the third reason for using Cλ (w) as the training criterion.

The method of training the MLP with Cλ (w) is called the NRAE training
method. The method is numerically tested for a number of large values of λ.
Both Cλ(w) and Q (w) for the resultant MLP consistently converge to 0 for λ
in the range 106 and 1011. When λ exceeds 1011, round-off errors occur and the
NRAE training method could not be carried out. We expect to fix this numerical
problem in the near future.

2 Evaluating NRAE and Its Derivatives

For notational simplicity, let

ŷk (w) := f (xk, w)

εk (w) := yk − ŷk (w) .

For a vector w, let S (w) = arg maxk∈{1,...,K} ‖εk (w)‖2, which set may con-
tain more than one elements if a tie exists, and M (w) = mink {k|k ∈ S (w)}. It
follows that

‖εk (w)‖2 ≤
∥∥εM(w) (w)

∥∥2 .
Let

ηk (w) := e
λ
(
‖εk(w)‖2−‖εM(w)(w)‖2

)

then

ηk (w) ≤ 1

ln

[
K∑
k=1

ηk (w)

]
≤ lnK .
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Hence

Cλ (w) =
1

λ
ln

[
1

K
eλ‖εM(w)(w)‖2

K∑
k=1

ηk (w)

]

=
1

λ
ln

1

K
+
∥∥εM(w) (w)

∥∥2 +
1

λ
ln

[
K∑
k=1

ηk (w)

]
≤
∥∥εM(w) (w)

∥∥2
(3)

and the terms in (3) are bounded by functions independent of λ and no register
overflow occurs for λ >> 1.

Consider the first-order derivative,

∂Cλ (w)

∂wj
=

1

λJλ (w)

∂Jλ (w)

∂wj

=
1

λJλ (w)

[
−2λ

K∑
k=1

eλ‖εk(w)‖2εTk (w)
∂ŷk (w)

∂wj

]

=
−2
∑K
k=1 ηk (w) εTk (w) ∂ŷk(w)

∂wj∑K
k=1 ηk (w)

(4)

where

K∑
k=1

ηk (w) ≤ K

K∑
k=1

ηk (w) εTk (w)
∂ŷk (w)

∂wj
≤

K∑
k=1

εTk (w)
∂ŷk (w)

∂wj

which is independent of λ. Hence, both the numerator and denominator of (4)
can be handled without register overflow for λ >> 1.

The Hessian matrix can be evaluated in a similar way.

3 Numerical Experiments

In this section, a function approximation task is implemented to demonstrate
the effectiveness of the proposed NRAE training method. Before each training
session starts, some parameters for MLPs are selected as follows. First, each
synaptic weight in a weight vector is randomly selected from a uniform distri-
bution between −2.4/Fi and 2.4/Fi, where Fi is the number of input neurons of
the connected unit. Second, all input and output values defined in the training
data are normalized into [−1, 1]. Third, the activation function in each training
neuron is chosen as the hyperbolic tangent function ϕ(v) = a tanh(bv), where
a = 1.7159 and b = 2/3.
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3.1 Function Approximation

A function with three notches is defined by

y = f(x) =


0 if x ∈ [0, 1.0] ∪ [2.2, 2.3] ∪ [3.5, 4.5]
0.25 if x ∈ [2.8, 3.0]
0.5 if x ∈ [1.5, 1.7]
1 otherwise

(5)

where x ∈ X = [0, 4.5]. The input values xk are obtained by random sampling
2000 non-repeatable numbers from X with a uniform distribution, and the cor-
responding output values yk are computed by (5). The training data with 2000
(xk, yk) pairs is chosen to perform the three-notch function approximation. In
our experiment, we randomly select five different initial weight vectors to start
five training groups. In each training group, one standard MSE training session
and six NRAE training sessions with the BP and BFGS algorithm are per-
formed with the same initial weight vector. The values of λ are set respectively
as 106, 107, 108, 109, 1010 and 1011 in all NRAE training sessions. MLPs with
1:16:1 architecture are initiated to both the MSE and NRAE training sessions.
All training results are obtained when the deviation of objective function values
between two consequent training epochs is less or equal to 10−15.

3.2 Discussion

In this section, experimental results are demonstrated and discussed. First, as an
example to visually show the training results, two approximated functions and
learning curves separately obtained by the MSE and NRAE training method in
one training group are selected and plotted in Fig. 1. Although six different values
of λ are chosen to perform the NRAE training sessions in this selected training
group, only one plot of the approximated function with λ = 106 is shown. Those
approximated function plots achieved by other five NRAE training sessions with
λ = 107, 108, 109, 1010 and 1011 are exactly the same as Fig. 1(c), and learning
curves for them are shown in Fig. 2. At last, a comparison of training errors
achieved by different guesses of five initial weight vectors between the MSE and
NRAE training sessions is illustrated in Fig. 3.

Since the three-notch function is intended to have typical non-global min-
ima, the observations in our experimental results demonstrate that the NRAE
training with a sufficiently large λ has the capability to avoid non-global local
minima comparing with the MSE training. First, approximated function plots
in Fig. 1(a) and Fig. 1(c) show that the NRAE training with a sufficiently large
λ captures all significant features located in the target three-notch function, but
the MSE training only finds few parts of those features. Second, learning curves
in Fig. 1 and Fig. 2 present similar patterns for the NRAE training with suffi-
ciently large values of λ to reach the global or nearly global minimum. Third,
results in Fig. 3 indicate that the NRAE training sessions with sufficiently large
values of λ consistently lead all trained MLPs to achieve satisfactory training
errors, which are lower than the MSE training.
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Fig. 1. Results of the three-notch function approximation with the MSE and NRAE
training. Figures on the left side column are function plots, and numbers on the hori-
zontal and vertical axes in each subfigure denote the input and output of the function,
respectively. Figures on the right side column are learning curves for the corresponding
training criteria, and numbers on the horizontal and vertical axes in each subfigure
denote the values of training epochs and errors, respectively. Here, the actual values
of training errors are converted to the logarithmic numbers with respect to base 10.
The represented NRAE training result and learning curves concerning the NRAE and
MSE criteria are obtained when λ = 106.

4 Conclusion

The NRAE training criterion does not have a non-global local minimum in nearly
the entire weight space, provided that the risk sensitivity index λ of the NRAE is
sufficiently large. We propose to use the NRAE criterion to train an MLPs that
has enough hidden neurons to approximate the target function nearly perfectly.
To select a sufficiently large λ, we start with a large number, say 106, as long as
the computer can handle the NRAE with this λ and the local search optimization
method (e.g., the BFGS and conjugate gradient method) applied to minimize
this NRAE. If the NRAE criterion does not converge to zero, we increase the
risk sensitivity index by multiplying it by 10. We continue increasing λ in this
manner, if necessary, until the NRAE and MSE are nearly zero.
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(a) λ = 107
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(b) λ = 108
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(c) λ = 109

0 0.5 1 1.5
10

−8

10
−6

10
−4

10
−2

10
0

10
2

 

 

NRAE    MSE

x 10
6

(d) λ = 1010

0 1 2 3 4 5

x 10
6

10
−6

10
−4

10
−2

10
0

10
2

 

 

NRAE    MSE

(e) λ = 1011
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(f) λ = 1011

Fig. 2. Learning Curves for the three-notch function approximation with the NRAE
training. Figures from Fig. 2(a) to Fig. 2(e) illustrate different trends of the NRAE
training with respect to both the NRAE and MSE criteria as increasing of λ. Fig. 2(f)
shows only the learning curves concerning the NRAE criterion for five different initial
weight vectors when λ = 1011. Numbers on the horizontal axis are the values of train-
ing epochs. Numbers on the vertical axis are the values of training errors which are
converted to the logarithmic numbers with respect to base 10.
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Fig. 3. Training errors of five different initial weight vectors for the three-notch func-
tion approximation with the MSE and NRAE training. Colors and symbols in the
showed lines are used to distinguish the MSE and NRAE training methods, or describe
independent NRAE training sessions with different values of λ. Here, all actual values
on the vertical axis are converted to the logarithmic numbers with respect to base 10.
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