

A Probabilistic Extension to Ontology Language OWL

Zhongli Ding and Yun Peng
Department of Computer Science and Electrical Engineering

University of Maryland Baltimore County
Baltimore, Maryland 21250

{zding1, ypeng}@cs.umbc.edu
Phone: 410-455-3816
Fax: 410-455-3969

A Probabilistic Extension to Ontology Language OWL

Abstract

With the development of the semantic web activity, ontologies become widely used to

represent the conceptualization of a domain. However, none of the existing ontology

languages provides a means to capture uncertainty about the concepts, properties and

instances in a domain. Probability theory is a natural choice for dealing with uncertainty.

Incorporating probability theory into existing ontology languages will provide these languages

additional expressive power to quantify the degree of the overlap or inclusion between two

concepts, support probabilistic queries such as finding the most probable concept that a given

description belongs to, and make more accurate semantic integration possible. One approach

to provide such a probabilistic extension to ontology languages is to use Bayesian networks, a

widely used graphic model for knowledge representation under uncertainty. In this paper, we

present our on-going research on extending OWL, an ontology language recently proposed by

W3C’s Semantic Web Activity. First, the language is augmented to allow additional

probabilistic markups , so probabilities can be attached with individual concepts and properties

in an OWL ontology. Secondly, a set of translation rules is defined to convert this

probabilistically annotated OWL ontology into a Bayesian network. Our probabilistic

extension to OWL has clear semantics: the Bayesian network obtained will be associated with

a joint probability distribution over the application domain. General Bayesian network

inference procedures (e.g., belief propagation or junction tree) can be used to compute P(C|e):

the degree of the overlap or inclusion between a concept C and a concept represented by a

description e. We also provide a similarity measure that can be used to find the most probable

concept that a given description belongs to.

1. Introduction

With the development of Semantic Web [Berners-Lee 1998], ontologies have become widely

used to capture the knowledge about concepts and their relations defined in a domain for

information exchange and knowledge sharing. There are different definitions of the term

“ontology”, from philosophy, linguistics, and artificial intelligence. In our context, ontology

can be formally defined as a set of vocabulary to describe the conceptualization of a particular

domain [Gruber 1993]. A number of ontology definition languages have been developed over

the past years [RDF; SHOE; OIL; DAML; DAML+OIL; OWL]. The most widely used among

them is DAML+OIL, which is based on DAML (DARPA Agent Markup Language) and OIL

(Ontology Inference Layer). OWL (Web Ontology Language) is a newly emerging standard

proposed and supported by W3C for defining ontologies in semantic web. OWL is based on

DAML+OIL but with simpler primitives. Like DAML+OIL [Horrocks 2002], OWL is also

based on description logics, which is a subset of first-order logic that provides sound and

decidable reasoning support. As with traditional crisp logic, any sentence in OWL, being

asserted facts, domain knowledge, or reasoning results, must be either true or false and

nothing in between. However, most real world domains contain uncertainty knowledge and

incomplete or imprecise information that is true only to a certain degree. Ontologies defined

by these languages thus cannot quantify the degree of the overlap or inclusion between two

concepts, and cannot support reasoning in which only partial information about a concept or

individual in the domain can be obtained. Uncertainty becomes more prevalent when more

than on ontologies are involved where it is often the case that a concept defined in on ontology

can only find partial matches to one or more concepts in another ontology.

To overcome the difficulty arising from the crisp logics, existing ontology languages need to

be extended to be able to capture uncertainty knowledge about the concepts, properties and

instances in the domain and to support reasoning with partial, imprecise information. Along

this direction, researchers in the past have attempted to apply different formalisms such as

Fuzzy logic [Zadeh 1965], rough set theory [Pawlak 1982] and Bayesian probability as well as

ad hoc heuristics into ontology definition and reasoning (see [Stuckenschmidt 2000] for a

brief survey). In this paper, we take Bayesian probability approach and propose a probabilistic

extension to ontology language OWL by using Bayesian networks [Pearl 1988] as the

underlying probabilistic model and the reasoning mechanism. Our ultimate goal is to develop

methodology based on which one can convert an OWL ontology to a Bayesian network.

Bayesian networks (BN) have been established as an effective and principled general

framework for knowledge representation and inference under uncertainty. In the BN

framework, the interdependence relationships among random variables in a domain are

represented by the network structure, and the uncertainty of such relationships by the

conditional probability table (CPT) associated with each variable. These local CPT

collectively and compactly encode the joint probability distribution of all variables in the

system. This extension thus provides OWL additional expressive power, support probabilistic

queries, and make more accurate semantic integration possible.

In our approach, the OWL language is first augmented to allow additional probabilistic

markups so that probability values can be attached to individual concepts and properties as

well as their interrelations in an OWL ontology. Secondly, a set of translation rules is defined

to convert this probabilistically annotated ontology into a Bayesian network. The Bayesian

network obtained will be associated with a joint probability distribution over the application

domain, represented by the conditional probability tables associated with individual nodes

(concepts and properties). General Bayesian network inference procedures (for example,

belief propagation [Pearl 1986] , junction tree [Lauritzen and Spiegelhalter 1988]) can be used

to compute P(C| e): the degree of the overlap or inclusion between a concept C and a concept

represented by a description e. It can also support other reasoning tasks such as finding the

most probable concept that a given description belongs to.

Earliest works have tried to add probabilities into full first-order logic [Bacchus 1990;

Halpern 1990], in which syntax of adding probabilities into the logic are defined and

semantics of the result formalisms are clarified, but the logic was highly undecidable just as

pure first-order logic. An alternative direction is to integrate probabilities into less expressive

subsets of first-order logic such as rule-based (for example, probabilistic horn abduction

[Poole 1993]) and description logics ([Jaeger 1994; Heinsohn 1994; Koller et.al 1997; Giugno

and Lukasiewicz 2002]) systems. Works in the latter category is particularly relevant to our

work because 1) description logic, as a subset of first-order logic, is decidable and provides

sound inference mechanism; and 2) OWL and several other ontology languages are based on

description logic. Works in [Jaeger 1994; Heinsohn 1994] provide a probabilistic extension of

the description logic ALC based on probabilistic logics. P-CLASSIC [Koller et.al 1997] gives

an informal probabilistic extension of description logic CLASSIC (with some variations)

based on Bayesian networks, in which each probabilistic component is associated with a set

P of p-classes, each p-class P P∈ is represented using a Bayesian network PN .

P-SHOQ(D) [Giugno and Lukasiewicz 2002] is the probabilistic extension of description logic

SHOQ(D) [Horrocks 2001], which is the semantics behind DAML+OIL (without inverse

roles), based on the notion of probabilistic lexicographic entailment from probabilistic default

reasoning. Among these works, only P-SHOQ(D) is able to represent assertional (i.e., Abox)

probabilistic knowledge about concept and role instances, while only P-CLASSIC uses

Bayesian networks as underlying probabilistic reasoning mechanism. The primary difference

between our work and the others such as P-CLASSIC is that we are not aimed at providing

additional means to represent uncertainty or probabilistic aspect of the domain but rather at

developing formal rules to directly translate an OWL ontology into a Bayesian network.

The rest of this paper is organized as follows. Section 2 provides a brief description of OWL

language; Section 3 contains the most of our work on how to represent an OWL ontology by a

Bayesian network, including the extension of OWL for probabilistic annotation and a set of

rules converting OWL constructors into nodes and arcs of Bayesian network; Section 4

discusses issues concerning the semantics of the Bayesian network generated by the

converting rules and how reasoning can be performed over this probabilistic-annotated

ontology. The paper concluded in Section 5 with directions for future research.

2. Web Ontology Language OWL

In this section, we briefly review OWL, the standard web ontology language proposed by

W3C recently. OWL is intended to be used by applications to represent terms and their

interrelationships. It is an extension of RDF (the Resource Description Framew ork [RDF])

and goes beyond its semantics. RDF is a general assertional model to represent the resources

availble on the web through RDF triples of “subject”, “predicate” and “object”. For example,

in the following RDF statement,

“http://www.w3.org/” is the “subject”, “dc:title” is the “predicate” (where “dc” is an

abreviation of “http://purl.org/dc/elements/1.1/”), and “World Wide Web Consortium” is the

“object”. This triple is read as: “http://www.w3.org/” has a title “World Wide Web

Consortium”. Each RDF triple can be encoded in XML as shown in the above example. It can

also be represented as the “RDF graph” in which nodes correspond to “subject” and “object”

and the directed arc corresponds to the “predicate” as shown in Figure 2.1 below:

Figure 2.1 RDF Graph Example

Each triple in RDF makes a distinct assertion, adding any other triples will not change the

meaning of the existing triples. A simple datatyping model of RDF called RDF Schema

[RDFS] is used to control the set of terms, properties, domains and ranges of properties, and

“subClassOf” and “subPropertyOf” relationships used to define resources. However, RDF

Schema is not expressive enough to catch all the relationships between classes and properties.

OWL provides a richer set of vocabulary by further restricting on the set of triples that can be

represented. OWL includes three increasingly complex languages [OWL GUIDE]: OWL Lite,

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description rdf:about=" http://www.w3.org/">

 <dc:title>World Wide Web Consortium</dc:title>

 </rdf:Description>

</rdf:RDF>

OWL DL and OWL Full. An OWL document can include an optional ontology header and

any number of class, property, and individual descriptions or axioms. Next we will describe

the set of constructors used in OWL to form descriptions or axioms in brief [OWL REF].

A named class in an OWL ontology can be described by a class indentifier, for example,

“<owl:Class rdf:ID=”Animal” />” defines a class “Animal” which is an instance of owl:Class.

An anonymous class can be described by exhaustively enumerating all the individuals that

form the instances of this class (owl:oneOf), by a property restriction (owl:Restriction), or by

logical operation on two or more classes (owl:intersectionOf, owl:unionOf, owl:complementOf).

Property restrictions include value (owl:allValuesFrom, owl:someValuesFrom, owl:hasValue)

and cardinality restrictions (owl:cardinality, owl:maxCardinality, owl:minCardinality). For

example, the following description is a value restriction:

It defines an anonymous class of all individuals whose “hasParent” property only has range

values of class “Human”. In other words, the local range of property “hasParent” is restricted

to “Human”. Similarly, the following description is a cardinality restriction which defines a

class of all individuals that have exactly 1 father:

The three logical operators are corresponding to AND (conjunction), OR (disjunction) and

NOT (negation) in logic, they define class of all individuals by standard set-operation:

intersection, union, and complement, respectively. OWL also has three class axioms for

<owl:Restriction>

<owl:onProperty rdf:resource="#hasParent"/>

<owl:allValuesFrom rdf:resource="#Human"/>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasFather"/>

<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>

</owl:Restriction>

additional necessary and sufficient conditions of a class: rdfs:subClassOf, owl:equivalentClass,

owl:disjointWith. For example,

The above statement defines that class “Female” is subclass of class “Animal”, and it is

disjoint with class “Male” (i.e., these two classes have no individuals in common). There are

two kinds of properties can be defined in OWL: object property (owl:ObjectProperty) which

links individuals to individuals, and datatype property (owl:DatatypeProperty) which links

individuals to data values. Similar to class, “rdfs:subPropertyOf” is used to define that a

property is a subproperty of another property. In the following example, “hasParent” is an

object property with global domain “Animal”, which means an individual with property

“hasParent” must be an individual in class “Animal”; and with global range “Animal”, which

means that the range values of “hasParent” must comes from class “Animal”.

“hasFather” is another object property defined as a subproperty of “hasParent”, it inherits the

domain from “hasParent” and overrides its range to class “Male ”. Therefore, if an individual a

can be related to an individual b by “hasFather”, then a must also be related to b by

“hasParent”. Besides these most often used constructors, there are other constructors. For

example, constructors owl:equivalentProperty, owl:inverseOf are used to relate two properties;

<owl:Class rdf:ID="Female">

 <rdfs:subClassOf rdf:resource="#Animal"/>

 <owl:disjointWith rdf:resource="#Male"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="hasParent">

 <rdfs:domain rdf:resource="#Animal"/>

 <rdfs:range rdf:resource="#Animal"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasFather">

 <rdfs:subPropertyOf rdf:resource="#hasParent"/>

 <rdfs:range rdf:resource="#Male"/>

</owl:ObjectProperty>

owl:FunctionalProperty, owl:InverseFunctionalProperty to impose cardinality restrictions on

properties; owl:TransitiveProperty, owl:SymmetricProperty to specify logical characteristics of

properties; and owl:sameAs, owl:sameIndividualAs, owl:differentFrom, owl:AllDifferent to

relate individuals. The semantics of OWL is defined in the way analogous to the semantics of

description logic [OWL SEMANTICS]. With the additional set of vocabulary (mostly as

described above), one can define an ontology as a set of (restricted) RDF triples which can be

represented as a RDF graph.

3. Probabilistic Extension to OWL

In the most general form, a BN of n variables consists of a directed acyclic graph (DAG) of

n nodes and a number of arcs. Nodes iX in a DAG correspond to variables, and directed

arcs between two nodes represent direct causal or influential relation from one node to the

other. The uncertainty of the causal relationship is represented locally by the conditional

probability table (CPT))|(iiXP π associated with each node iX , where iπ is the parent

set of iX . Under a conditional independence assumption, the graphic structure of BN allows

an unambiguous representation of interdependency between variables, which leads to one of

the most important feature of BN: the joint probability distribution of),,(1 nXXX K= can

be factored out as a product of the CPT in the network:
=

==
n

i iixPxXP
1

).|()(π

With the joint probability distribution, BN supports, at least in theory, any inference in the

joint space. Although it has been proven that the probabilistic inference with general DAG

structure is NP-hard [Cooper 1990], BN inference algorithms such as belief propagation

[Pearl 1986] and junction tree [Lauritzen and Spiegelhalter 1988] have been developed to

explore the causal structure in BN for effective computation.

Besides the expressive power and rigorous and efficient probabilistic reasoning capability, we

are attracted to BN in this work also by the structural similarity between the DAG of a BN and

the RDF graph of OWL ontology: both of them are directed graphs, and direct correspondence

exists between many nodes and arcs in the two graphs. However, a number of difficulties exist

in converting an OWL ontology to a BN while maintaining its original semantics. Among

them, the most noticeable are: 1) how can one encode probabilit y values in OWL; 2) how to

generate a correct DAG from OWL graph, especially how to handle the anonymous classes in

OWL for object properties; and 3) how to construct CPT from user provided probabilities and

logical relations specified in OWL. We report in this section our initial results on overcoming

these difficulties.

To focus attention, we in the current stage of our research assume that an OWL ontology uses

only constructors corresponding to the terminology part (DL TBox) of description logic and

uses only object properties. So, the constructors related to individuals (DL ABox) and

datatypes are not considered. Another assumption made is that every object property defined

in the ontology has at most one global domain and range, this assumption is made only to ease

our illustration of the translation rules, since in the case of multiple domains/ranges, the actual

domain/range set is the “intersectionOf” or “unionOf” those individual domains/ranges. Also,

in the current stage, only ontologies defined by OWL Lite and OWL DL are considered. This

is because, among other things, classes and individuals, properties and data values form

disjoint domains in ontologies defined by OWL Lite and OWL DL; while in OWL Full a class

can be treated as a collection of individuals and itself as a member at the same time, leading to

cycles in the underlying RDF graph that are difficult to convert to the acyclic graph of BN.

We organize this section into 3 subsections. Section 3.1 describes how an OWL ontology is

augmented to allow additional probabilistic markups. Section 3.2 defines a set of translation

rules used to convert this probabilistically annotated ontology into a Bayesian network

structure. Section 3.3 considers the rules for constructing the conditional probability tables.

3.1 Encoding requested probabilistic information

The model-theoretic semantics [OWL SEMANTICS] of OWL ontology treats the domain as a

non-empty collection of individuals (or instances). If “A”, “B” are classes, we interpret

“P(A)” as the probability that an arbitrary individual belongs to class “A”, “P(A|B)” as the

probability that an individual of class “B” also belongs to “A”, and “P(A| B)” as the

probability that an individual in the complement set of “B” belongs to “A”. To add such

uncertainty information into an existing ontology, we treat a probability as a kind of resource,

and define three kinds of OWL classes (owl:Class): “PriorProbObj”, “CondProbObjT”, and

“CondProbObjF”. A probability of the form “P(A)” is defined as an instance of class

“PriorProbObj”, which has two mandatory properties: “hasVarible” and “hasProbValue”. A

probability of the form “P(A|B)” is defined as an instance of class “CondProbObjT” and a

probability of the form “P(A| B)” is defin ed as an instance of class “CondProbObjF”, both

have three mandatory properties : “hasCondition”, “has Variable”, and “hasProbValue”.

“hasCondition” and “hasVariable” are object properties and “hasProbValue” is a datatype

property. For example, suppose “prob” is the namespace abbreviation of the probability

definitions, and “ont” is the namespace abbreviation of the original OWL ontology, if

“Animal” is a class defined in the ontology, then “P(Animal) = 0.5”, the prior probability that

an individual object belongs to class “Animal”, can be expressed as:

And if “Male” is another class defined in the domain, then “P(Male|Animal) = 0.5”, the

conditional probability that an individual object belongs to class “Male” given it is an

“Animal”, can be expressed as:

And "P(Female| Male) = 0.32", the conditional probability that an individual object belongs

to class “Female” given it is not a “Male”, can be expressed as:

Currently only these three forms of probabilities are allowed to be added into an existing

OWL ontology. Note that “P(A) = 1 – P(A)”, “P(A |B) = 1 – P(A|B)” and “P(A | B) = 1 –

P(A| B)”, so there is no need to spec ify them explicitly. In the future, it is possible to extend

the above forms to arbitrary conditional probability such as “P(A|P1,P2,…,Pn)”.

3.2 Structural translation rules based on set-theoretic approach

The ontology file augmented with probability values as described in the previous subsection

will still be an OWL file. This probabilistically annotated ontology can be further translated

into a Bayesian belief network by following a set of rules defined. In this subsection, we are

<prob:PriorProbObj rdf:ID="P(Animal)">

<prob:hasVariable><rdf:value>&ont;Animal</rdf:value></prob:hasVariable>

 <prob:hasProbValue>0.5</prob:hasProbValue>

</prob:PriorProbObj>

<prob:CondProbObjT rdf:ID="P(Male|Animal)">

<prob:hasCondition><rdf:value>&ont;Animal</rdf:value></prob:hasCondition>

 <prob:hasVariable><rdf:value>&ont;Male</rdf:value></prob:hasVariable>

 <prob:hasProbValue>0.5</prob:hasProbValue>

</prob:CondProbObjT>

<prob:CondProbObjF rdf:ID="P(Female|(not)Male)">

 <prob:hasCondition><rdf:value>&ont;Male</rdf:value></prob:hasCondition>

 <prob:hasVariable><rdf:value>&ont;Female</rdf:value></prob:hasVariable>

 <prob:hasProbValue>0.32</prob:hasProbValue>

</prob:CondProbObjF>

focusing on the translation of the network structure, i.e., construction of the DAG from the

ontology file, and leave the task of constructing CPT to the next subsection. For simplicity, we

ignore those header components in the ontology, such as “owl:imports” (for convenience, we

assume the whole ontology is defined in a single OWL file), “owl:versionInfo”,

“owl:priorVersion”, “owl:backwardCompatibleWith”, and “owl:incompatibleWith”. If the

domain of discourse is treated as a non-empty collection of individuals (“owl:Thing”), then

every class (either primitive or defined) can be thought as a countable subset (or subclass) of

“owl:Thing”. We have developed a set of rules to translate a probability-annotated ontology

into a Bayesian network structure. The general principle underlying these rules is that all

classes (specified as “subjects” and “objects” in RDF triples of the OWL file) are translated

into nodes in BN, and an arc is drawn between two nodes in BN only if the corresponding two

classes are related by a “predicate” in the OWL file with the direction from the superclass to

the subclass if it can be determined. These rules are summarized as follows:

1) Every primitive or defined class “C”, or anonymous class “Res” (defined by restriction), is

mapped into a two-state (either true or false) variable node in the translated BN.

2) Every object property “P” defined with domain “D” and range “R” is mapped into a

two-state (either true or false) variable node “Class_P” in the translated BN, denoting the set

of individuals in the domain who have this property “P” (this implies that “Class_P” should be

a subclass of the domain class “D”).

3) Every “Class_P” node has one “GR_P” node as its child. If the global range class specified

by the ontology or inherited from superproperty of “P” is “R”, then the “GR_P” node will

have two states: “R” and “Irrelevant”, or “Thing” if nothing is specified or inherited.

4) Similar rules are given to “Res” nodes. Recall that in OWL a class having property P is

specified by an anonymous “Res” class which restricts cardinality and range. Therefore, every

“Res” node in the translated BN may have either one “LC_P_Res” node (for local cardinality

restriction of property P) or one “LR_P_Res” node (for local range restriction on property P)

as its child, its states will correspond to the restriction defined. We call nodes such as “GR_P”,

“LC_P_Res ” and “LR_P_Res ” projection nodes, which is used to represent range and

cardinality information. Projection nodes can only be leaf nodes in BN, and there is a directed

arc from a “Class_P” or “Res” node to its corresponding projection node.

5) There is a directed arc from a superconcept node to a subconcept node (e.g., specified by

“rdfs:subClassOf”); there is a directed arc between two mutual exclusive or disjoint concept

nodes (e.g., specified by “owl:disjointWith”) and the direction may in either way; there is a

directed arc between two explicitly dependent concept nodes (e.g., specified by

“owl:intersectionOf”), with the direction corresponding to the relation; there is no arc between

two independent concept nodes, they should be d-separated with each other; and there is no

arc between two implicitly dependent concept nodes, although they are not be de-separated

with each other.

If no “rdfs:subClassOf” or “rdfs:subPropertyOf” cycles are allowed to be defined or no any

“subClassOf” relation cycles can be inferred, and if mutual disjoint among a set of classes are

carefully handled (the direction of the arcs are specified in a way without cycles), using our

translation rules, the taxonomy T1 formed by all “C” and “Res” nodes (and their projection

nodes) and the taxonomy T2 formed by all “Class_P” nodes (and their projection nodes) will

both be acyclic and the translated network is also guaranteed to be acyclic (DAG), which links

T1 and T2 by adding directed arcs from domain class nodes in T1 to their corresponding

“Class_P” nodes in T2, and from “Class_P” nodes in T2 to local restriction class nodes “Res”

in T1 (note these new adding arcs will not cause cycles since no “subClassOf” relation cycles

be detected). One last thing to be noted is that, for each class defined by restriction (or

anonymous class) in the original ontology, we require that the ontology provides an “rdf:ID”

attribute for it, since we need to name them uniquely in the translated Bayesian network and

provide ways to specify probabilities for them.

We illustrate the above rules in detail by some examples. The software system we used to

construct Bayesian networks in these examples is Netica from Norsys Software Corp.

[NORSYS]. This system also support belief update in BN.

Example 1: A primitive concept “Animal” defined by a class identifie r as “<owl:Class

rdf:ID="Animal"/>” and denoted with a prior probability “P(Animal) = 0.5” can be mapped

into a single variable node in the translated BN as:

Figure 3.1 – Single Class Only

Example 2: If “hasParent” is an object property with domain and range “Animal”,

“hasFather” is another object property which is a subproperty of “hasParent” with range

“Male”, defined in OWL as follows:

<owl:ObjectProperty rdf:ID="hasParent">

 <rdfs:domain rdf:resource="#Animal"/>

 <rdfs:range rdf:resource="#Animal"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasFather">

<rdfs:subPropertyOf rdf:resource=”#hasParent”/>

 <rdfs:range rdf:resource="#Male"/>

</owl:ObjectPropert y>

Then the above statements can be mapped into a subgraph in the translated BN as in Figure

3.2, there is an arc from “Class_hasParent ” to “Class_hasFather ” since the set of individuals

who has father is a subset of the set of individuals who has parents, and “GR_hasParent” has

states “Animal” and “Irrelevant”, “GR_hasFather” has states “Male” and “Irrelevant”:

Figure 3.2 – Object Property

Example 3: An anonymous class “Res” defined by local value restriction as:

can be mapped into a subgraph in the translated BN as in Figure 3.3. “LR_hasParent_Res” has

two states: “Human” and “Other” which is interpreted as the set difference of “Animal” and

“Human”. There is a directed arc from “Class_hasParent ” to “Res” since the set of individuals

“Res” whose parents are human is a subset of the set of individuals “Class_hasParent ” who

has parents. Statements using “owl:someValuesFrom” can be treated in the same way. In the

current state, no translation for “owl:hasValue” is considered.

<owl:Restriction rdf:ID=”Res”>

<owl:onProperty rdf:resource=”#hasParent”/>

<owl:allValuesFrom rdf:resource=”#Human”/>

</owl:Restriction>

Figure 3.3 – Class by local value restriction

Similarly, an anonymous class “Res” defined by local cardinality restriction as:

can be mapped into a subgraph in the translated BN as in Figure 3.4. “LC_hasParent_Res” has

two states: “N2” (for its cardinality is 2) and “Nother” (for other cardinality). Statements using

“owl:maxCardinality”, “owl:minCardinality” could be easily translated by similar rules.

Figure 3.4 – Class by Local Cardinality Restriction

Example 4: A class “Man” defined by “owl:intersectionOf” as the logical conjunction of class

“Human” and “Male” as follows:

can be mapped into a subgraph in the translated BN as in Figure 3.5. The CPT of “Man” is

determined by the logical relation “AND”. Similar translation can be done for “owl:un ionOf”

<owl:Restriction rdf:ID=”Res”>

<owl:onProperty rdf:resource="#hasParent"/>

<owl:cardinality rdf:datatype=”&xsd;nonNegativeInteger”>2</owl:cardinality>

</owl:Restriction>

<owl:Class rdf:ID="Man">

 <owl:intersectionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#Human"/>

 <owl:Class rdf:about="#Male"/>

 </owl:intersectionOf>

</owl:Class>

statements, with the CPT determined by the logical relation “OR”; and “owl:complementOf”

statements, with the CPT determined by the logical relation “NOT”.

Figure 3.5 – Class by Logical Operator “AND”

Example 5: Constructor “rdfs:subClassOf” specifies necessary but not sufficient conditions

for class membership. If “Human” is a subclass of “Animal” and “Biped”, defined as:

then we can map this statement into the following subgraph in the translated BN:

Figure 3.6 – Class by “rdfs:subClassOf” Axiom

Example 6: Constructor “owl:disjointWith” is used to assert that the classes involved have no

individuals in common. Figure 3.7 below illustrates different situations the “disjointWith”

axiom may involve.

Figure 3.7 – Class by “owl:disjointWith” Axiom

In left figure, “Female” is disjoint with “Male”; in middle figure, “Male” is disjoint with both

“Female” and “Car”; and in right figure, all three classes are mutual disjoint with each other.

3.3 Constructing conditional probability tables

<owl:Class rdf:ID="Human">

 <rdfs:subclassOf rdf:resource="#Animal">

 <rdfs:subclassOf rdf:resource="#Biped">

</owl:Class>

Once we had the network structure, the last step to finish the translation is to assign a

conditional probability table (CPT) to each node in the structure. We require that prior

probability “P(A)” be attached to a class “A” if it does not have any parent, conditional

probability “P(A|B)” be attached to a class “A” if it is a subclass of class “B” (so, P(A| B) = 0),

and if necessary “P(A| B)” are attached to a class “A” if it is disjoint with class “B” (so, P(A|B)

= 0). How to encode these probabilities in OWL file has been discussed earlier in subsection

3.1. In many cases, the CPT of a node can be determined completely from the semantics or

logical relation between classes. For projection node such as “GR_P” and “LC_P_Res”, its

CPT is deterministic; for projection node such as “LR_P_Res”, its CPT is deterministic if it is

from an “owl:allValuesFrom” statement or specified by user if it is from an

“owl:someValuesFrom” statement. Table 3.1 below shows the CPTs for the projection nodes

from Example 3 in last section:

“GR_hasParent” “LR_hasParent_Res” “LC_hasParent_Res”

Table 3.1 CPT - Projection Nodes

For class defined by a logical operator (e.g., the class “Man” in Example 4), its CPT is

determined by the logical relation.

 “C ” “Man” “Doctor ∪ Lawyer”

Table 3.2 CPT – Logical NOT, AND, OR

Table 3.2 above shows sample CPT for class defined by “owl:complementOf”,

“owl:intersectionOf” or “owl:unionOf” statement in order . “Man” is an intersection of

“Human” and “Male”, we have P(Man|Human,Male) = 1 and the probabilities of “Man” given

all other assignments of “Human” and “Male” as conditions are false (0). “complementOf”

and “unionOf” operators can be treated in a similar fashion.

In cases that a class node has several superconcept nodes as parents, computation is needed to

get the whole CPT. For example, if a class “A” is a subclass of both “B” and “C”, and we are

given P(A|B) and P(A|C), then it can be easily shown that P(A|B,C) = P(A|B) / P(C|B), or

symmetrically P(A|B,C) = P(A|C) / P(B|C), which can be computed if we also know P(C|B) or

P(B|C). However, if a class “C” has n direct superconcepts “S1, S2, … , Sn”, it may be

impossible to compute P(C|S1,S2,…,Sn) from given P(C|S1), P(C|S2), … , P(C|Sn) unless

some strong independence assumption can be made. For such general cases like this, we may

choose to model the network as a “noisy-or” BN in which influence from individual parents

can be combined in a kind of simple additive way. We can also define some heuristic

combination rule such as: P(C|S1,S2,…,Sn) = P(C) / P(S1,S2,…,Sn) = (P(C|S1)*P(S1)) /

∏ =

n

i ii SSP
1

))(|(π . Another possible solution is to allow the user to specify conditional

probability with arbitrary number of conditions, so there is no need to compute

P(C|S1,S2,…,Sn) any more.

There are also cases that the arcs into a node in the BN come from different sources. For

example, if both “Male” and “Female” are subclasses of “Animal” and they are disjoint, then

for the “Female” node, there is an arc from “Animal” and an arc from “Male” into it; given

“P(Animal)=0.5”, “P(Male|Animal)=0.5” and “P(Female|Animal)=0.48”, we can compute:

(1) P(Female) = P(Animal,Female) = P(Female|Animal) * P(Animal) = 0.48 * 0.5 = 0.24;

(2) P(Male) = P(Animal,Male) = P(Male|Animal) * P(Animal) = 0.5 * 0.5 = 0.25;

(3) P(Female| Male) = P(Female, Male) / P(Male) = P(Female) / (1- P(Male)) = 0.24 / (1- 0.25)

= 0.32;

(4) P(Female|Animal, Male) = P(Animal, Male,Female) / P (Animal,Male)

= P(Female) / (P(Male|Animal) * P(Animal)) = 0.24 / (0.5 * 0.5) = 0.96.

And the CPT of node “Female” is given as below:

Table 3.3 CPT – “Female ⊆ Animal ¬∩ Male”

The computation in these cases should be based on how the arcs come into the node are mixed.

Note in above example the entry “P(Female| Animal , Male) ” in the CPT is irrelevant (this is a

situation that never happens), so we simply assign it to false (0).

An example OWL ontology and its translated Bayesian network, including the CPT for all

nodes, can be found at http://www.cs.umbc.edu/~zding1/HICSS37Supp/. Due to the page

limit, we only show the DAG of the translated BN here in the figure below.

Figure 3.8 – Example Translated BN Ontology

4. Discussion on Semantics and Reasoning

In this section, we briefly discuss issues concerning the semantics of the Bayesian network

generated by the converting rules and how reasoning can be performed over this network.

4.1 Semantics

The semant ics of the Bayesian network obtained can be outlined as follows. It will be

associated with a joint probability distribution (as the product of all its CPT as with any BN)

over the application domain, on top of the standard description logic semantics. A description

logic interpretation I = (I∆ , I.) consists of a non-empty domain of objects I∆ and an

interpretation function I. . This function maps every concept to a subset of I∆ , every role

and attribute to a subset of I∆ × I∆ , and every individual to an object of I∆ . An

interpretation I is a model for a concept C if IC is non-empty, and C is said “satisfiable”.

Besides this description logic interpretation I = (I∆ , I.), in our semantics, there is a function P

to map each object o∈ I∆ to a value between 0 and 1, 1 ≥ P(o) ≥ 0 , and �P(o) = 1, for

all o∈ I∆ . This is the probability distribution over all the domain objects. For a class C: Pr(C)

= �P(o) for all o∈ C. If C and D are classes and C ⊆ D, then Pr(C) ≤ Pr(D).

4.2 Reasoning

The probabilistic -extended ontology supports common ontology-related reasoning tasks as

probabilistic inferences. Here we outline how three such tasks can be done in principle.

Detailed algorithms are under development.

Concept Satisfiability: Given a concept represented by a description e, decide if P(e) = 0

(false)? P(e) can be computed by applying the chain rule of Bayesian networks.

Concept Overlapping: What is the degree of the overlap or inclusion P(C| e) between a

concept C and a concept represented by a description e? P(C|e) can be computed by applying

general Bayesian network belief update algorithms (e.g.,, belief propagation [Pearl 1986],

junction tree [Lauritzen and Spiegelhalter 1988]).

Concept subsumption: How to find the most probable concept C that a given description e

belongs to? We define a similarity measure “MPC(e,C) ” between e and C by combining

Jaccard Coefficient [Rijsbergen 1979] and MSP (Most-Specific-Parent) [Doan et.al 2002]

similarity measures as follows: (1) If P(C|e) = 1, let MPC(e,C) = P(e|C) = P(e) / P(C). In this

case, e is a subclass of C, and larger P(e|C) means C is more specific; (2) Otherwise, let

MPC(e,C) = P(e ∩ C) / P(e ∪ C) = P(e,C) / (P(e) + P(C) – P(e,C)). It takes lowest value 0 if e

and C are disjoint and highest value 1 if e and C are the same, and P(e,C) = P(C|e) * P(e). Note

P(e), P(C), P(C|e) can be computed using general Bayesian network techniques. According to

the definition of this similarity measure, the concept node C with highest “MPC(e,C) ” in the

BN is the most probable concept that e belongs to.

5. Conclusions

In this paper we present our ongoing research on probabilistic extension to OWL. We have

defined additional OWL classes (PriorProbObj, CondProbObjT, and CondProbObjF), which

can be used to markup probabilities in OWL files. We have also defined a set of rules for

translating most of the OWL constructors into Bayesian network subgraphs. We are actively

working on resolving remaining issues, including:

• How to construct CPT for all nodes in a more systematic and disciplined way;

• Whether existing BN inference algorithm can be directly applied to our framework, and if

not, what new algorithms need to be developed;

• In OWL ontologies, cycles can be formed by equivalent classes (defined by the

“owl:equivalent Class” constructor), mutual disjoint among a set of classes, or other

inferred dependencies among a set of classes. Since cycles are not allowed in Bayesian

networks, how to detect and remove cycles is another issue to be addressed.

Based on successful resolution of these issues and other refinement of our framework, we plan

to implement a prototype which can automatically translate a given OWL ontology into a BN

and can also support common ontology-based reasoning tasks.

Future research can be conducted in several directions. One can extend this work to include

individuals (i.e., Abox in description logics) and develop translation rules for individual

related OWL constructors. Our current probabilistic markups can be used only to attach

probabilities to otherwise crisp logical relations. For example, one can add conditional

probability P(A|B) for a relation A ⊆ B (which gives implicitly that P(B|A) = 1). Another

direction of research is to extend this work to represent approximate relations and related

probabilities (e.g., “A” is almost a subset of “B” with P(B|A) = 0.85). It is also very attractive

to investigate how to apply this work to ontology mapping/translation sinc e ontology

mappings are often partial, approximate and uncertain. Finally it would be an interesting

research topic to apply machine learning or information retrieval techniques to learn those

attached probabilities before a domain expert come to verify it.

Acknowledgement:

This work was supported in part by DARPA contract F30602-97-1-0215.

References

[Bacchus 1990] Bacchus, F. Representing and Reasoning with Probabilistic Knowledge. MIT
Press, Cambridge, MA. 1990

[Baader et.al 2003] Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P. 2003. The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003

[Berners-Lee 1998] Berners-Lee, T. http://www.w3.org/DesignIssues/Semantic.html.
Semantic Web Road Map, 1998

[Cooper 1990] Cooper, G. 1990. The Computational Complexity of Probabilistic Inference
Using Bayesian Belief Network. Artificial Intelligence, 42, 393-347.

[Doan et.al 2002] Doan, A. H.; Madhavan, J.; Domingos, P.; Halevy, A. 2002. Learning to
Map between Ontologies on the Semantic Web. In WWW 2002.

[Giugno and Lukasiewicz 2002] Giugno, R.; Lukasiewicz, T. April 2002. P-SHOQ(D): A
Probabilistic Extension of SHOQ(D) for Probabilistic Ontologies in the Semantic Web.
INFSYS Research Report 1843-02-06, Wien, Austria.

[Gruber 1993] Gruber, T. R. 1993. A Translation Approach to Portable Ontology
Specifications . In Knowledge Acquisition, 5(2):199-220.

[Halpern 1990] Halpern, J.Y. 1990. An Analysis of First-Order Logics of Probability. In
Artificial Intelligence, 46: 311-350.

[Heinsohn 1994] Heinsohn, J. 1994. Probabilistic Description Logics. In Proceedings of
UAI-94: 311-318.

[Horrocks 2001] Horrocks, I.; Sattler, U. 2001. Ontology Reasoning in the SHOQ(D)
Description Logic. In Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence.

[Horrocks 2002] Horrocks, I. 2002. DAML+OIL: A Description Logic for the Semantic Web.
[Jaeger 1994] Jaeger, M. 1994. Probabilistic Reasoning in Terminological Logics. In

Proceedings of KR-94: 305-316.
[Koller et.al 1997] Koller, D.; Levy, A.; Pfeffer, A. 1997. P-CLASSIC: A Tractable

Probabilistic Description Logic. In Proceedings of AAAI-97: 390-397.
[Lauritzen and Spiegelhalter 1988] Lauritzen, S.L.; Spiegelhalter, D.J. 1988. Local

Computation with Probabilities in Graphic Structures and Their Applications in Expert
Systems. In J. Royal Statistical Soc. Series B, 50(2): 157-224.

[Pawlak 1982] Pawlak, J. 1982. Rough Sets. International Journal of Information and
Computers, 11, 341-356.

[Pearl 1986] Pearl, J. 1986. Fusion, Propagation, and Structuring in Belief Networks. In
Artificial Intelligence, 29: 241-248.

[Pearl 1988] Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufman, San Mateo, CA.

[Poole 1993] Poole, D. November 1993. Probabilistic Horn Abduction and Bayesian
Networks. In Artificial Intelligence, 64(1): 81-129.

[Rijsbergen 1979] van Rijsbergen 1979. Information Retrieval. Lodon:Butterworths. Second
Edition.

[Stuckenschmidt 2000] Stuckenschmidt, H.; Visser. U. 2000. Semantic Translation based on
Approximate Re-classification. Proceedings of the Workshop "Semantic Approximation,
Granularity and Vagueness”, KR'00.

[Zadeh, 1965] Zadeh, L. 1965. Fuzzy Sets. Information and Control, 8, 338-353.
[DAML] http://www.daml.org/. DAML Homepage.
[DAML+OIL] http://www.daml.org/2001/03/daml+oil-index. DAML+OIL Homepage.
[NORSYS] http://www.norsys.com/. Norsys System Corp.
[OIL] http://www.ontoknowledge.org/oil/. OIL Homepage.
[OWL] http://www.w3.org/2001/sw/WebOnt/. W3C WebOnt Working Group.
[OWL GUIDE] http://www.w3.org/TR/owl-guide/. OWL Web Ontology Language Guide.
[OWL REF] http://www.w3.org/TR/owl-ref/. OWL Web Ontology Language Reference.
[OWL SEMANTICS] http://www.w3.org/TR/owl-semantics/ . OWL Web Ontology Language

Semantics and Abstract Syntax.
[RDF] http://www.w3.org/RDF/. W3C RDF Homepage.
[RDFS] http://www.w3.org/TR/rdf-schema/. W3C RDF Schema Specification Homepage.
[SHOE] http://www.cs.umd.edu/projects/plus/SHOE/ . SHOE Homepage.

