
Energy-Aware Task Allocation for Rate Monotonic Scheduling

Tarek A. AlEnawy and Hakan Aydin
Computer Science Department

George Mason University
Fairfax, VA 22030

{thassan1,aydin}@cs.gmu.edu

Abstract

We consider the problem of energy minimization for

periodic preemptive hard real-time tasks that are scheduled on
an identical multiprocessor platform with dynamic voltage
scaling capability. We adopt partitioned scheduling and assume
that the tasks are assigned rate-monotonic priorities. We show
that the problem is NP-Hard in the strong sense on m ≥ 2
processors even when the feasibility is guaranteed a priori.
Because of the intractability of the problem, we propose an
integrated approach that consists of three different components:
RMS admission control test, the partitioning heuristic and the
speed assignment algorithm. We discuss possible options for
each component by considering state-of-the-art solutions. Then,
we experimentally investigate the impact of heuristics on
feasibility, energy and feasibility/energy performance
dimensions. In off-line settings where tasks can be ordered
according to the utilization values, we show that Worst-Fit
dominates other well-known heuristics. For on-line settings, we
propose an algorithm that is based on reserving a subset of
processors for light tasks to guarantee a consistent
performance.

1. Introduction

Recently, the energy awareness has been promoted to a

first-class computer system design and evaluation factor. It has
been reported that the CPU accounts for a significant fraction of
the total system energy consumption in both battery-operated
computers and high-end servers [19, 30]. One common CPU
energy management technique is Dynamic Voltage Scaling
(DVS). DVS entails reducing the system energy consumption by
reducing the CPU supply voltage and the clock frequency (CPU
speed) simultaneously. Despite the (potentially) quadratic
energy gains, the response times increase when the CPU speed
is reduced. Thus, many recent real-time (RT) research studies
investigate ways to guarantee the timing constraints on DVS-
enabled settings for various task/system models and off-line/on-
line scheduling algorithms [6, 7, 8, 28, 31, 32, 33]. Maximizing
the system performance with limited energy budget for a given
operation time has been studied in [1]. The same work also
proves the intractability of the feasibility problem for RT
systems with discrete speed levels and fixed energy budget.

Multiprocessor RT Scheduling is one of the most
extensively studied areas in RT systems research. Two main
approaches for multiprocessor RT scheduling can be identified
in the research literature: partitioned scheduling and global
scheduling [15, 18]. In the partitioned approach, the admission
control module permanently assigns each task to a processor, i.e.
task migration at run-time is not allowed. Each processor has its

own ready queue and scheduler. Partitioned multiprocessor real-
time scheduling is known to be NP-Hard in the strong sense [20,
25]. On the other hand, simple and effective partitioning
heuristics such as First-Fit and Best-Fit are shown to have
reasonable average-case performance [13, 29]. Moreover, well-
established algorithms (e.g. RMS or EDF) from uniprocessor RT
scheduling theory can be adopted once the tasks are allocated to
different processors. Global scheduling, on the other hand, takes
a different approach: A global scheduler selects from a single
ready queue for execution the highest-priority n tasks on m
processors. Tasks are allowed to migrate between processors.
One fundamental result in multiprocessor RT scheduling theory
states that partitioned and global scheduling are incomparable,
in the sense that there are task sets that can be scheduled in a
feasible manner by only one approach [25]. The reader is
referred to the recent surveys and studies on partitioned and
global scheduling for more information [2, 3, 4, 9, 21].
However, the partitioned approach is arguably more common in
current multiprocessor platforms thanks to its simplicity and
ease of implementation. The traditional dichotomy of static- and
dynamic-priority periodic scheduling policies also holds on
multiprocessor settings. In the former, each task is permanently
assigned a fixed priority level; while task/job priorities may
change dynamically in the latter [14]. Although dynamic-
priority algorithms usually lead to better processor utilization, a
considerable majority of real-time and embedded systems are
still implemented using static-priority policies. This may be
partially explained by the well-established theory/status of Rate
Monotonic Analysis (which is known to be optimal for
uniprocessor static-priority scheduling [27]) and the limited
number of priority levels in most commercial operating systems.

Energy-aware multiprocessor RT scheduling. Although
numerous research papers have explored energy management on
uniprocessor RT systems, fewer studies have considered the
problem of energy management on multiprocessor platforms.
The problem of energy minimization by dynamic slack
reclamation and dynamic speed adjustment for global
scheduling is considered in [36]. This work is extended in [35]
to address the case of dependent tasks with AND/OR
dependency constraints. The authors also propose a few
variations of speculative algorithms exploiting the statistical
information about the workload. In [34], the problem of power-
aware resource allocation for independent periodic hard RT
tasks on heterogeneous multiprocessors is formulated as an
extended Generalized Assignment Problem (GAP), based on
integer linear programming formulation. In [8], Aydin et al.
address the problem of energy minimization for periodic hard
RT tasks on identical multiprocessors with DVS when
partitioned scheduling is used. The authors adopt the EDF
scheduling policy and investigate the joint effect of partitioning
heuristics on the energy consumption and the feasibility. Finally,

Baruah and Anderson address the system synthesis problem of
periodic RT tasks on identical multiprocessors, using global
EDF in [10].

This work. We consider the problem of energy
minimization for periodic preemptive hard RT tasks that are
scheduled on an identical multiprocessor platform with DVS
capability. We adopt partitioned scheduling and assume that
tasks are assigned static (rate-monotonic) priorities. An
obvious benefit of adopting partitioned approach stems from the
fact that well-established dynamic reclaiming techniques [6, 28,
31, 33] for periodic energy-aware scheduling can be readily
adopted on each processor once the task allocation is made. In
contrast, dynamic reclaiming for global periodic multiprocessor
scheduling is an open problem to a considerable extent. We
believe that avoiding the overhead of task migrations is another
incentive to focus on the partitioned approach. To the best of our
knowledge, this is the first research effort considering the
problem of energy minimization on multiprocessors with static-
priority periodic scheduling.

Our work is based on the observation that the task
allocation can have a significant impact on the overall
energy consumption of the system. In particular, two different
and feasible task allocations can result in very different energy
consumption levels. As in any partitioned real-time scheduling
approach, resorting to heuristics for task allocation
(partitioning) appears to be a necessity. Another dimension is
the admission control algorithm (feasibility test) to be used
during the task allocation phase. The wealth and diversity of
existing feasibility tests, from the seminal work of Liu and
Layland [27] to the exact characterization of Lehoczky et al.
[24] and the more recent hyperbolic test [12], call for a trade-off
analysis on computational complexity, feasibility, and energy
consumption dimensions. Finally, once the tasks are assigned
permanently to the processors, a speed assignment scheme
must be chosen to reduce the energy consumption while
preserving the feasibility. Here again, simple schemes scaling up
the effective utilization by a constant factor or more
sophisticated ones based on the critical instant analysis of static-
priority tasks [33] are possible.

We summarize below the main contributions of this paper:

• We formally define the problem of energy minimization in
multiprocessor periodic RT scheduling with partitioning,
and show that the problem remains NP-Hard in the strong
sense even when the feasibility is guaranteed a priori.

• We study and evaluate a number of well-known
partitioning heuristics, RMS admission control algorithms,
and speed assignment schemes in terms of the feasibility
performance and overall energy consumption.

• We consider two different settings of the problem: In off-
line partitioning, all the tasks and their characteristics are
known to the scheduler. Thus, it is possible to order tasks
first according to utilization or period values to improve the
performance. However, if the scheduler is to allocate tasks
in a given order without the possibility of waiting for the
rest of the tasks (as in the case of on-line partitioning,
where tasks arrive dynamically to the system), then the
problem becomes more difficult. We present an analysis of
both cases. We show that Worst-Fit is a clear winner for
off-line partitioning. However, Worst-Fit’s performance
degrades rapidly in on-line settings. For this case, we
propose a hybrid algorithm that reserves a number of
processors for tasks with small utilizations (light tasks).

The paper is organized as follows. In Section 2 we present

the system model and assumptions. In Section 3 we define the
problem and discuss the tractability. Section 4 discusses our
solution approach. In Section 5, we present the experimental
evaluation of task allocation, admission control, and speed
assignment schemes. We conclude the paper in Section 6.

2. System model and assumptions
2.1 Power and energy consumption model

We consider a multiprocessor platform M with m

processors M1,…, Mm. The number of processors m is fixed
during the operation; that is, on-demand addition of processors
is not possible at run-time. We also assume that all m processors
are identical in terms of the processing power and speed/energy
characteristics. Each processor Mi has dynamic voltage scaling
(DVS) capability according to which it can adjust its operating
speed S (expressed as cycles per unit time). We denote the
maximum speed level available in the system by Smax . Without
loss of generality, the speed values will be normalized with
respect to Smax (i.e. Smax = 1.0). The CPU power dissipation
function when running at speed S is denoted by g(S). In current
DVS architectures, g(S) is taken to be a strictly convex and
increasing function, often a polynomial of at least the second
degree [6, 33]. In any time interval [t1,t2] the total energy
consumption of a processor is given by:

()()dttSg)t,t(E
t

t
∫=
2

1

21
 (1)

where S(t) is the processor speed as a function of time. In
current DVS-enabled systems, it is not always possible to find a
speed level that exactly corresponds to a desired target speed
(often obtained assuming a continuous speed spectrum). Instead,
a DVS-enabled processor has a finite number of discrete speeds
{s1,…, sk}. Often, the solutions developed for an ideal DVS
architecture (with continuous speed) can be adapted to these
settings by choosing the lowest speed level available in the
system that is equal to or greater than a target speed S. The
focus of this study is the CPU energy consumption; the energy
profiles of memory and I/O subsystems, albeit important, are
beyond the scope of this paper.

2.2 Task and scheduling model

We consider a set of n independent periodic hard real-time

tasks T = {T1,,…, Tn}. Each task Ti = (Ci, Pi) is characterized by
two parameters: the worst-case number of processor cycles Ci
required by Ti and a period Pi. We assume that the period Pi is
equal to the relative deadline Di. On variable-speed settings, the
worst-case workload of a task Ti is given by the worst-case
number of cycles. The worst-case execution time of task Ti when
running at speed S is given by ci = Ci/S. We consider a
preemptive scheduling model; the preemption and speed change
overheads can be incorporated in Ci if necessary.

The utilization of task Ti under CPU speed S is given by
 ui(S) = Ci /(Pi S). Note that under maximum CPU speed (i.e. S =
1.0), ui(1.0) = Ci/Pi. The aggregate utilization of the task set
(under maximum speed) is given by Utot = ∑i Ci/Pi. Note that a
necessary (but not sufficient) condition for feasibility on a
system of m identical multiprocessors is to have a task set whose
total utilization does not exceed the computing capacity.

Consequently, we assume that the condition Utot ≤ m holds
throughout the paper.

 We adopt a partitioning-based approach to multiprocessor
scheduling. Tasks are assigned permanently to processors. The
total utilization of tasks assigned to processor Mi (under
maximum speed) is denoted by Ui. Note that Utot = ∑k Uk.
Similarly, ni denotes the number of tasks assigned to processor
Mi. On each processor, the well-known Rate Monotonic
Scheduling (RMS) policy is adopted: tasks are assigned static
priorities that are inversely proportional to their periods.

In multiprocessor RT system analysis, for a given task set,
it is often helpful to determine the largest utilization among all
the tasks in the set. This parameter, called the utilization factor,
will be denoted by α. Formally, α = max(ui) ∀ Ti ∈ T.

3. Energy minimization with partitioning for
static-priority scheduling

Traditionally, the multiprocessor real-time scheduling

studies have focused mostly on the feasibility issue. One of the
motivations of this research effort is to consider the total energy
consumption as an additional performance metric. Ideally, on
energy-constrained settings, the objective should be to allocate
tasks and compute CPU speed assignments while minimizing
the total energy consumption and preserving the feasibility. In
fact, it is possible to formally state the problem (denoted by
RMS-ENERGY-PARTITION) as follows:

RMS-ENERGY-PARTITION: Given a set T of periodic

hard real-time tasks and a set M of identical processors, find a
task-to-processor assignment (i.e. partition) and compute task-
level speeds on each processor such that:
1. the workload can be scheduled by RMS in a feasible

manner, and
2. the total energy consumption on all processors M1, …, Mm

is minimum (among all feasible partitions).
As stated above, RMS-ENERGY-PARTITION is an
optimization problem in which the objective function is the total
energy consumption of M, subject to the constraint that the
workload on each processor will be feasible when scheduled by
rate-monotonic priorities.

In view of the convex relationship between the CPU speed
and the power consumption, in general, energy-aware
partitioning across DVS-enabled multiprocessors suggests load
balancing techniques [8]. In fact, a perfectly balanced partition,
if it exists, is also provably optimal in terms of energy
consumption when tasks are scheduled by the Earliest-deadline-
first (EDF) policy [8]. In the context of RMS, however, the
problem gains new dimensions as shown by the following
example.

Motivational Example: Consider a set of six periodic hard real-
time tasks T = {T1,…, T6} to be scheduled using partitioning on
two identical processors. The individual task utilizations under
maximum speed are u1 = 0.32, u2 = 0.2, u3 = 0.1, u4 = 0.04, u5 =
0.01 and u6 = 0.01. Since the total utilization Utot = 0.68 is less
than the asymptotic Liu-Layland bound ln 2, any partitioning of
these tasks is feasible with both EDF and RMS. Figures 1-3
depict three different partitions and the energy consumption
patterns under RMS and EDF policies.

M2

M1

T2 T3 T4 T6T5 U1 = 0.68T1

U2 = 0

Figure 1. A feasible partition (Partition 1)

M2

M1

T2 T3 T4

T6T5T1 U1 = 0.34

U2 = 0.34

Figure 2. A feasible and perfectly balanced partition (Partition 2)

M2

M1

T1

T2 T3 T4 T6T5

U1 = 0.32

U2 = 0.36

Figure 3. A feasible and slightly unbalanced partition (Partition 3)

Observe that the partitioning shown in Figure 1

corresponds to the schedule that would be produced by well-
known heuristics First-Fit and Best-Fit. The partitioning shown
in Figure 2 is the perfectly balanced one. Finally, the one in
Figure 3 corresponds to the case where the first processor is
exclusively dedicated to the task with the largest utilization,
while all other tasks are assigned to the second processor. We
underline that when judged solely by the feasibility criterion, all
three partitions are equally acceptable.

Yet, the energy dimension yields a different picture. Let us
compute the energy consumption Etot of each partition for both
EDF and RMS scheduling. Using simple algebraic manipulation
it is possible to show that, the energy consumption of processor
Mi when running at constant speed Si during the interval [0,P],
where P is the hyperperiod of all the tasks (i.e. P = lcm(P1,
P2,…, P6)), is E(Mi) = P⋅Ui⋅g(Si) / Si [8]. Recall that Ui is the
total utilization of tasks assigned to Mi under CPU speed Si =
1.0. For illustration purposes, we take P = 10000. For EDF, the
speed assignment scheme used on each processor is the optimal
one: Si = Ui [6, 31]. For RMS, the speed is determined through
the uniform slow-down approach [31]. Thus, in the RMS case,
the speed Si of processor Mi with ni tasks is Ui / Ubound(ni), where
Ubound(k) = k (21/k - 1) is the well-known Liu-Layland
schedulability bound [27]. The power consumption function g(S)
= S3 [6, 33].

It is easy to see that Partition 1 has the maximum energy

among all three partitions considered for both EDF and RMS.
However, the partition with least energy is different for EDF and
RMS. Under EDF, the perfectly balanced partition, Partition 2,
has the minimum energy consumption among all three
partitions. On the other hand, under RMS, the slightly
unbalanced Partition 3 has about 10% lower energy
consumption than Partition 2. Although the difference in
processor utilizations between partitions 2 and 3 is minor, there
is a significant difference in the number of tasks assigned to
each processor in each case. In particular, in Partition 3
processor M1 has only 1 task, compared to 3 in partition 2. This

 RMS EDF

S1 0.925 0.68
S2 Idle Idle

Etot 5818 3144

 RMS EDF

S1 0.436 0.34
S2 0.436 0.34

Etot 1295 786

 RMS EDF

S1 0.32 0.32
S2 0.484 0.36

Etot 1171 794

results in a situation where the speed of the first processor can
be reduced to 0.32, well below 0.436 which was possible with
the second partition.

This simple example shows that feasible partitions can have
significantly different energy characteristics. For RMS, Partition
1 has the largest energy consumption among all three partitions
considered, which is almost five times as much as that of
Partition 3. Load balancing while partitioning does help to
reduce the energy consumption. However, in the case of RMS, a
perfectly balanced partition is not necessarily the most energy
efficient option: The example illustrates the fact that, with the
uniform slow-down approach of RMS, the optimal partition is a
function of both the processor utilization and the number of
tasks. Although omitted for lack of space, similar examples can
be constructed for other speed assignment schemes proposed in
literature [28, 31, 33].

From the computational complexity point of view, RMS-
ENERGY-PARTITION is NP-Hard in the strong sense, since it
is a more general form of the feasibility problem in partitioned
multiprocessor scheduling which is known to be NP-Hard in the
strong sense [13]. More interestingly, the problem remains NP-
Hard in the strong sense even when the task set is known to be
trivially schedulable on one processor. In this case, any
partitioning would yield a feasible schedule, but computing the
one with the minimum energy consumption is still intractable.

Proposition 1. RMS-ENERGY-PARTITION is NP-Hard in the
strong sense even when the feasibility is guaranteed a priori.

Proof: Consider a special instance of RMS-ENERGY-
PARTITION where the task periods are harmonic, i.e. each task
period is an exact multiple of another one. In this case, the
schedulability bound for RMS is Ubound = 1.0 [27], exactly the
same as that of EDF. Under this assumption, the problem is
identical to POWER-PARTITION with EDF which is proved to
be NP-Hard in the strong sense in [8] even for trivially
schedulable task sets with Utot ≤ 1.0. Hence, the general problem
of RMS-ENERGY-PARTITION with RMS is also NP-Hard in
the strong sense for trivially schedulable task sets. ■

4. Our framework

The intractability of the problem necessitates a heuristic-

based approach. Moreover, the solution has to integrate multiple
design components as a number of issues need to be addressed
in an energy-aware multiprocessor platform:
• What RMS admission control algorithm to use on each

processor? The set of eligible processors for a given task is
determined by ensuring that the RMS feasibility is
preserved. Consequently, a uniprocessor RMS admission
control algorithm has to be adopted. The accuracy of the
algorithm/test is certainly important in order to be able to
admit more tasks, but the efficiency is also a concern as the
test will be potentially invoked on each of the m processors.
We classify existing RMS admission algorithms in two
general classes: those using the utilization and period
information when making a decision [12, 22, 27], and those
based on Time Demand Analysis ([24]). We provide an
extended discussion of the RMS admission control
algorithms considered in this study in Section 4.1.

• What partitioning heuristic to use? When multiple
processors are eligible for a given task, an efficient
partitioning heuristic determines the processor to which the
task will be assigned. A number of efficient heuristics are
available from bin-packing research area (see Section 4.2).

• What speed assignment scheme to adopt? Once the tasks
are allocated in such a way that the workload on each
processor is feasible according to RMS, the last step will
involve the computation of the CPU speed. The schedule
must remain feasible even with the reduced speed.
Uniprocessor speed assignment schemes that are recently
proposed in the literature ([28, 31, 33]) for RMS are
potential candidates, offering a spectrum of computational
complexity and energy savings (see Section 4.3).

We underline that none of these dimensions admits an

exact and polynomial-time solution as of today. Moreover, our
objective is to provide a computational cost and
performance benefit analysis of different schemes in terms of
both feasibility and overall energy consumption. Note that the
use of RMS instead of EDF as the scheduling algorithm on each
processor makes the admission control and speed assignment
phases even more difficult. For EDF, the necessary and
sufficient schedulability condition on processor Mi is Ui ≤ 1.0
[27]. Moreover, the optimal speed to minimize the total energy
consumption while meeting all the deadlines is known to be
SEDF = Ui [6]. In contrast, for RMS no uniprocessor polynomial-
time exact feasibility test (i.e. one that provides necessary and
sufficient condition(s) for feasibility) exists to this date. The
Time Demand Analysis technique is exact, but it runs in pseudo-
polynomial time [5, 24]. It follows that determining optimal
speed assignments to minimize the total energy consumption
(while ensuring feasibility) does not assume an efficient solution
as of today. We now provide an overview of design options on
each dimension.

4.1 RMS Admission Control Algorithms
The selection of the RMS admission control to be used at

processor level can have significant impact on the feasibility
performance of the system. Several uniprocessor RMS
feasibility tests with varying accuracy and time complexity
characteristics exist (see [26] for a detailed discussion). For our
purposes, we classify the tests in two major categories:

4.1.1 Utilization-based feasibility tests

These are fast (i.e. polynomial-time), yet approximate tests
using the information about the utilization of the task set and/or
individual tasks. The tests in these categories provide sufficient
conditions for feasibility: a task set is deemed feasible if the
condition is not violated. Further, some of the proposed
solutions exploit the additional information about task periods,
yielding two sub-categories.

Basic utilization-based tests

The simplest (and consequently, fastest) schemes require
only the information about the task utilizations.

• Exact Liu-Layland test (ELL) is by far the most
frequently used/adopted feasibility test for RMS. A task set
with n tasks is schedulable on one processor if the total
utilization Utot does not exceed the Liu-Layland bound
Ubound(n) = n(21/n - 1). Note that there is a different version
of Liu-Layland test that uses the asymptotic bound of ln 2;
we use the word “exact” to underline the difference.

• Hyperbolic test (HYP), recently proposed by Bini et al.
[11], provides a tighter bound than ELL by considering

individual task utilizations: () 21
1

≤+∏
=

n

i
iu .

Utilization-based tests exploiting the period information
In their seminal paper [27], Liu and Layland had observed

that the schedulability bound of RMS was equal to 100% for
harmonic (or, simply periodic)1 task sets. Later, Kuo and Mok
established that any utilization-bound test for RMS
schedulability could be used with the number of harmonic task
subsets (as opposed to the number of tasks) [22]. Over the years,
the research community developed more sophisticated tests by
exploiting similar properties of task periods:

• Burchard test (Burc) builds on the idea that having
harmonic tasks helps to improve the utilization bound. The
utilization bound provided is yet another generalization of
Liu-Layland bound. It is expressed as a function of the
number of tasks n and an additional parameter that
quantifies how close the tasks are to being harmonic [13].

• R-bound test transforms a given task set into one where
the ratio r of maximum period to minimum period does not
exceed 2. Lauzac et al. show that the original task set is
schedulable if the transformed task set is schedulable. The
utilization bound depends on r and the number of tasks n:
Ubound(n,r) = (n – 1)(r1/(n-1) – 1) + 2/r – 1 [23].
It is worth mentioning that Burchard et al. proposed two

other schemes, RMST and RMGT specifically designed for
partitioned static-priority scheduling on multiprocessors [13].
Similar to Burc, they make use of the fact that the utilization
bound improves as tasks are closer to being harmonic. They also
require that the tasks be pre-ordered by a parameter that
quantifies how close the tasks are to being harmonic. RMST is
designed for task sets with Utot ≤ 0.5, while RMGT is the
extension proposed for generic task sets.

4.1.2 Time-demand-analysis-based tests

Computationally more complex, but also more accurate tests can
be provided by constructing the critical instant phasing [24],
implicitly using the information about the worst-case task
execution times and periods.

• Time demand analysis (TDA), developed by Lehoczky et
al. [24], provides an exact characterization of schedulability
under RMS. It provides a necessary and sufficient
condition2, but runs in pseudo-polynomial-time. The time
demand function wi(t) of task Ti is defined as:

1 A task set is harmonic if, given any two periods Pi and Pj, either Pi is a

multiple of Pj or Pj is a multiple of Pi .
2 The feasibility condition provided by TDA is considered necessary and

sufficient assuming that critical-instant phasing will actually occur at
run-time.

() k
i

k k
ii c

P
tctw ∑

−

=








+=

1

1
, for 0 < t ≤ Pi (2)

where tasks are assumed to be sorted in non-increasing
order according to the priorities. The task set is considered
feasible if all the tasks can meet their deadlines under the
critical-instant phasing; that is, if for each task Ti, it is
possible to find a time instant t where wi(t) ≤ t ≤ Di . It is
sufficient to check this condition at time instants that
correspond to period boundaries [5, 24].

• Pillai-Shin test (PS) is a polynomial-time heuristic scheme
([31]), proposed for RMS on DVS-enabled settings,
providing a sufficient condition for schedulability. It
provides a sufficient but not necessary condition for
feasibility by checking whether the time demand function
wi(t) does not exceed the relative deadline Di at the task’s
period boundary t = Pi = Di for each task:

() i
i

k
k

k

i
ii Pc

P
P

Ptw ≤







== ∑

=1
∀ Ti ∈ T (3)

where tasks are again sorted in non-increasing order
according to the priorities.

Test Name Utot ui Pi ci Complexity Exact

ELL √ × × × O(n) ×

Hyp × √ × × O(n) ×

R-Bound √ × √ √ O(n) ×

Burc √ × √ × O(n) ×

PS × × √ √ O(n2) ×

TDA3 × × √ √ O(n2r) √

Table 1. RMS admission control algorithms used in this paper

It is worth noting that all the RMS feasibility tests

discussed above, except for TDA, are inexact in the sense that
they provide a sufficient but not necessary condition for
feasibility. Table 1 summarizes the task set parameters used by
each feasibility test as well as its computational complexity on
one processor, as a function of the number of tasks n.

4.2 Partitioning Heuristics

The second dimension of the design space involves the

selection of the partitioning scheme. Since this problem is also
intractable, several fast heuristics were developed over time.
These include First-Fit (FF), Best-Fit (BF), Worst-Fit (WF)
and Next-Fit (NF) [16, 29].

Note that WF and NF tend to distribute the workload
evenly among the available processors, resulting in (more or
less) balanced partitions. On the other hand, FF and BF attempt
to greedily pack as many tasks as possible on one processor
while keeping the other processors idle to accommodate tasks
yet to be assigned, thus occasionally yielding “unbalanced”
partitions. It is known that FF and BF tend to outperform NF

3 r in the complexity expression is the ratio of the largest period to the

smallest period: r = max(Pi) / min(Pi).

and WF from the feasibility point of view [29]. The effect on the
energy consumption will be evaluated in Section 5.

4.3 Speed Assignment Schemes

Once a feasible partition is obtained using a given

partitioning heuristic and an admission control algorithm, the
final step is to perform speed assignment to minimize the system
energy consumption on each processor. Again, we classify these
speed assignment heuristics into two groups based on the
approach used.

4.3.1 Uniform slow-down technique

Arguably, the simplest technique consists in computing a

unique speed across all the tasks in such a way that the new
effective utilization does not exceed the utilization bound
suggested by the admission control algorithm. As such, it is easy
to see that this technique can be used in conjunction with any
utilization-based admission control algorithm. For example,
suppose that, two tasks are assigned to processor Mi with total
utilization Ui = 0.424 in a feasible partition. If the Liu-Layland
feasibility bound is used, then (Ubound(n=2) = 0.848), and the
speed on processor Mi is set to 0.424 / 0.848 = 0.5.

4.3.2 Time-demand-analysis-based speed
assignment techniques

More sophisticated speed assignment techniques are

possible through an analysis of critical-instant-phasing at the
cost of increased computational complexity.

• Pillai-Shin speed assignment technique [31] was
proposed in conjunction with the corresponding Pillai-Shin
feasibility test for RMS on DVS-enabled settings. A single
speed is chosen for all tasks running on a given processor.
For each task Ti, a tentative target speed αi is determined
from the following equality:

ii
i

k
k

k

i Pc
P
P α=







∑
=1

 ∀ Ti ∈ T (4)

Then, to ensure feasibility, the processor speed S is set to
the maximum among all tentative speeds (i.e. S = max(αi)).
Observe that the speed S on a processor with n tasks can be
computed in time O(n2).

• Sys-Clock (SysC) and PM-Clock (PMC): Two pseudo-
polynomial-time speed assignment schemes have been
proposed in [33] for static-priority scheduling. Sys-Clock
chooses a single speed for all tasks running on the same
processor, and is optimal for fixed priority preemptive
scheduling policies that use a single speed. PM-Clock, on
the other hand, allows different tasks running on the same
processor to have different speeds, but with added
complexity. Both schemes use the idle time in a given
schedule to reduce the execution speed, and hence decrease
the energy consumption, while maintaining the feasibility.
Sys-Clock and PM-Clock work naturally with the time
demand analysis feasibility test.

5. Experimental results

In Section 4 we discussed our solution approach for energy

minimization with partitioned Rate Monotonic Scheduling,
which comprises three major components: partitioning,
admission control, and processor speed assignment. Note that
the large number of alternatives on each dimension yields a
rather broad design spectrum. In this section we provide an
experimental evaluation of these heuristics.

Performance metrics. Our problem has two equally
important performance dimensions: feasibility and energy.
Given a task set to be scheduled on a multiprocessor platform,
our goal is to select an algorithm for each dimension, with high
feasibility performance, low energy consumption, and low
computational cost. As we will see shortly, there is an inherent
tradeoff between feasibility and energy performances of the
schemes we investigated. Hence, judging by the feasibility and
energy it is not always possible to point to a “clear winner”.
Consequently, we propose an additional hybrid metric (called
feasibility/energy) that combines both performance dimensions.
Observe that the hybrid metric captures the aim of designing a
heuristic with high feasibility performance and low energy
consumption. Heuristics will be compared based on feasibility,
energy, and feasibility/energy metrics. In summary, we measure
the performance of a given heuristic H in terms of three metrics:
• The feasibility metric (FH): the percentage of task sets that

are feasibly scheduled by H out of the total number of task
sets generated during the experiments.

• The energy consumption metric (ECH): the average energy
consumption for each task set scheduled by H in a feasible
manner (in other words, the energy consumption of an
infeasible partition is not taken into account, however low
it may be).

• The feasibility/energy metric (FEH): defined as FH / ECH.
This metric favors heuristics with high feasibility
performance and low energy consumption.
Simulation settings. We measured each of the

performance metrics discussed above as a function of two task
set parameters: the total task set utilization Utot and the task
utilization factor α (see Section 2.2). For a fixed number of
processors m, we varied Utot between m / 10 (light load
condition) and m (heavy load condition). There is a natural
constraint on the possible values of α: Utot / n ≤ α ≤ 1.0, must
hold for any task set. Note that the case of α = 1.0 corresponds
to having no constraint on (or knowledge of) upper bounds on
individual task utilization. The parameter α was varied between
Utot / n and 1.0. For each data point, we generated 1000 task sets
by varying task periods Pi and utilizations ui. Each task has a
uniform probability of having short (1-10ms), medium (10-
100ms), or long (100-1000ms) period. Task periods are
uniformly distributed in each range. Note that the same period
generation scheme is used in [31, 33]. Task utilizations ui are
generated uniformly in the interval [0.001,α] while making sure
that ∑i ui = Utot. A task’s worst-case execution time at maximum
speed is then determined as ci = Pi ui. We experimented with
different number of processors and tasks, but due to space
limitation we only show results for 8 processors and 80 tasks.
However, the trends we report hold in other settings as well. The
results we present are obtained by assuming a quadratic energy-
speed relationship; however, in Section 5.3, we comment on
results obtained through the specifications of an actual DVS
architecture, namely Intel XScale [17].

5.1 Results for off-line partitioning

It is known that, if all the task characteristics are known in

advance, then pre-ordering tasks according to a well-chosen task
parameter helps to improve the feasibility performance. In
general, ordering tasks according to utilization values (in non-
increasing order) can have significant impact on the
performance [29]. This applies to all the feasibility tests we
considered in Section 4.1 except for RMGT and R-BOUND that
are designed to order tasks according to period values (otherwise
their feasibility performance deteriorates significantly).

Effect of partitioning schemes. We start by investigating
the effect of partitioning schemes on system performance. In
fact, much of the performance differences among the
partitioning heuristics, in terms of both feasibility and energy,
can be explained in terms of their load-balancing behavior. We
already discussed in Section 4.2 that FF and BF tend to yield
“unbalanced” partitions, while WF and NF tend to produce
balanced ones. This different load-balancing behavior leads to
different feasibility and energy characteristics. On the other
hand, by greedily packing as many tasks as possible on a few
processors (just in the case of FF and BF), it is possible to
accommodate additional tasks on the remaining (idle)
processors. This greedy behavior improves the feasibility, a
result from the study of the bin-packing problem [16]. From the
energy perspective, however, load balancing tends to reduce the
energy consumption in general, although it does not necessarily
lead to the minimum energy when RMS is used. In a balanced
partition the load is divided among the different processors and
thus it is possible to use DVS to lower the speed on each
processor, reducing the total energy of the system. In an
“unbalanced” partition, however, some of the processors are
heavily loaded while the remaining ones are lightly loaded.
Thus, the heavily loaded processors will have to run at a speed
which is close to the maximum to guarantee the feasibility of the
task set, which significantly increases the total energy of the
system due to the convex relationship between the speed and the
power consumption.

It is worth noting, that for off-line partitioning, FF and BF
are almost identical in terms of feasibility and energy
performance. This behavior has also been observed in [29] for
the feasibility aspect. Since BF has a higher computational
complexity than FF, it is not included in our discussion of off-
line partitioning.

4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Utilization

F
ea

si
bi

lit
y

FF
NF
WF

0 2 4 6 8
0

2

4

6

8

10

Utilization

E
ne

rg
y

FF
NF
WF

Figure 4. Feasibility and energy performance of offline
partitioning heuristics using ELL for α = 1.0

0 2 4 6 8
0

1

2

3

4

5

Utilization

F
ea

si
bi

lit
y

/ E
ne

rg
y

FF
NF
WF

0 2 4 6 8
0

0.5

1

1.5

2

Utilization

F
ea

si
bi

lit
y

/ E
ne

rg
y

FF
NF
WF

Figure 5. Feasibility/energy performance of offline
partitioning heuristics using ELL: α = 0.5 (left) and α = 1.0
(right)

Figure 4-5 show the performance in terms of each of the

three metrics as a function of total utilization Utot for the
partitioning heuristics discussed in Section 4.2 when used with
Liu-Layland (ELL) schedulability bound and uniform slow-
down technique. Figure 4 (left) shows the feasibility
performance for α = 1.0. Under low to medium load conditions
feasibility can be easily achieved and all heuristics yield 100%
feasibility. As utilization increases and the system becomes
heavily loaded, the feasibility performance of all schemes drops
sharply, and eventually it becomes practically zero (when Utot
exceeds 7). Our experiments confirmed the good performance of
FF as reported in previous studies [29]. Because of its load-
balancing behavior, the feasibility performance of WF is not the
best, but it is comparable to the performance of FF even at high
utilizations and α values. NF, on the other hand, has a feasibility
performance which lies between FF and WF.

In Figure 4 (right), we present the energy consumption with
different partitioning techniques for α = 1.0. We show the
energy consumption as a function of the utilization for Utot up to
7, since the feasibility beyond that threshold is practically zero,
making the energy performance undefined. We follow the same
approach when presenting other energy performance results
throughout the paper. The system energy consumption increases
with the increase of utilization, since this implies an increase in
CPU speed with additional power dissipation. It is clear that the
different heuristics exhibit significantly different energy
characteristics especially under medium load conditions. FF is
the worst heuristic in terms of energy since it tends to generate
very unbalanced partitions. On the other extreme, WF has the
lowest energy consumption, because of its load-balancing
behavior. NF’s energy performance lies in-between.

Since there is a trade-off between the feasibility and energy
performances exhibited by the partitioning schemes, it is not
possible to determine the best performing scheme just by
considering feasibility and energy separately. The hybrid
feasibility/energy metric provides a better picture. Figure 5
shows the feasibility/energy performance FEH for α = 0.5 (left)
and α = 1.0 (right). Recall that FEH is defined as FH / EH, and
that FH decreases while the utilization increases (Figure 4).
Hence, as expected, the hybrid metric decreases quickly with the
increase in the utilization. Moreover, WF is the best heuristic in
terms of overall performance, judging by its feasibility/energy
performance. This follows from the fact that WF has much
lower energy consumption than the other schemes while its
feasibility is comparable to that of the other schemes. By the
same argument, FF is the worst heuristic in terms of overall
performance due to its high energy consumption. Increasing α
significantly reduces the feasibility/energy performance
especially for WF and NF, since by increasing the task

utilization factor the partitions tend to become less balanced and
the energy consumption is affected (note the scale difference on
the y-axis for the right and left plots of Figure 5). In summary,
we conclude that, for off-line partitioning the best partitioning
heuristic is Worst-Fit, followed by Next-Fit, then First-Fit. The
analysis of the relative performance of partitioning heuristics
presented above applies not only to Liu-Layland feasibility test
and the uniform slow-down technique but to other alternatives
as well.

Effect of admission control and speed assignment
schemes. To investigate the effect of admission control and
speed assignment schemes, we adopted the following
methodology. Since it is not reasonable to compare techniques
resulting from all possible combinations, we matched each of
the admission control schemes presented in Table 1 with one
speed assignment technique. Specifically, all utilization-based
approaches of Table 1 (namely, ELL, HYP, BURC, and R-
BOUND) are matched with the uniform-slowdown technique.
Pillai-Shin slow-down technique uses its own polynomial-time
feasibility test (PS) as proposed in [31]. Finally, SYS-Clock and
PM-Clock algorithms use the exact time-demand-analysis
technique as part of their operation [33]4. We believe that this
approach is justified, since matching an involved TDA-based
speed assignment technique with relatively simple utilization-
based admission control algorithm would make little sense from
the implementation or overall complexity point of view. We also
implemented and evaluated RMST and RMGT algorithms [13],
but we exclude them from our detailed analysis, since they were
consistently outperformed by a related algorithm, BURC,
proposed by the same authors. Finally, the results we report are
obtained by assuming Worst-Fit partitioning heuristic, which is
shown to outperform Next-Fit, First-Fit and Best-Fit above. The
only exception is R-BOUND, whose extension to multiprocessor
settings (namely, RBOUND-MP) was proposed and justified
with the First-Fit heuristic. Since our experiments with R-
BOUND and Worst-Fit yielded extremely poor performance, we
used First-Fit as it was originally proposed in [23].

From the feasibility viewpoint (Figure 6 - left), the scheme
TDA-SYSC, which uses the sophisticated time-demand analysis
and Sys-Clock algorithm, is a clear winner. However, it runs in
pseudo-polynomial time. The feasibility performance of R-
BOUND is comparable to that of TDA-SYSC even at high
utilization values, despite its lower (linear-time) complexity.
The hyperbolic test HYP has average performance, while the
remaining techniques (PS, BURC, and ELL) trail the list. It is
interesting to note that the simple technique HYP outperforms
relatively more involved techniques such as BURC and PS.

In terms of the energy consumption (Figure 6, right), TDA-
SYSC is again the best scheme, this time followed by PS and
HYP. Observe that R-BOUND has the worst energy
performance among all schemes, except at high utilization
values. R-BOUND uses FF for partitioning, thus yielding highly
unbalanced partitions especially for low to medium loads with
corresponding high energy consumption levels. However, for
heavy loads the partitions produced by R-BOUND tend to be
more balanced, since in this case all processors have to get a

4 Although computationally more complex and sophisticated, the energy

performance of PM-Clock did not show any clear advantage over Sys-
Clock, therefore we show only the results of Sys-Clock in this section.
This observation is consistent with the findings of the original paper
[33].

share of the workload to maintain feasibility. Again, note the
good performance of the simple technique HYP.

Figure 7 shows the feasibility/energy performance for α =
0.5 (left) and α = 1.0 (right). As expected, TDA-SYSC has the
best overall performance. Among the polynomial-time schemes
HYP has the best overall performance. PS, BURC, and ELL
have lower overall performance at high utilization values. R-
BOUND has the worst overall performance at low to medium
utilization values, but its performance is comparable to that of
TDA-SYSC under heavy load conditions, thanks to its
remarkable feasibility performance. Based on these
observations, we can suggest the use of HYP at light to
medium load values, and that of R-BOUND at heavy loads if
the overhead associated with TDA-SYSC cannot be afforded.

4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Utilization

F
ea

si
bi

lit
y

ELL
HYP
R−BOUND
PS
BURC
TDA−SYSC

4 5 6 7 8
0

2

4

6

8

10

12

Utilization

E
ne

rg
y

ELL
HYP
R−BOUND
PS
BURC
TDA−SYSC

Figure 6. Feasibility and energy performance of the different
techniques (off-line partitioning, α = 1.0)

4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Utilization

F
ea

si
bi

lit
y

/ E
ne

rg
y

ELL
HYP
R−BOUND
PS
BURC
TDA−SYSC

4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Utilization
F

ea
si

bi
lit

y
/ E

ne
rg

y

ELL
HYP
R−BOUND
PS
BURC
TDA−SYSC

Figure 7. Feasibility/energy performance of the different techniques
(off-line partitioning, α = 0.5 (left) and α = 1.0 (right))

5.2 Results for on-line partitioning

If the task parameters are not known in advance, then the

scheduler will not be able to pre-order tasks before the task
allocation phase. This can be the case for on-line settings where
the scheduler has to assign tasks as they arrive dynamically to
the system without seeing the rest of the task sequence. By
examining the performance of traditional partitioning heuristics
FF, BF, NF, and WF, we notice that there is no clear winner in
terms of overall performance throughout the utilization
spectrum. FF, BF, and NF have good feasibility performance,
but they have poor energy and feasibility/energy performance,
particularly at low utilization values. WF, on the other hand, has
good energy performance, but it has very low feasibility and
feasibility/energy performance, especially at medium to high
utilization.

To overcome these shortcomings, we propose a partitioning
algorithm called RESERVATION. The algorithm is based on
the observation that the poor performance of WF in on-line
settings is often due to distributing tasks with small utilization
values to multiple processors, preventing the allocation of a
subsequent task with large utilization to a separate processor at
the end. Thus, the algorithm reserves a pool of k processors (k ≤

m) for light tasks, and the remaining m – k processors, for heavy
tasks.

A task Ti is said to be light if its utilization ui does not
exceed the average utilization per processor (if ui ≤ Utot / m).
Otherwise, it is said to be heavy. When presented a task Ti, the
algorithm first determines if it is light or heavy and tries to
assign it to a processor from the corresponding pool using
Worst-Fit. If none of the processors in the corresponding
(“preferred”) pool can accommodate it, then an attempt is made
to assign it to a processor from the other pool, again using
Worst-Fit. Note that RESERVATION(k) is a family of schemes
parameterized by k; for each k, the algorithm’s initial processor
reservation for light tasks changes. Observe that in the extreme
cases of k = 0 or k = m, the algorithm reduces to Worst-Fit.

Effect of partitioning schemes. RESERVATION(k) is
effectively an attempt to maintain a balance between the good
feasibility performance of First-Fit/Best-Fit and the good energy
performance of Worst-Fit. In this section we investigate the
effect of the parameter k on the performance of
RESERVATION algorithm and compare it to the traditional
partitioning heuristics. For the sake of comparison, we combine
each partitioning heuristic with Liu-Layland feasibility test
(ELL), but we underline that the patterns we observe hold also
for all admission control algorithms. In Figure 8 and 9, we
compare the performance of three RESERVATION schemes,
with k set to 2, 4, and 6 (denoted by RSRV2, RSRV4, and
RSRV6 respectively), against FF, BF, and WF. NF’s
performance is consistently worse than that of RSRV2 and
RSR4, thus, it is omitted from the discussion. Also recall that
RSRV0 and RSRV8 are not included in the analysis, because
both of them are effectively identical to WF.

Figure 8 (left) shows that FF and BF still have the best
feasibility performance for on-line partitioning. However, WF in
this case has very low feasibility performance especially at high
utilization and α values. Among all the RESERVATION
schemes (including the ones not shown in the figures), RSRV2
has the best feasibility for α = 1.0 and is in fact comparable to
FF and BF. It is worth noting, however, that the choice of a
RESERVATION scheme with the best feasibility performance
depends of the value of α for the task set at hand. For example,
when α = 0.5 the scheme is RESERVATION(k = 4). Due to
space limitations, we are providing feasibility results
corresponding to α = 1.0.

From the energy viewpoint, Figure 8 (right) points to the
high energy consumption of BF, that tends to yield unbalanced
partitions. However, it is not possible in this case to name a
single winner scheme throughout the utilization spectrum. At
low to medium utilization values WF has the lowest energy
consumption, while RSRV2 is the winner at heavy loads.

Figure 9 shows the feasibility/energy performance for α =
0.5 (left) and α = 1.0 (right). Once again, there is no clear
winner throughout the utilization spectrum. For α = 1.0, under
heavy load conditions FF is the best, while RSRV4 is the best
under light to medium loads. However, RSRV2 has consistently
good overall performance and is comparable to the best scheme
under each load condition. For α = 0.5, on the other hand,
RSRV4 provides the best overall performance, and is slightly
outperformed by FF and BF in a small region observed at heavy
loads.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Utilization

F
ea

si
bi

lit
y

FF
BF
WF
RSRV2
RSRV4
RSRV6

0 2 4 6 8
0

2

4

6

8

10

Utilization

E
ne

rg
y

FF
BF
WF
RSRV2
RSRV4
RSRV6

Figure 8. Feasibility and energy performance of on-line
partitioning heuristics using ELL for α = 1.0

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Utilization

F
ea

si
bi

lit
y

/ E
ne

rg
y

FF
BF
WF
RSRV2
RSRV4
RSRV6

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Utilization

F
ea

si
bi

lit
y

/ E
ne

rg
y

FF
BF
WF
RSRV2
RSRV4
RSRV6

Figure 9. Feasibility/energy performance of on-line partitioning
heuristics using ELL: α = 0.5 (left) and α = 1.0 (right)

Effect of admission control and speed assignment

schemes. We adopt the RESERVATION(k = 2) scheme for
online settings based on its consistently good performance at
different load conditions and α values. However, we underline
that the patterns we report are valid for other partitioning
schemes as well. Figure 10 (left) compares the different
feasibility tests used in the case of on-line partitioning in terms
of feasibility performance. Note that the R-BOUND is excluded
from the evaluation in on-line settings, since it mandates the
knowledge of the periods and task pre-ordering as part of its
operation. TDA-SYSC still exhibits the best feasibility
performance, but the second best scheme appears to be PS. HYP
still provides consistently good feasibility performance.

In terms of energy consumption, there is no clear winner
throughout the utilization and α spectrum. For α = 1.0 (Figure
10 - right), TDA-SYSC is still the best scheme. The best
polynomial-time scheme is PS followed by HYP. However, for
smaller α values, such as α = 0.5, TDA- SYSC still appears to
be the best scheme at low and high utilizations, but its
performance deteriorates at medium utilizations and its energy
consumption slightly exceeds all other schemes in a small
region. In this limited region, PS has the best overall energy
consumption. Due to space limitation we are showing energy
results for α = 1.0 only.

In terms of the hybrid performance metric, TDA-SYSC,
with its sophisticated mechanism is the clear winner throughout
the utilization and α spectra (Figure 11). Note that the simple
scheme PS yields strikingly good performance among the
remaining schemes, and its advantage over others becomes even
more emphasized at small α values. The performance of HYP
approaches that of PS only at large α and utilization values.

4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Utilization

F
ea

si
bi

lit
y

ELL
HYP
PS
BURC
TDA−SYSC

4 5 6 7 8
0

2

4

6

8

10

Utilization

E
ne

rg
y

ELL
HYP
PS
BURC
TDA−SYSC

Figure 10. Feasibility and energy performance of different
techniques (on-line partitioning, α = 1.0)

4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Utilization

F
ea

si
bi

lit
y

/ E
ne

rg
y

ELL
HYP
PS
BURC
SYSC

4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

Utilization

F
ea

si
bi

lit
y

/ E
ne

rg
y

ELL
HYP
PS
BURC
TDA−SYSC

Figure 11. Feasibility/energy performance of different techniques
(on-line partitioning, α = 0.5 (left), α = 1.0 (right))

5.3 Effect of discrete speed levels
In this section we investigate the effect of having a finite

number of discrete speeds on the relative performance of the
schemes presented in this paper. To this aim, we incorporated
the Intel XScale speed/power specifications [17] in our
simulator. Note that the speed assignment takes place after the
partitioning phase, thus, only the energy and feasibility/energy
metrics are affected by the change in speed levels. Due to space
limitations, we only present results for feasibility/energy
performance of different techniques for α = 1.0 for both off-line
and on-line partitioning in Figure. There is a slight decrease in
the feasibility/energy performance of all schemes. In the
presence of a finite number of discrete speeds, one often has to
select an existing (but, higher) CPU speed level, leading to an in
increase in total energy consumption. Subsequently, this results
in an overall decrease of the feasibility/energy performance.
However, the relative performance of the different feasibility
tests is unchanged compared to the continuous speed case. We
underline that this conclusion applies to all the schemes we
discussed above and for the different settings considered.
Moreover, the feasibility/energy performance of the off-line
schemes (Figure 12 - left) is still significantly better than the on-
line ones (Figure 12 - right), since the feasibility performance
deteriorates in on-line settings (again, note the scale difference
for the y axis in both figures).

4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Utilization

F
ea

si
bi

lit
y

/ E
ne

rg
y

ELL
HYP
R−BOUND
PS
BURC
TDA−SYSC

4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

Utilization

F
ea

si
bi

lit
y

/ E
ne

rg
y

ELL
HYP
PS
BURC
TDA−SYSC

Figure 12. Feasibility/energy performance of the different
techniques for α = 1.0 and Intel XScale specifications
(off-line case (left) and on-line case (right)).

6. Conclusion

To the best of our knowledge, this is the first research effort

addressing the energy-aware scheduling of static-priority
periodic RT task sets on multiprocessors with partitioned
approach. We showed that the problem is NP-Hard in the strong
sense on m ≥ 2 processors even when the feasibility is
guaranteed a priori. We considered two different settings of the
problem: off-line partitioning, where all the tasks and their
characteristics are known to the scheduler, and on-line
partitioning, where the scheduler has to make the task allocation
decisions in a given order. We evaluated experimentally the
impact of the partitioning heuristics, admission control
algorithms, and speed assignment schemes on both feasibility
and energy performances. To better capture these two
dimensions, we introduced a hybrid metric defined as
feasibility/energy. Our experiments show that the admission
control based on the Time Demand Analysis when combined
with Sys-Clock speed assignment scheme has the best overall
performance in both off-line and on-line settings, at the cost of
pseudo-polynomial time complexity. Moreover, in off-line
settings Worst-Fit has the best overall performance among
partitioning heuristics. In these settings, the admission control
with the Hyperbolic test combined with a uniform slow-down
approach for speed assignment has the best overall performance
among polynomial-time schemes. In on-line settings, the
performance of Worst-Fit deteriorates significantly. This led us
to introduce the RESERVATION(k) scheme which exhibits a
competitive overall performance. Admission control and speed
assignment based on Pillai-Shin’s technique [31] yields the best
overall performance among polynomial-time schemes in these
settings.

References
[1] T.A. AlEnawy and H. Aydin. On energy-constrained real-
time scheduling. Proceedings of the 16th EuroMicro Conference
on Real-Time Systems (ECRTS'04), June 2004.

[2] B. Andersson, S. Baruah, and J. Jonsson. Static-priority
scheduling on multiprocessors. Proceedings of the IEEE
International Real-Time Systems Symposium, pp 193-202, 2001.

[3] B. Andersson and J. Jonsson. The utilization bounds of
partitioned and pfair static-priority scheduling on
multiprocessors are 50%. Proceedings of the 15th Euromicro
Conference on Real-Time Systems, pp. 33-40, 2003.

[4] J. Anderson, P. Holman, and A. Srinivasan. Fair
multiprocessor scheduling. Handbook of Scheduling:
Algorithms, Models, and Performance Analysis, Joseph Y.
Leung (ed.), Chapman and Hall/CRC, Boca Raton, Florida,
pages 31.1–31.21, 2004.

[5] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A.J.
Wellings. Applying new scheduling theory to static priority pre-
emptive scheduling. Software Engineering Journal, Volume: 8
Issue: 5, Sept. 1993.

[6] H. Aydin, R. Melhem, D. Mossé and P.M. Alvarez. Dynamic
and aggressive scheduling techniques for power-aware real-time
systems. Proceedings of the Real-Time Systems Symposium
(RTSS’01), pages 95-105, 2001.

[7] H. Aydin, R. Melhem, D. Mossé and P.M. Alvarez. Power-
aware scheduling for periodic real-time tasks. IEEE
Transactions on Computers, vol 53 (5), pp. 584-600, May
2004.

[8] H. Aydin and Q. Yang. Energy-aware partitioning for
multiprocessor real-time systems. Proceedings of the 17th
International Parallel and Distributed Processing Symposium
(IPDPS’03), Workshop on Parallel and Distributed Real-Time
Systems, 2003. Available online at
http://cs.gmu.edu/~aydin/ipdps03.ps

[9] T.P. Baker. Multiprocessor EDF and deadline monotonic
schedulability analysis. Proceedings of the 24th IEEE
International Real-Time Systems Symposium, 2003.

[10] S. Baruah and J. Anderson. Energy-efficient synthesis of
periodic task systems upon identical multiprocessor platforms.
Proceedings of the 24th IEEE International Conference on
Distributed Computing Systems, March 2004.

[11] E. Bini, G.C. Buttazzo, and G. Buttazzo. A hyperbolic
bound for the rate monotonic algorithm. Proceedings of the 13th
Euromicro Conference on Real-Time Systems, 2001.

[12] E. Bini, G.C. Buttazzo, and G. Buttazzo. Rate monotonic
analysis: the hyperbolic bound. IEEE Transactions on
Computers, Volume: 52 Issue: 7, July 2003.

[13] A. Burchard, J. Liebeherr, Y. Oh, and S.H. Son. New
strategies for assigning real-time tasks to multiprocessor
systems. IEEE Transactions on Computers, Volume: 44 Issue:
12, Dec. 1995.

[14] G. Buttazzo. Rate monotonic vs. EDF: judgment day.
Proceedings of the 3rd ACM International Conference on
Embedded Software (EMSOFT 2003), 2003.

[15] J. Carpenter, S. Funk, P. Holman, and A. Srinivasan, J.
Anderson, and S. Baruah. A categorization of real-time
multiprocessor scheduling problems and algorithms. Handbook
of Scheduling: Algorithms, Models, and Performance Analysis,
Joseph Y. Leung (ed.), Chapman and Hall/CRC, Boca Raton,
Florida, pp. 30.1–30.19, 2004.

[16] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson.
Approximation Algorithms for Bin Packing: A Survey. In
Approximation Algorithms for NP-Hard Problems, PWS
Publishing, Boston (1997).

[17] http:// developer.intel.com/design/intelxscale/benchmarks.htm

[18] S.K. Dhall and C.L. Liu. On a real-time scheduling
problem. Operations Research, 26(1):127–140, 1978.

[19] M. Elnozahy, M. Kistler, and R. Rajamony. Energy
Conservation Policies for Web Servers. Fourth USENIX
Symposium on Internet Technologies and Systems, 2003.

[20] M.R. Garey and D.S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness. W.
H. Freman, NewYork, 1979.

[21] J. Goossens, S. Funk, and S. Baruah. Priority-driven
scheduling of periodic task systems on multiprocessors. Real-
time Systems 25(2-3), pp. 187-205. 2003.

[22] T.K. Kuo and A.K. Mok. Load adjustment in adaptive real-
time systems. Proceedings of the IEEE Real-Time Systems
Symposium, 1991.

[23] S. Lauzac, R. Melhem, and D. Mosse. An efficient RMS
admission control algorithm and its application to
multiprocessor scheduling. Proceedings of Parallel Processing
Symposium, pp. 511-518, 1998.

[24] J.P. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: exact characterization and average case
behavior. Proceedings of the IEEE Real Time Systems
Symposium, pp. 166 -171, 1989.

[25] J.Y.-T. Leung and J. Whitehead. On the complexity of
fixed-priority scheduling of periodic real-time tasks.
Performance Evaluation, 2:237–250, 1982.

[26] J. Liu. Real-Time Systems. Prentice Hall, NJ, 2000.

[27] C.L. Liu and J.W. Layland. Scheduling algorithms for
multiprogramming in a hard-real time environment, Journal of
the ACM, 17(2). 1973.

[28] Y. Liu and A. Mok. An Integrated Approach for Applying
Dynamic Voltage Scaling to Hard Real-Time Systems.
Proceedings of the IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS’03), 2003.

[29] J.M. Lopez, M. Garcia, J.L. Diaz, and D.F. Garcia.
Utilization bounds for multiprocessor rate-monotonic
scheduling. Real-Time Systems 24(1): 5-28 (2003).

[30] J.R. Lorch and A.J. Smith. Energy consumption of Apple
Macintosh computers. IEEE Micro, 18(6), November/December
1998.

[31] P. Pillai and K.G. Shin. Real-time dynamic voltage scaling
for low power embedded operating systems. Symposium on
Operating Systems Principles, 2001.

[32] A. Qadi, S. Goddard, and S. Farritor. A Dynamic Voltage
Scaling Algorithm for Sporadic Tasks. Proceedings of the IEEE
Real-Time Systems Symposium, 2003.

[33] S. Saewong and R. Rajkumar. Practical Voltage-Scaling for
Fixed-Priority Real-time Systems. Proceedings of the IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS’03), May 2003.

[34] Y. Yu and V.K. Prasanna. Power-aware resource allocation
for independent tasks in heterogeneous real-time systems.
Proceedings of 9th International Conference on Parallel and
Distributed Systems, 2002.

[35] D. Zhu, N. AbouGhazaleh, D. Mossé, and R. Melhem.
Power aware scheduling for AND/OR graphs in multi-processor
real-time systems. Proceedings of the International Conference
on Parallel Processing (ICPP'02), 2002.

[36] D. Zhu, R. Melhem, and B. Childers. Scheduling with
dynamic voltage/speed adjustment using slack reclamation in
multi-processor real-time systems. Proceedings of the 22nd IEEE
Real-Time Systems Symposium, 2001.

