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Abstract 
 
We consider the problem of energy minimization for 

periodic preemptive hard real-time tasks that are scheduled on 
an identical multiprocessor platform with dynamic voltage 
scaling capability. We adopt partitioned scheduling and assume 
that the tasks are assigned rate-monotonic priorities. We show 
that the problem is NP-Hard in the strong sense on m ≥ 2 
processors even when the feasibility is guaranteed a priori. 
Because of the intractability of the problem, we propose an 
integrated approach that consists of three different components: 
RMS admission control test, the partitioning heuristic and the 
speed assignment algorithm. We discuss possible options for 
each component by considering state-of-the-art solutions.  Then, 
we experimentally investigate the impact of heuristics on 
feasibility, energy and feasibility/energy performance 
dimensions. In off-line settings where tasks can be ordered 
according to the utilization values, we show that Worst-Fit 
dominates other well-known heuristics. For on-line settings, we 
propose an algorithm that is based on reserving a subset of 
processors for light tasks to guarantee a consistent 
performance.    

 
1. Introduction 

 
Recently, the energy awareness has been promoted to a 

first-class computer system design and evaluation factor. It has 
been reported that the CPU accounts for a significant fraction of 
the total system energy consumption in both battery-operated 
computers and high-end servers [19, 30]. One common CPU 
energy management technique is Dynamic Voltage Scaling 
(DVS). DVS entails reducing the system energy consumption by 
reducing the CPU supply voltage and the clock frequency (CPU 
speed) simultaneously. Despite the (potentially) quadratic 
energy gains, the response times increase when the CPU speed 
is reduced. Thus, many recent real-time (RT) research studies 
investigate ways to guarantee the timing constraints on DVS-
enabled settings for various task/system models and off-line/on-
line scheduling algorithms [6, 7, 8, 28, 31, 32, 33]. Maximizing 
the system performance with limited energy budget for a given 
operation time has been studied in [1]. The same work also 
proves the intractability of the feasibility problem for RT 
systems with discrete speed levels and fixed energy budget.  

Multiprocessor RT Scheduling is one of the most 
extensively studied areas in RT systems research. Two main 
approaches for multiprocessor RT scheduling can be identified 
in the research literature: partitioned scheduling and global 
scheduling [15, 18]. In the partitioned approach, the admission 
control module permanently assigns each task to a processor, i.e. 
task migration at run-time is not allowed. Each processor has its 

own ready queue and scheduler. Partitioned multiprocessor real-
time scheduling is known to be NP-Hard in the strong sense [20, 
25]. On the other hand, simple and effective partitioning 
heuristics such as First-Fit and Best-Fit are shown to have 
reasonable average-case performance [13, 29]. Moreover, well-
established algorithms (e.g. RMS or EDF) from uniprocessor RT 
scheduling theory can be adopted once the tasks are allocated to 
different processors. Global scheduling, on the other hand, takes 
a different approach: A global scheduler selects from a single 
ready queue for execution the highest-priority n tasks on m 
processors. Tasks are allowed to migrate between processors. 
One fundamental result in multiprocessor RT scheduling theory 
states that partitioned and global scheduling are incomparable, 
in the sense that there are task sets that can be scheduled in a 
feasible manner by only one approach [25]. The reader is 
referred to the recent surveys and studies on partitioned and 
global scheduling for more information [2, 3, 4, 9, 21]. 
However, the partitioned approach is arguably more common in 
current multiprocessor platforms thanks to its simplicity and 
ease of implementation. The traditional dichotomy of static- and 
dynamic-priority periodic scheduling policies also holds on 
multiprocessor settings. In the former, each task is permanently 
assigned a fixed priority level; while task/job priorities may 
change dynamically in the latter [14]. Although dynamic-
priority algorithms usually lead to better processor utilization, a 
considerable majority of real-time and embedded systems are 
still implemented using static-priority policies. This may be 
partially explained by the well-established theory/status of Rate 
Monotonic Analysis (which is known to be optimal for 
uniprocessor static-priority scheduling [27]) and the limited 
number of priority levels in most commercial operating systems.  
 

Energy-aware multiprocessor RT scheduling. Although 
numerous research papers have explored energy management on 
uniprocessor RT systems, fewer studies have considered the 
problem of energy management on multiprocessor platforms. 
The problem of energy minimization by dynamic slack 
reclamation and dynamic speed adjustment for global 
scheduling is considered in [36]. This work  is extended in [35] 
to address the case of dependent tasks with AND/OR 
dependency constraints. The authors also propose a few 
variations of speculative algorithms exploiting the statistical 
information about the workload. In [34], the problem of power-
aware resource allocation for independent periodic hard RT 
tasks on heterogeneous multiprocessors is formulated as an 
extended Generalized Assignment Problem (GAP), based on 
integer linear programming formulation. In [8], Aydin et al. 
address the problem of energy minimization for periodic hard 
RT tasks on identical multiprocessors with DVS when 
partitioned scheduling is used. The authors adopt the EDF 
scheduling policy and investigate the joint effect of partitioning 
heuristics on the energy consumption and the feasibility. Finally, 



Baruah and Anderson address the system synthesis problem of 
periodic RT tasks on identical multiprocessors, using global 
EDF in [10].  

This work. We consider the problem of energy 
minimization for periodic preemptive hard RT tasks that are 
scheduled on an identical multiprocessor platform with DVS 
capability. We adopt partitioned scheduling and assume that 
tasks are assigned static (rate-monotonic) priorities. An 
obvious benefit of adopting partitioned approach stems from the 
fact that well-established dynamic reclaiming techniques [6, 28, 
31, 33] for periodic energy-aware scheduling can be readily 
adopted on each processor once the task allocation is made. In 
contrast, dynamic reclaiming for global periodic multiprocessor 
scheduling is an open problem to a considerable extent. We 
believe that avoiding the overhead of task migrations is another 
incentive to focus on the partitioned approach. To the best of our 
knowledge, this is the first research effort considering the 
problem of energy minimization on multiprocessors with static-
priority periodic scheduling.  

Our work is based on the observation that the task 
allocation can have a significant impact on the overall 
energy consumption of the system. In particular, two different 
and feasible task allocations can result in very different energy 
consumption levels. As in any partitioned real-time scheduling 
approach, resorting to heuristics for task allocation 
(partitioning) appears to be a necessity. Another dimension is 
the admission control algorithm (feasibility test) to be used 
during the task allocation phase. The wealth and diversity of 
existing feasibility tests, from the seminal work of Liu and 
Layland [27] to the exact characterization of Lehoczky et al. 
[24] and the more recent hyperbolic test [12], call for a trade-off 
analysis on computational complexity, feasibility, and energy 
consumption dimensions. Finally, once the tasks are assigned 
permanently to the processors, a speed assignment scheme 
must be chosen to reduce the energy consumption while 
preserving the feasibility. Here again, simple schemes scaling up 
the effective utilization by a constant factor or more 
sophisticated ones based on the critical instant analysis of static-
priority tasks [33] are possible. 

  
We summarize below the main contributions of this paper:  

• We formally define the problem of energy minimization in 
multiprocessor periodic RT scheduling with partitioning, 
and show that the problem remains NP-Hard in the strong 
sense even when the feasibility is guaranteed a priori. 

• We study and evaluate a number of well-known 
partitioning heuristics, RMS admission control algorithms, 
and speed assignment schemes in terms of the feasibility 
performance and overall energy consumption. 

• We consider two different settings of the problem: In off-
line partitioning, all the tasks and their characteristics are 
known to the scheduler. Thus, it is possible to order tasks 
first according to utilization or period values to improve the 
performance. However, if the scheduler is to allocate tasks 
in a given order without the possibility of waiting for the 
rest of the tasks (as in the case of on-line partitioning, 
where tasks arrive dynamically to the system), then the 
problem becomes more difficult. We present an analysis of 
both cases. We show that Worst-Fit is a clear winner for 
off-line partitioning. However, Worst-Fit’s performance 
degrades rapidly in on-line settings. For this case, we 
propose a hybrid algorithm that reserves a number of 
processors for tasks with small utilizations (light tasks).  

 
The paper is organized as follows. In Section 2 we present 

the system model and assumptions. In Section 3 we define the 
problem and discuss the tractability. Section 4 discusses our 
solution approach. In Section 5, we present the experimental 
evaluation of task allocation, admission control, and speed 
assignment schemes. We conclude the paper in Section 6. 

 

2. System model and assumptions 
2.1 Power and energy consumption model 

 
We consider a multiprocessor platform M with m 

processors M1,…, Mm. The number of processors m is fixed 
during the operation; that is, on-demand addition of processors 
is not possible at run-time. We also assume that all m processors 
are identical in terms of the processing power and speed/energy 
characteristics. Each processor Mi has dynamic voltage scaling 
(DVS) capability according to which it can adjust its operating 
speed S (expressed as cycles per unit time). We denote the 
maximum speed level available in the system by Smax . Without 
loss of generality, the speed values will be normalized with 
respect to Smax (i.e. Smax = 1.0). The CPU power dissipation 
function when running at speed S is denoted by g(S). In current 
DVS architectures, g(S) is taken to be a strictly convex and 
increasing function, often a polynomial of at least the second 
degree [6, 33]. In any time interval [t1,t2] the total energy 
consumption of a processor is given by: 

( )( )dttSg)t,t(E
t

t
∫=
2

1
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where S(t) is the processor speed as a function of time. In 
current DVS-enabled systems, it is not always possible to find a 
speed level that exactly corresponds to a desired target speed 
(often obtained assuming a continuous speed spectrum). Instead, 
a DVS-enabled processor has a finite number of discrete speeds 
{s1,…, sk}. Often, the solutions developed for an ideal DVS 
architecture (with continuous speed) can be adapted to these 
settings by choosing the lowest speed level available in the 
system that is equal to or greater than a target speed S.  The 
focus of this study is the CPU energy consumption; the energy 
profiles of memory and I/O subsystems, albeit important, are 
beyond the scope of this paper.    

 
 

2.2 Task and scheduling model 
 
We consider a set of n independent periodic hard real-time 

tasks T = {T1,,…, Tn}. Each task Ti = (Ci, Pi) is characterized by 
two parameters: the worst-case number of processor cycles Ci 
required by Ti and a period Pi. We assume that the period Pi is 
equal to the relative deadline Di. On variable-speed settings, the 
worst-case workload of a task Ti is given by the worst-case 
number of cycles. The worst-case execution time of task Ti when 
running at speed S is given by ci = Ci/S. We consider a 
preemptive scheduling model; the preemption and speed change 
overheads can be incorporated in Ci if necessary.  

The utilization of task Ti under CPU speed S is given by 
 ui(S) = Ci /(Pi S). Note that under maximum CPU speed (i.e. S = 
1.0), ui(1.0) = Ci/Pi. The aggregate utilization of the task set 
(under maximum speed) is given by Utot = ∑i Ci/Pi.  Note that a 
necessary (but not sufficient) condition for feasibility on a 
system of m identical multiprocessors is to have a task set whose 
total utilization does not exceed the computing capacity. 



Consequently, we assume that the condition Utot ≤ m holds 
throughout the paper.  

   We adopt a partitioning-based approach to multiprocessor 
scheduling. Tasks are assigned permanently to processors. The 
total utilization of tasks assigned to processor Mi (under 
maximum speed) is denoted by Ui. Note that Utot = ∑k Uk. 
Similarly, ni denotes the number of tasks assigned to processor 
Mi. On each processor, the well-known Rate Monotonic 
Scheduling (RMS) policy is adopted: tasks are assigned static 
priorities that are inversely proportional to their periods.  

In multiprocessor RT system analysis, for a given task set, 
it is often helpful to determine the largest utilization among all 
the tasks in the set. This parameter, called the utilization factor, 
will be denoted by α. Formally, α = max(ui) ∀  Ti ∈  T. 

 

3. Energy minimization with partitioning for 
static-priority scheduling 

 
Traditionally, the multiprocessor real-time scheduling 

studies have focused mostly on the feasibility issue. One of the 
motivations of this research effort is to consider the total energy 
consumption as an additional performance metric. Ideally, on 
energy-constrained settings, the objective should be to allocate 
tasks and compute CPU speed assignments while minimizing 
the total energy consumption and preserving the feasibility. In 
fact, it is possible to formally state the problem (denoted by 
RMS-ENERGY-PARTITION) as follows: 

 
RMS-ENERGY-PARTITION: Given a set T of periodic 

hard real-time tasks and a set M of identical processors, find a 
task-to-processor assignment (i.e. partition) and compute task-
level speeds on each processor such that: 
1. the workload can be scheduled by RMS in a feasible 

manner, and 
2. the total energy consumption on all processors M1, …, Mm 

is minimum (among all feasible partitions). 
As stated above, RMS-ENERGY-PARTITION is an 
optimization problem in which the objective function is the total 
energy consumption of M, subject to the constraint that the 
workload on each processor will be feasible when scheduled by 
rate-monotonic priorities. 

In view of the convex relationship between the CPU speed 
and the power consumption, in general, energy-aware 
partitioning across DVS-enabled multiprocessors suggests load 
balancing techniques [8]. In fact, a perfectly balanced partition, 
if it exists, is also provably optimal in terms of energy 
consumption when tasks are scheduled by the Earliest-deadline-
first (EDF) policy [8]. In the context of RMS, however, the 
problem gains new dimensions as shown by the following 
example.  

 
Motivational Example: Consider a set of six periodic hard real-
time tasks T = {T1,…, T6} to be scheduled using partitioning on 
two identical processors. The individual task utilizations under 
maximum speed are u1 = 0.32, u2 = 0.2, u3 = 0.1, u4 = 0.04, u5 = 
0.01 and u6 = 0.01. Since the total utilization Utot = 0.68 is less 
than the asymptotic Liu-Layland bound ln 2, any partitioning of 
these tasks is feasible with both EDF and RMS. Figures 1-3 
depict three different partitions and the energy consumption 
patterns under RMS and EDF policies. 
 

M2

M1

T2 T3 T4 T6T5 U1 = 0.68T1

U2 = 0

 
Figure 1. A feasible partition (Partition 1) 

 

M2

M1

T2 T3 T4

T6T5T1 U1 = 0.34

U2 = 0.34
 

Figure 2. A feasible and perfectly balanced partition (Partition 2) 

 

M2

M1

T1

T2 T3 T4 T6T5

U1 = 0.32

U2 = 0.36
    

Figure 3. A feasible and slightly unbalanced partition (Partition 3) 

 
Observe that the partitioning shown in Figure 1 

corresponds to the schedule that would be produced by well-
known heuristics First-Fit and Best-Fit. The partitioning shown 
in Figure 2 is the perfectly balanced one. Finally, the one in 
Figure 3 corresponds to the case where the first processor is 
exclusively dedicated to the task with the largest utilization, 
while all other tasks are assigned to the second processor. We 
underline that when judged solely by the feasibility criterion, all 
three partitions are equally acceptable.  

Yet, the energy dimension yields a different picture. Let us 
compute the energy consumption Etot of each partition for both 
EDF and RMS scheduling. Using simple algebraic manipulation 
it is possible to show that, the energy consumption of processor 
Mi when running at constant speed Si during the interval [0,P], 
where P is the hyperperiod of all the tasks (i.e. P = lcm(P1, 
P2,…, P6)), is E(Mi) = P⋅Ui⋅g(Si) / Si [8]. Recall that Ui is the 
total utilization of tasks assigned to Mi under CPU speed Si = 
1.0. For illustration purposes, we take P = 10000. For EDF, the 
speed assignment scheme used on each processor is the optimal 
one: Si = Ui [6, 31]. For RMS, the speed is determined through 
the uniform slow-down approach [31]. Thus, in the RMS case, 
the speed Si of processor Mi with ni tasks is Ui / Ubound(ni), where 
Ubound(k) = k (21/k - 1) is the well-known Liu-Layland 
schedulability bound [27]. The power consumption function g(S) 
= S3 [6, 33].  

 
It is easy to see that Partition 1 has the maximum energy 

among all three partitions considered for both EDF and RMS. 
However, the partition with least energy is different for EDF and 
RMS. Under EDF, the perfectly balanced partition, Partition 2, 
has the minimum energy consumption among all three 
partitions. On the other hand, under RMS, the slightly 
unbalanced Partition 3 has about 10% lower energy 
consumption than Partition 2. Although the difference in 
processor utilizations between partitions 2 and 3 is minor, there 
is a significant difference in the number of tasks assigned to 
each processor in each case. In particular, in Partition 3 
processor M1 has only 1 task, compared to 3 in partition 2. This 

 RMS EDF 

S1 0.925 0.68 
S2 Idle Idle 

Etot 5818 3144 

 RMS EDF 

S1 0.436 0.34 
S2 0.436 0.34 

Etot 1295 786 

 RMS EDF 

S1 0.32 0.32 
S2 0.484 0.36 

Etot 1171 794 



results in a situation where the speed of the first processor can 
be reduced to 0.32, well below 0.436 which was possible with 
the second partition.  

This simple example shows that feasible partitions can have 
significantly different energy characteristics. For RMS, Partition 
1 has the largest energy consumption among all three partitions 
considered, which is almost five times as much as that of 
Partition 3. Load balancing while partitioning does help to 
reduce the energy consumption. However, in the case of RMS, a 
perfectly balanced partition is not necessarily the most energy 
efficient option: The example illustrates the fact that, with the 
uniform slow-down approach of RMS, the optimal partition is a 
function of both the processor utilization and the number of 
tasks. Although omitted for lack of space, similar examples can 
be constructed for other speed assignment schemes proposed in 
literature [28, 31, 33]. 

From the computational complexity point of view, RMS-
ENERGY-PARTITION is NP-Hard in the strong sense, since it 
is a more general form of the feasibility problem in partitioned 
multiprocessor scheduling which is known to be NP-Hard in the 
strong sense [13]. More interestingly, the problem remains NP-
Hard in the strong sense even when the task set is known to be 
trivially schedulable on one processor. In this case, any 
partitioning would yield a feasible schedule, but computing the 
one with the minimum energy consumption is still intractable. 

 
Proposition 1. RMS-ENERGY-PARTITION is NP-Hard in the 
strong sense even when the feasibility is guaranteed a priori.  

 
Proof: Consider a special instance of RMS-ENERGY-
PARTITION where the task periods are harmonic, i.e. each task 
period is an exact multiple of another one. In this case, the 
schedulability bound for RMS is Ubound = 1.0 [27], exactly the 
same as that of EDF. Under this assumption, the problem is 
identical to POWER-PARTITION with EDF which is proved to 
be NP-Hard in the strong sense in [8] even for trivially 
schedulable task sets with Utot ≤ 1.0. Hence, the general problem 
of RMS-ENERGY-PARTITION with RMS is also NP-Hard in 
the strong sense for trivially schedulable task sets.  ■ 

 
 
 

4. Our framework  
 
The intractability of the problem necessitates a heuristic-

based approach. Moreover, the solution has to integrate multiple 
design components as a number of issues need to be addressed 
in an energy-aware multiprocessor platform: 
• What RMS admission control algorithm to use on each 

processor? The set of eligible processors for a given task is 
determined by ensuring that the RMS feasibility is 
preserved. Consequently, a uniprocessor RMS admission 
control algorithm has to be adopted. The accuracy of the 
algorithm/test is certainly important in order to be able to 
admit more tasks, but the efficiency is also a concern as the 
test will be potentially invoked on each of the m processors. 
We classify existing RMS admission algorithms in two 
general classes: those using the utilization and period 
information when making a decision [12, 22, 27], and those 
based on Time Demand Analysis ([24]). We provide an 
extended discussion of the RMS admission control 
algorithms considered in this study in Section 4.1.  

• What partitioning heuristic to use? When multiple 
processors are eligible for a given task, an efficient 
partitioning heuristic determines the processor to which the 
task will be assigned. A number of efficient heuristics are 
available from bin-packing research area (see Section 4.2).  

• What speed assignment scheme to adopt? Once the tasks 
are allocated in such a way that the workload on each 
processor is feasible according to RMS, the last step will 
involve the computation of the CPU speed. The schedule 
must remain feasible even with the reduced speed. 
Uniprocessor speed assignment schemes that are recently 
proposed in the literature ([28, 31, 33]) for RMS are 
potential candidates, offering a spectrum of computational 
complexity and energy savings (see Section 4.3). 
 
We underline that none of these dimensions admits an 

exact and polynomial-time solution as of today. Moreover, our 
objective is to provide a computational cost and 
performance benefit analysis of different schemes in terms of 
both feasibility and overall energy consumption. Note that the 
use of RMS instead of EDF as the scheduling algorithm on each 
processor makes the admission control and speed assignment 
phases even more difficult. For EDF, the necessary and 
sufficient schedulability condition on processor Mi is Ui ≤ 1.0 
[27]. Moreover, the optimal speed to minimize the total energy 
consumption while meeting all the deadlines is known to be 
SEDF = Ui [6]. In contrast, for RMS no uniprocessor polynomial-
time exact feasibility test (i.e. one that provides necessary and 
sufficient condition(s) for feasibility) exists to this date. The 
Time Demand Analysis technique is exact, but it runs in pseudo-
polynomial time [5, 24]. It follows that determining optimal 
speed assignments to minimize the total energy consumption 
(while ensuring feasibility) does not assume an efficient solution 
as of today.  We now provide an overview of design options on 
each dimension.  
 
 
 
 

4.1 RMS Admission Control Algorithms  
The selection of the RMS admission control to be used at 

processor level can have significant impact on the feasibility 
performance of the system. Several uniprocessor RMS 
feasibility tests with varying accuracy and time complexity 
characteristics exist (see [26] for a detailed discussion). For our 
purposes, we classify the tests in two major categories: 

 
4.1.1 Utilization-based feasibility tests  

These are fast (i.e. polynomial-time), yet approximate tests 
using the information about the utilization of the task set and/or 
individual tasks. The tests in these categories provide sufficient 
conditions for feasibility: a task set is deemed feasible if the 
condition is not violated. Further, some of the proposed 
solutions exploit the additional information about task periods, 
yielding two sub-categories.  

 
Basic utilization-based tests  

The simplest (and consequently, fastest) schemes require 
only the information about the task utilizations.  



• Exact Liu-Layland test (ELL) is by far the most 
frequently used/adopted feasibility test for RMS. A task set 
with n tasks is schedulable on one processor if the total 
utilization Utot does not exceed the Liu-Layland bound 
Ubound(n) = n(21/n - 1). Note that there is a different version 
of Liu-Layland test that uses the asymptotic  bound of ln 2; 
we use the word “exact” to underline the difference. 

• Hyperbolic test (HYP), recently proposed by Bini et al. 
[11], provides a tighter bound than ELL by considering 

individual task utilizations: ( ) 21
1

≤+∏
=

n

i
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Utilization-based tests exploiting the period information 
In their seminal paper [27], Liu and Layland had observed 

that the schedulability bound of RMS was equal to 100% for 
harmonic (or, simply periodic)1 task sets. Later, Kuo and Mok 
established that any utilization-bound test for RMS 
schedulability could be used with the number of harmonic task 
subsets (as opposed to the number of tasks) [22]. Over the years, 
the research community developed more sophisticated tests by 
exploiting similar properties of task periods:   

• Burchard test (Burc) builds on the idea that having 
harmonic tasks helps to improve the utilization bound. The 
utilization bound provided is yet another generalization of 
Liu-Layland bound. It is expressed as a function of the 
number of tasks n and an additional parameter that 
quantifies how close the tasks are to being harmonic [13]. 

• R-bound test transforms a given task set into one where 
the ratio r of maximum period to minimum period does not 
exceed 2. Lauzac et al. show that the original task set is 
schedulable if the transformed task set is schedulable. The 
utilization bound depends on r and the number of tasks n: 
Ubound(n,r) = (n – 1)(r1/(n-1) – 1) + 2/r – 1 [23]. 
It is worth mentioning that Burchard et al. proposed two 

other schemes, RMST and RMGT specifically designed for 
partitioned static-priority scheduling on multiprocessors [13]. 
Similar to Burc, they make use of the fact that the utilization 
bound improves as tasks are closer to being harmonic. They also 
require that the tasks be pre-ordered by a parameter that 
quantifies how close the tasks are to being harmonic. RMST is 
designed for task sets with Utot ≤ 0.5, while RMGT is the 
extension proposed for generic task sets.  

4.1.2 Time-demand-analysis-based tests 
 
Computationally more complex, but also more accurate tests can 
be provided by constructing the critical instant phasing [24], 
implicitly using the information about the worst-case task 
execution times and periods.  

• Time demand analysis (TDA), developed by Lehoczky et 
al. [24], provides an exact characterization of schedulability 
under RMS. It provides a necessary and sufficient 
condition2, but runs in pseudo-polynomial-time. The time 
demand function wi(t) of task Ti is defined as:  

                                                      
1 A task set is harmonic if, given any two periods Pi and Pj, either Pi is a 

multiple of Pj or Pj is a multiple of Pi .  
2 The feasibility condition provided by TDA is considered necessary and 

sufficient assuming that critical-instant phasing will actually occur at 
run-time. 
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where tasks are assumed to be sorted in non-increasing 
order according to the priorities. The task set is considered 
feasible if all the tasks can meet their deadlines under the 
critical-instant phasing; that is, if for each task Ti, it is 
possible to find a time instant t where wi(t) ≤ t ≤ Di . It is 
sufficient to check this condition at time instants that 
correspond to period boundaries [5, 24]. 

• Pillai-Shin test (PS) is a polynomial-time heuristic scheme 
([31]), proposed for RMS on DVS-enabled settings, 
providing a sufficient condition for schedulability. It 
provides a sufficient but not necessary condition for 
feasibility by checking whether the time demand function 
wi(t) does not exceed the relative deadline Di at the task’s 
period boundary t = Pi = Di for each task: 
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where tasks are again sorted in non-increasing order 
according to the priorities.  

 
Test Name Utot ui Pi ci Complexity Exact 

ELL √ × × × O(n) × 

Hyp × √ × × O(n) × 

R-Bound √ × √ √ O(n) × 

Burc √ × √ × O(n) × 

PS × × √ √ O(n2) × 

TDA3 × × √ √ O(n2r) √ 

Table 1. RMS admission control algorithms used in this paper 

 
It is worth noting that all the RMS feasibility tests 

discussed above, except for TDA, are inexact in the sense that 
they provide a sufficient but not necessary condition for 
feasibility. Table 1 summarizes the task set parameters used by 
each feasibility test as well as its computational complexity on 
one processor, as a function of the number of tasks n. 

 

4.2 Partitioning Heuristics 
 
The second dimension of the design space involves the 

selection of the partitioning scheme. Since this problem is also 
intractable, several fast heuristics were developed over time. 
These include First-Fit (FF), Best-Fit (BF), Worst-Fit (WF) 
and Next-Fit (NF) [16, 29].  

Note that WF and NF tend to distribute the workload 
evenly among the available processors, resulting in (more or 
less) balanced partitions. On the other hand, FF and BF attempt 
to greedily pack as many tasks as possible on one processor 
while keeping the other processors idle to accommodate tasks 
yet to be assigned, thus occasionally yielding “unbalanced” 
partitions. It is known that FF and BF tend to outperform NF 

                                                      
3 r in the complexity expression is the ratio of the largest period to the 

smallest period: r = max(Pi) / min(Pi). 



and WF from the feasibility point of view [29]. The effect on the 
energy consumption will be evaluated in Section 5.  

 

4.3 Speed Assignment Schemes 
 
Once a feasible partition is obtained using a given 

partitioning heuristic and an admission control algorithm, the 
final step is to perform speed assignment to minimize the system 
energy consumption on each processor. Again, we classify these 
speed assignment heuristics into two groups based on the 
approach used.  

 
4.3.1 Uniform slow-down technique 

 
Arguably, the simplest technique consists in computing a 

unique speed across all the tasks in such a way that the new 
effective utilization does not exceed the utilization bound 
suggested by the admission control algorithm. As such, it is easy 
to see that this technique can be used in conjunction with any 
utilization-based admission control algorithm. For example, 
suppose that, two tasks are assigned to processor Mi with total 
utilization Ui = 0.424 in a feasible partition. If the Liu-Layland 
feasibility bound is used, then (Ubound(n=2) = 0.848), and the 
speed on processor Mi is set to 0.424 / 0.848 = 0.5. 

 
4.3.2 Time-demand-analysis-based speed 
assignment techniques  

 
More sophisticated speed assignment techniques are 

possible through an analysis of critical-instant-phasing at the 
cost of increased computational complexity. 

• Pillai-Shin speed assignment technique [31] was 
proposed in conjunction with the corresponding Pillai-Shin 
feasibility test for RMS on DVS-enabled settings. A single 
speed is chosen for all tasks running on a given processor. 
For each task Ti, a tentative target speed αi is determined 
from the following equality: 

ii
i

k
k

k

i Pc
P
P α=







∑
=1

 ∀  Ti ∈  T (4) 

Then, to ensure feasibility, the processor speed S is set to 
the maximum among all tentative speeds (i.e. S =  max(αi)). 
Observe that the speed S on a processor with n tasks can be 
computed in time O(n2). 

• Sys-Clock (SysC) and PM-Clock (PMC): Two pseudo-
polynomial-time speed assignment schemes have been 
proposed in [33] for static-priority scheduling. Sys-Clock 
chooses a single speed for all tasks running on the same 
processor, and is optimal for fixed priority preemptive 
scheduling policies that use a single speed. PM-Clock, on 
the other hand, allows different tasks running on the same 
processor to have different speeds, but with added 
complexity. Both schemes use the idle time in a given 
schedule to reduce the execution speed, and hence decrease 
the energy consumption, while maintaining the feasibility. 
Sys-Clock and PM-Clock work naturally with the time 
demand analysis feasibility test. 
 

5. Experimental results 
 
In Section 4 we discussed our solution approach for energy 

minimization with partitioned Rate Monotonic Scheduling, 
which comprises three major components: partitioning, 
admission control, and processor speed assignment. Note that 
the large number of alternatives on each dimension yields a 
rather broad design spectrum. In this section we provide an 
experimental evaluation of these heuristics.  

Performance metrics. Our problem has two equally 
important performance dimensions: feasibility and energy. 
Given a task set to be scheduled on a multiprocessor platform, 
our goal is to select an algorithm for each dimension, with high 
feasibility performance, low energy consumption, and low 
computational cost. As we will see shortly, there is an inherent 
tradeoff between feasibility and energy performances of the 
schemes we investigated. Hence, judging by the feasibility and 
energy it is not always possible to point to a “clear winner”. 
Consequently, we propose an additional hybrid metric (called 
feasibility/energy) that combines both performance dimensions. 
Observe that the hybrid metric captures the aim of designing a 
heuristic with high feasibility performance and low energy 
consumption. Heuristics will be compared based on feasibility, 
energy, and feasibility/energy metrics. In summary, we measure 
the performance of a given heuristic H in terms of three metrics: 
• The feasibility metric (FH): the percentage of task sets that 

are feasibly scheduled by H out of the total number of task 
sets generated during the experiments. 

• The energy consumption metric (ECH): the average energy 
consumption for each task set scheduled by H in a feasible 
manner (in other words, the energy consumption of an 
infeasible partition is not taken into account, however low 
it may be). 

• The feasibility/energy metric (FEH): defined as FH / ECH. 
This metric favors heuristics with high feasibility 
performance and low energy consumption. 
Simulation settings. We measured each of the 

performance metrics discussed above as a function of two task 
set parameters: the total task set utilization Utot and the task 
utilization factor α (see Section 2.2). For a fixed number of 
processors m, we varied Utot between m / 10 (light load 
condition) and m (heavy load condition). There is a natural 
constraint on the possible values of α: Utot / n ≤ α ≤ 1.0, must 
hold for any task set. Note that the case of α = 1.0 corresponds 
to having no constraint on (or knowledge of) upper bounds on 
individual task utilization. The parameter α was varied between 
Utot / n and 1.0. For each data point, we generated 1000 task sets 
by varying task periods Pi and utilizations ui. Each task has a 
uniform probability of having short (1-10ms), medium (10-
100ms), or long (100-1000ms) period. Task periods are 
uniformly distributed in each range. Note that the same period 
generation scheme is used in [31, 33]. Task utilizations ui are 
generated uniformly in the interval [0.001,α] while making sure 
that ∑i ui = Utot. A task’s worst-case execution time at maximum 
speed is then determined as ci = Pi ui. We experimented with 
different number of processors and tasks, but due to space 
limitation we only show results for 8 processors and 80 tasks. 
However, the trends we report hold in other settings as well. The 
results we present are obtained by assuming a quadratic energy-
speed relationship; however, in Section 5.3, we comment on 
results obtained through the specifications of an actual DVS 
architecture, namely Intel XScale [17].  

 



5.1 Results for off-line partitioning 
 
It is known that, if all the task characteristics are known in 

advance, then pre-ordering tasks according to a well-chosen task 
parameter helps to improve the feasibility performance. In 
general, ordering tasks according to utilization values (in non-
increasing order) can have significant impact on the 
performance [29]. This applies to all the feasibility tests we 
considered in Section 4.1 except for RMGT and R-BOUND that 
are designed to order tasks according to period values (otherwise 
their feasibility performance deteriorates significantly). 

Effect of partitioning schemes. We start by investigating 
the effect of partitioning schemes on system performance. In 
fact, much of the performance differences among the  
partitioning heuristics, in terms of both feasibility and energy, 
can be explained in terms of their load-balancing behavior. We 
already discussed in Section 4.2 that FF and BF tend to yield 
“unbalanced” partitions, while WF and NF tend to produce 
balanced ones. This different load-balancing behavior leads to 
different feasibility and energy characteristics. On the other 
hand, by greedily packing as many tasks as possible on a few 
processors (just in the case of FF and BF), it is possible to 
accommodate additional tasks on the remaining (idle) 
processors. This greedy behavior improves the feasibility, a 
result from the study of the bin-packing problem [16]. From the 
energy perspective, however, load balancing tends to reduce the 
energy consumption in general, although it does not necessarily 
lead to the minimum energy when RMS is used. In a balanced 
partition the load is divided among the different processors and 
thus it is possible to use DVS to lower the speed on each 
processor, reducing the total energy of the system. In an 
“unbalanced” partition, however, some of the processors are 
heavily loaded while the remaining ones are lightly loaded. 
Thus, the heavily loaded processors will have to run at a speed 
which is close to the maximum to guarantee the feasibility of the 
task set, which significantly increases the total energy of the 
system due to the convex relationship between the speed and the 
power consumption.  

It is worth noting, that for off-line partitioning, FF and BF 
are almost identical in terms of feasibility and energy 
performance. This behavior has also been observed in [29] for 
the feasibility aspect. Since BF has a higher computational 
complexity than FF, it is not included in our discussion of off-
line partitioning.  
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Figure 4. Feasibility and energy performance of offline 
partitioning heuristics using ELL for α = 1.0 
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Figure 5. Feasibility/energy performance of offline 
partitioning heuristics using ELL: α = 0.5 (left) and α = 1.0 
(right) 

 
Figure 4-5 show the performance in terms of each of the 

three metrics as a function of total utilization Utot for the 
partitioning heuristics discussed in Section 4.2 when used with 
Liu-Layland (ELL) schedulability bound and uniform slow-
down technique. Figure 4 (left) shows the feasibility 
performance for α = 1.0. Under low to medium load conditions 
feasibility can be easily achieved and all heuristics yield 100% 
feasibility. As utilization increases and the system becomes 
heavily loaded, the feasibility performance of all schemes drops 
sharply, and eventually it becomes practically zero (when Utot 
exceeds 7). Our experiments confirmed the good performance of 
FF as reported in previous studies [29]. Because of its load-
balancing behavior, the feasibility performance of WF is not the 
best, but it is comparable to the performance of FF even at high 
utilizations and α values. NF, on the other hand, has a feasibility 
performance which lies between FF and WF. 

In Figure 4 (right), we present the energy consumption with 
different partitioning techniques for α = 1.0. We show the 
energy consumption as a function of the utilization for Utot up to 
7, since the feasibility beyond that threshold is practically zero, 
making the energy performance undefined. We follow the same 
approach when presenting other energy performance results 
throughout the paper. The system energy consumption increases 
with the increase of utilization, since this implies an increase in 
CPU speed with additional power dissipation. It is clear that the 
different heuristics exhibit significantly different energy 
characteristics especially under medium load conditions. FF is 
the worst heuristic in terms of energy since it tends to generate 
very unbalanced partitions. On the other extreme, WF has the 
lowest energy consumption, because of its load-balancing 
behavior. NF’s energy performance lies in-between. 

Since there is a trade-off between the feasibility and energy 
performances exhibited by the partitioning schemes, it is not 
possible to determine the best performing scheme just by 
considering feasibility and energy separately. The hybrid 
feasibility/energy metric provides a better picture. Figure 5 
shows the feasibility/energy performance FEH for α = 0.5 (left) 
and α = 1.0 (right). Recall that FEH is defined as FH / EH, and 
that FH decreases while the utilization increases (Figure 4). 
Hence, as expected, the hybrid metric decreases quickly with the 
increase in the utilization. Moreover, WF is the best heuristic in 
terms of overall performance, judging by its feasibility/energy 
performance. This follows from the fact that WF has much 
lower energy consumption than the other schemes while its 
feasibility is comparable to that of the other schemes. By the 
same argument, FF is the worst heuristic in terms of overall 
performance due to its high energy consumption. Increasing α 
significantly reduces the feasibility/energy performance 
especially for WF and NF, since by increasing the task 



utilization factor the partitions tend to become less balanced and 
the energy consumption is affected (note the scale difference on 
the y-axis for the right and left plots of Figure 5). In summary, 
we conclude that, for off-line partitioning the best partitioning 
heuristic is Worst-Fit, followed by Next-Fit, then First-Fit. The 
analysis of the relative performance of partitioning heuristics 
presented above applies not only to Liu-Layland feasibility test 
and the uniform slow-down technique but to other alternatives 
as well.  

Effect of admission control and speed assignment 
schemes. To investigate the effect of admission control and 
speed assignment schemes, we adopted the following 
methodology. Since it is not reasonable to compare techniques 
resulting from all possible combinations, we matched each of 
the admission control schemes presented in Table 1 with one 
speed assignment technique. Specifically, all utilization-based 
approaches of Table 1 (namely, ELL, HYP, BURC, and R-
BOUND) are matched with the uniform-slowdown technique. 
Pillai-Shin slow-down technique uses its own polynomial-time 
feasibility test (PS) as proposed in [31]. Finally, SYS-Clock and 
PM-Clock algorithms use the exact time-demand-analysis 
technique as part of their operation [33]4. We believe that this 
approach is justified, since matching an involved TDA-based 
speed assignment technique with relatively simple utilization-
based admission control algorithm would make little sense from 
the implementation or overall complexity point of view. We also 
implemented and evaluated RMST and RMGT algorithms [13], 
but we exclude them from our detailed analysis, since they were 
consistently outperformed by a related algorithm, BURC, 
proposed by the same authors. Finally, the results we report are 
obtained by assuming Worst-Fit partitioning heuristic, which is 
shown to outperform Next-Fit, First-Fit and Best-Fit above. The 
only exception is R-BOUND, whose extension to multiprocessor 
settings (namely, RBOUND-MP) was proposed and justified 
with the First-Fit heuristic. Since our experiments with R-
BOUND and Worst-Fit yielded extremely poor performance, we 
used First-Fit as it was originally proposed in [23]. 

From the feasibility viewpoint (Figure 6 - left), the scheme 
TDA-SYSC, which uses the sophisticated time-demand analysis 
and Sys-Clock algorithm, is a clear winner. However, it runs in 
pseudo-polynomial time. The feasibility performance of R-
BOUND is comparable to that of TDA-SYSC even at high 
utilization values, despite its lower (linear-time) complexity. 
The hyperbolic test HYP has average performance, while the 
remaining techniques (PS, BURC, and ELL) trail the list. It is 
interesting to note that the simple technique HYP outperforms 
relatively more involved techniques such as BURC and PS.  

In terms of the energy consumption (Figure 6, right), TDA-
SYSC is again the best scheme, this time followed by PS and 
HYP. Observe that R-BOUND has the worst energy 
performance among all schemes, except at high utilization 
values. R-BOUND uses FF for partitioning, thus yielding highly 
unbalanced partitions especially for low to medium loads with 
corresponding high energy consumption levels. However, for 
heavy loads the partitions produced by R-BOUND tend to be 
more balanced, since in this case all processors have to get a 

                                                      
4 Although computationally more complex and sophisticated, the energy 

performance of PM-Clock did not show any clear advantage over Sys-
Clock, therefore we show only the results of Sys-Clock in this section. 
This observation is consistent with the findings of the original paper 
[33]. 

share of the workload to maintain feasibility. Again, note the 
good performance of the simple technique HYP.  

Figure 7 shows the feasibility/energy performance for α = 
0.5 (left) and α = 1.0 (right). As expected, TDA-SYSC has the 
best overall performance. Among the polynomial-time schemes 
HYP has the best overall performance. PS, BURC, and ELL 
have lower overall performance at high utilization values. R-
BOUND has the worst overall performance at low to medium 
utilization values, but its performance is comparable to that of 
TDA-SYSC under heavy load conditions, thanks to its 
remarkable feasibility performance. Based on these 
observations, we can suggest the use of HYP at light to 
medium load values, and that of R-BOUND at heavy loads if 
the overhead associated with TDA-SYSC cannot be afforded. 
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Figure 6. Feasibility and energy performance of the different 
techniques (off-line partitioning, α = 1.0) 
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Figure 7. Feasibility/energy performance of the different techniques 
(off-line partitioning, α = 0.5 (left) and α = 1.0 (right)) 

 

5.2 Results for on-line partitioning 
 
If the task parameters are not known in advance, then the 

scheduler will not be able to pre-order tasks before the task 
allocation phase. This can be the case for on-line settings where 
the scheduler has to assign tasks as they arrive dynamically to 
the system without seeing the rest of the task sequence. By 
examining the performance of traditional partitioning heuristics 
FF, BF, NF, and WF, we notice that there is no clear winner in 
terms of overall performance throughout the utilization 
spectrum. FF, BF, and NF have good feasibility performance, 
but they have poor energy and feasibility/energy performance, 
particularly at low utilization values. WF, on the other hand, has 
good energy performance, but it has very low feasibility and 
feasibility/energy performance, especially at medium to high 
utilization. 

To overcome these shortcomings, we propose a partitioning 
algorithm called RESERVATION. The algorithm is based on 
the observation that the poor performance of WF in on-line 
settings is often due to distributing tasks with small utilization 
values to multiple processors, preventing the allocation of a 
subsequent task with large utilization to a separate processor at 
the end. Thus, the algorithm reserves a pool of k processors (k ≤ 



m) for light tasks, and the remaining m – k processors, for heavy 
tasks.  

A task Ti is said to be light if its utilization ui does not 
exceed the average utilization per processor (if ui ≤ Utot / m). 
Otherwise, it is said to be heavy. When presented a task Ti, the 
algorithm first determines if it is light or heavy and tries to 
assign it to a processor from the corresponding pool using 
Worst-Fit. If none of the processors in the corresponding 
(“preferred”) pool can accommodate it, then an attempt is made 
to assign it to a processor from the other pool, again using 
Worst-Fit. Note that RESERVATION(k) is a family of schemes 
parameterized by k; for each k, the algorithm’s initial processor 
reservation for light tasks changes. Observe that in the extreme 
cases of k = 0 or k = m, the algorithm reduces to Worst-Fit. 

Effect of partitioning schemes. RESERVATION(k) is 
effectively an attempt to maintain a balance between the good 
feasibility performance of First-Fit/Best-Fit and the good energy 
performance of Worst-Fit. In this section we investigate the 
effect of the parameter k on the performance of 
RESERVATION algorithm and compare it to the traditional 
partitioning heuristics. For the sake of comparison, we combine 
each partitioning heuristic with Liu-Layland feasibility test 
(ELL), but we underline that the patterns we observe hold also 
for all admission control algorithms. In Figure 8 and 9, we 
compare the performance of three RESERVATION schemes, 
with k set to 2, 4, and 6 (denoted by RSRV2, RSRV4, and 
RSRV6 respectively), against FF, BF, and WF. NF’s 
performance is consistently worse than that of RSRV2 and 
RSR4, thus, it is omitted from the discussion. Also recall that 
RSRV0 and RSRV8 are not included in the analysis, because 
both of them are effectively identical to WF.  

Figure 8 (left) shows that FF and BF still have the best 
feasibility performance for on-line partitioning. However, WF in 
this case has very low feasibility performance especially at high 
utilization and α values. Among all the RESERVATION 
schemes (including the ones not shown in the figures), RSRV2 
has the best feasibility for α = 1.0 and is in fact comparable to 
FF and BF. It is worth noting, however, that the choice of a 
RESERVATION scheme with the best feasibility performance 
depends of the value of α for the task set at hand. For example, 
when α = 0.5 the scheme is RESERVATION(k = 4). Due to 
space limitations, we are providing feasibility results 
corresponding to α = 1.0. 

From the energy viewpoint, Figure 8 (right) points to the 
high energy consumption of BF, that tends to yield unbalanced 
partitions. However, it is not possible in this case to name a 
single winner scheme throughout the utilization spectrum. At 
low to medium utilization values WF has the lowest energy 
consumption, while RSRV2 is the winner at heavy loads. 

Figure 9 shows the feasibility/energy performance for α = 
0.5 (left) and α = 1.0 (right). Once again, there is no clear 
winner throughout the utilization spectrum. For α = 1.0, under 
heavy load conditions FF is the best, while RSRV4 is the best 
under light to medium loads. However, RSRV2 has consistently 
good overall performance and is comparable to the best scheme 
under each load condition. For α = 0.5, on the other hand, 
RSRV4 provides the best overall performance, and is slightly 
outperformed by FF and BF in a small region observed at heavy 
loads.  
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Figure 8. Feasibility and energy performance of on-line 
partitioning heuristics using ELL for α = 1.0 
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Figure 9. Feasibility/energy performance of on-line partitioning 
heuristics using ELL: α = 0.5 (left) and α = 1.0 (right) 

 
Effect of admission control and speed assignment 

schemes. We adopt the RESERVATION(k = 2) scheme for 
online settings based on its consistently good performance at 
different load conditions and α values. However, we underline 
that the patterns we report are valid for other partitioning 
schemes as well. Figure 10 (left) compares the different 
feasibility tests used in the case of on-line partitioning in terms 
of feasibility performance. Note that the R-BOUND is excluded 
from the evaluation in on-line settings, since it mandates the 
knowledge of the periods and task pre-ordering as part of its 
operation. TDA-SYSC still exhibits the best feasibility 
performance, but the second best scheme appears to be PS. HYP 
still provides consistently good feasibility performance. 

In terms of energy consumption, there is no clear winner 
throughout the utilization and α spectrum. For α = 1.0 (Figure 
10 - right), TDA-SYSC is still the best scheme. The best 
polynomial-time scheme is PS followed by HYP. However, for 
smaller α values, such as α = 0.5, TDA- SYSC still appears to 
be the best scheme at low and high utilizations, but its 
performance deteriorates at medium utilizations and its energy 
consumption slightly exceeds all other schemes in a small 
region. In this limited region, PS has the best overall energy 
consumption. Due to space limitation we are showing energy 
results for α = 1.0 only. 

In terms of the hybrid performance metric, TDA-SYSC, 
with its sophisticated mechanism is the clear winner throughout 
the utilization and α spectra (Figure 11). Note that the simple 
scheme PS yields strikingly good performance among the 
remaining schemes, and its advantage over others becomes even 
more emphasized at small α values. The performance of HYP 
approaches that of PS only at large α and utilization values.  
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Figure 10. Feasibility and energy performance of different 
techniques (on-line partitioning, α = 1.0) 
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Figure 11. Feasibility/energy performance of different techniques 
(on-line partitioning, α = 0.5 (left), α = 1.0 (right)) 

 

5.3 Effect of discrete speed levels 
In this section we investigate the effect of having a finite 

number of discrete speeds on the relative performance of the 
schemes presented in this paper. To this aim, we incorporated 
the Intel XScale speed/power specifications [17] in our 
simulator. Note that the speed assignment takes place after the 
partitioning phase, thus, only the energy and feasibility/energy 
metrics are affected by the change in speed levels. Due to space 
limitations, we only present results for feasibility/energy 
performance of different techniques for α = 1.0 for both off-line 
and on-line partitioning in Figure. There is a slight decrease in 
the feasibility/energy performance of all schemes. In the 
presence of a finite number of discrete speeds, one often has to 
select an existing (but, higher) CPU speed level, leading to an in 
increase in total energy consumption. Subsequently, this results 
in an overall decrease of the feasibility/energy performance. 
However, the relative performance of the different feasibility 
tests is unchanged compared to the continuous speed case. We 
underline that this conclusion applies to all the schemes we 
discussed above and for the different settings considered. 
Moreover, the feasibility/energy performance of the off-line 
schemes (Figure 12 - left) is still significantly better than the on-
line ones (Figure 12 - right), since the feasibility performance 
deteriorates in on-line settings (again, note the scale difference 
for the y axis in both figures).  
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Figure 12. Feasibility/energy performance of the different 
techniques for α = 1.0 and Intel XScale specifications  
(off-line case (left) and on-line case (right)). 

 

6. Conclusion 
 
To the best of our knowledge, this is the first research effort 

addressing the energy-aware scheduling of static-priority 
periodic RT task sets on multiprocessors with partitioned 
approach. We showed that the problem is NP-Hard in the strong 
sense on m ≥ 2 processors even when the feasibility is 
guaranteed a priori. We considered two different settings of the 
problem: off-line partitioning, where all the tasks and their 
characteristics are known to the scheduler, and on-line 
partitioning, where the scheduler has to make the task allocation 
decisions in a given order. We evaluated experimentally the 
impact of the partitioning heuristics, admission control 
algorithms, and speed assignment schemes on both feasibility 
and energy performances. To better capture these two 
dimensions, we introduced a hybrid metric defined as 
feasibility/energy. Our experiments show that the admission 
control based on the Time Demand Analysis when combined 
with Sys-Clock speed assignment scheme has the best overall 
performance in both off-line and on-line settings, at the cost of 
pseudo-polynomial time complexity. Moreover, in off-line 
settings Worst-Fit has the best overall performance among 
partitioning heuristics. In these settings, the admission control 
with the Hyperbolic test combined with a uniform slow-down 
approach for speed assignment has the best overall performance 
among polynomial-time schemes. In on-line settings, the 
performance of Worst-Fit deteriorates significantly. This led us 
to introduce the RESERVATION(k) scheme which exhibits a 
competitive overall performance. Admission control and speed 
assignment based on Pillai-Shin’s technique [31] yields the best 
overall performance among polynomial-time schemes in these 
settings. 
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