
In Proceedings of the 2nd IEEE Real-Time Technology and Applications Symposium, pages 230-240, June 1996.

Efficient Worst Case Timing Analysis of Data Caching

Sung-Kwan Kim Sang Lyul Min
Department of Computer Engineering

Seoul National University
Seoul 151-742, Korea

symin@dandelion.snu.ac.kr

Rhan Ha
Department of Computer Engineering

Hong-Ik University
Mapo-gu, Seoul 121-791, Korea

rhanha@cs.hongik.ac.kr

Abstract

Recent progress in worst case timing analysis of pro-
grams has made it possible to perform accurate timing anal-
ysis of pipelined execution and instruction caching, which
is necessary when a RISC processor is used as the tar-
get processor of a real-time system. However, there has
not been much progress in worst case timing analysis of
data caching. This is mainly due to load/store instructions
that reference multiple memory locations such as those used
to implement array and pointer-based references. These
load/store instructions are called dynamic load/store in-
structions and most current analysis techniques take a very
conservative approach to their timing analysis. In many
cases, it is assumed that each of the references from a dy-
namic load/store instruction will miss in the cache and re-
place a cache block that would otherwise lead to a cache hit.
This conservative approach results in severe overestimation
of the worst case execution time (WCET). This paper pro-
poses two techniques to minimize the WCET overestimation
due to such load/store instructions. The first technique uses
a global data flow analysis technique to reduce the number
of load/store instructions that are misclassified as dynamic
load/store instructions. The second technique utilizes data
dependence analysis to minimize the adverse impact of dy-
namic load/store instructions. This paper also compares the
WCET bounds of simple benchmark programs that are pre-
dicted with and without applying the proposed techniques.
The results show that they significantly (up to 20%) improve
the accuracy of WCET estimation especially for programs
with a large number of references from dynamic load/store
instructions.

1. Introduction

To calculate tight worst case execution time (WCET)
bounds of programs is an important research topic in the
real-time computing area since most scheduling algorithms

for real-time systems assume that such bounds are available
a priori to base their scheduling decision. For a RISC
processor, however, the calculation of a tight WCET bound
of a program involves difficulties that come from the very
characteristics of RISC processors: pipelined execution and
instruction/data caching. Recently there has been much
progress in worst case timing analysis for RISC processors
[2, 5, 7, 10, 11, 13, 14].

However, most of the previous studies focused mainly
on the timing analysis of pipelined execution and instruc-
tion caching, while largely ignoring the data caching effects
[2, 5, 10, 13, 14]. Even the approaches that do consider
the timing effects of data caching have severe restrictions.
For example, the technique explained in [11] requires that
the addresses of references from each program construct be
fixed. For instruction block1 references, such a requirement
is satisfied for programming languages that do not have any
dynamic control flow structures such as computed gotos.
However, in the case of data block references, the require-
ment does not hold in general. For example, a load/store
instruction that is used to implement an array access ref-
erences many different memory locations. If a load/store
instruction references more than one memory location, it
is called a dynamic load/store instruction and the extended
timing schema approach [11] on which this paper is based
takes a very conservative approach to such load/store in-
structions. The approach assumes that each of the references
from a dynamic load/store instruction misses in the cache
and replaces from the cache a memory block that would
otherwise lead to a cache hit. This conservative approach
results in severe overestimation of the WCET for programs
with a large number of dynamic load/store instructions for
array and pointer-based references [7].

This paper proposes two techniques to minimize the
WCET overestimation resulting from dynamic load/store
instructions. The first technique uses a global data flow

1A block is the minimum unit of information that can be either present
or not present in the cache-main memory hierarchy [6]. We assume without
loss of generality that memory references are in the unit of blocks.

analysis technique [1] to reduce the number of load/store
instructions that are misclassified as dynamic load/store in-
structions. The second technique utilizes a data dependence
analysis technique [3] to minimize the WCET overestima-
tion resulting from the two conservative assumptions ex-
plained earlier.

This paper is organized as follows. In the next section, we
describe the timing schema approach [17] and its extensions
[7, 11] on which our two proposed techniques are based.
Sections 3 and 4 present, in detail, the two techniques. In
Section 5, we give the results from our experiments to assess
the effectiveness of the proposed techniques. Finally, we
conclude this paper in Section 6.

2. Timing Schema Approach and Its Extensions

A timing schema is a set of formulas for reasoning about
the timing behavior of various language constructs [17]. Ta-
ble 1 gives a timing schema for computing WCET bounds of
commonly used language constructs. Methods based on this
timing schema can derive a WCET bound of a given pro-
gram by processing the program’s syntax tree in a bottom-
up manner and applying the formulas according to language
constructs [16, 17].

The timing schema approach is simple and allows for
efficient bottom-up timing analysis of programs. One prob-
lem with this approach, however, is that in its purest form
it lacks provisions for the case where program constructs
have variable execution times depending on factors that are
not known when the program constructs are processed in a
bottom-up manner. Such a case, for example, arises when
the target processor has cache memories. With cache mem-
ories, the execution time of a program construct is affected
by the cache hits/misses of memory references (instruction
fetches, loads, and stores) made by the program construct
and these cache hits/misses, in turn, are affected by memory
references made by other program constructs.

The extended timing schema approach [11] is pro-
posed to rectify the problem above. In this approach, the
WCET bound in the original timing schema approach is
replaced with what is called the worst case timing abstrac-
tion (WCTA) [11]. In general, a program construct may
have more than one execution path as in the case of an if
statement and the WCETs of these execution paths may
differ significantly depending on other program constructs.
Thus, the worst case execution path of a program construct
may not always be determined by simply analyzing the pro-
gram construct independently of other program constructs.
For this reason, the WCTA of a program construct contains
timing information of every execution path in the program
construct that might be the worst case execution path of the
program construct.

The WCTA of a program construct contains, for each

execution path in the program construct, what is called the
path abstraction (PA) of the execution path. The PA of
an execution path encodes the factors that affect the (worst
case) execution time of the execution path but are not known
when the execution path is processed in a bottom-up manner.
For example, when the target processor has cache memory,
such factors include the first reference to each cache block
assuming a direct mapped cache [11]. The hits/misses of
these references significantly affect the execution time of
the execution path but they cannot be determined when the
execution path is processed. For this reason, the PA in-
cludes two components called first reference and
last reference. The first reference compo-
nent encodes the first reference to each cache block from the
associated execution path. Determination of the hits/misses
of references in first reference requires the informa-
tion about the cache contents at the entry of the execution
path. Such cache contents are determined by the last ref-
erence to each cache block from the preceding execution
path. For this reason, each PA has this last reference in-
formation encoded in last reference. In addition to
the first reference and last reference compo-
nents, each PA has

�������
, which is the WCET bound of the

execution path. Initially, its value is computed by assuming
that all the memory references in first reference are
cache misses but is later revised as the program syntax tree
is processed.

This extended timing information leads to timing for-
mulas that are different from those of the original timing
schema in that � (concatenation) and �
	���
�� operations on
PAs are newly defined to replace the � and ����� operations
on the WCET bounds in the original timing schema. The
� operation between two PAs models the execution of one
path followed by that of another path and yields the PA of
the combined path. During this operation, the hits/misses of
the memory references in the succeeding execution path’s
first reference can be determined from the preceding
execution path’s last reference. The additional cache
hits determined in this way are reflected in the

�������
of the

combined path, thus tightening the previously overestimated
WCET bound.

The ��	���
�� operation, which is the counterpart of the
����� operation of the original timing schema, is performed
on the set of PAs of a program construct and prunes the PAs
whose associated execution paths cannot be the worst case
execution path of the program construct. In other words,
a PA of a program construct can be pruned if its WCET is
always smaller than the WCET of another PA in the same
program construct regardless of what the surrounding pro-
gram constructs are.

Table 2 shows the timing formulas of the extended timing
schema. The timing formula for S: S1; S2 first enumerates
all the possible execution paths within S1; S2. The �
	���
��

Formulas for computing WCET bounds

S: S1; S2
���������	�
���

1
���
�����

2
�

where
�
�����

,
�
���

1
�
, and

�
���
2
�

are the WCET bounds of
�

,
�

1, and�
2, respectively.

S: if (exp) then S1 else S2
���������

max
���
�����������
�
���

1
�����
�����������
�
���

2
���

S: while (exp) S1
�����������������
�����������
�
���

1
� ���!�����������

where
�

is a loop bound.
S: f(exp1, "�"�" , exp #)

���������	�
�������
1
��� "$"$" �
�
������� # ���!�
��%������

Table 1. Formulas for computing WCET bounds of various language structures in the timing schema
approach

Formulas for computing WCTAs

S: S1; S2 & �����'� & ���
1
�)(& ���

2
�

where & �����
, & ���

1
�
, and & ���

2
�

are the WCTAs of
�

,
�

1, and
�

2, respectively
and

(
is defined as & 1

(& 2
��*�+

1 , +
2 - + 1 ./& 1

� +
2 .0& 2 1 .

S: if (exp) then S1 else S2 & �����'�2� & ��������� (& ���
1
���435� & �������6� (& ���

2
� �

S: while (exp) S1 & �����'�2� (879;:
1

� & ��������� (& ���
1
����� (& ���������

S: f(exp1, "$"�" , exp #) & �����'� & �������
1
� ("$"�" (& ������� # � (& ��%�� ���

Table 2. Formulas for computing WCTAs of various language constructs in the extended timing
schema approach

operation after the enumeration (although it is not shown in
the formula) prunes a subset of the resulting PAs whose as-
sociated execution paths cannot be the worst case execution
path of S. Similarly, the timing formula for an if statement
enumerates all the execution paths in both the then path
and the else path. As previously, the execution paths that
cannot be the worst case execution path of the if statement
are pruned.

The timing formula for a loop statement with a loop
bound < models the unrolling of the loop < times. This
approach is exact but is computationally intractable for large
< . In [11], Lim et al. give an efficient approximate loop
timing analysis method using a maximum cycle mean algo-
rithm due to Karp [9]. This approximate analysis method
has an =
>@? AB? 3 C time complexity where A is the set of the
execution paths in the loop body that might be the worst case
execution path of the loop body (i.e., the set of the execution
paths in DE> � ��� C (DE>GF 1

C that survive the pruning).

Function calls are processed like sequential statements.
The WCTAs of functions are calculated in reverse topologi-
cal order in the call graph2 so that the WCTAs of callees are
available when the caller is processed.

2A call graph contains the information on how functions call each other
[4]. For example, if

%
calls H , then an arc connects

%
’s vertex to that of H

in their call graph.

Data caching analysis within the extended timing
schema approach: To compute first reference
and last reference for data caching analysis purposes,
we need to know the reference address of each load/store
instruction in program constructs. For this purpose, in
the extended timing schema approach load/store instruc-
tions are categorized into the following two classes depend-
ing on whether their reference addresses are fixed or vari-
able: static load/store instructions and dynamic load/store
instructions. A load/store instruction is categorized as a
static load/store instruction if its reference address does not
change. Otherwise it is categorized as a dynamic load/store
instruction. For dynamic load/store instructions, the ex-
tended timing schema approach takes a very conservative
approach; it assumes two cache miss penalties for each ref-
erence from dynamic load/store instructions and completely
ignores them in the calculation of first reference and
last reference. One cache miss penalty is because
the reference may miss in the cache. The other cache miss
penalty is because the reference may replace a cache block
that would contribute a cache hit in the data caching analysis
without such references. Although this approach is simple,
it suffers from severe overestimation of the WCET espe-
cially when there are a large number of dynamic load/store
instructions in the program.

Most RISC processors, for which the extended tim-

ing schema approach is targeted, are load/store archi-
tectures and they provide a very limited set of ad-
dressing modes for load/store instructions. Often, the
base register+displacement addressing mode is
the only addressing mode provided as in the case of MIPS
R3000 [8]. In this addressing mode, the address of an
operand in memory is specified by the sum of the base reg-
ister’s value and the displacement.

In MIPS R3000, a static load/store instruction has either
gp (global pointer) register or sp (stack pointer) register as
its base register. The gp register is used to access global
data and its value does not change throughout the program
execution. The sp register is used to access local data and
its value does not change within a function. A dynamic
load/store instruction has a base register other than gp or
sp register and is used to implement array and pointer-based
references.

The two techniques proposed in this paper aim at min-
imizing the WCET overestimation resulting from dynamic
load/store instructions. The first technique tries to reduce
the number of load/store instructions that are misclassified
as dynamic load/store instructions. Such a misclassification,
for example, occurs when a load/store instruction has a base
register other thangp or sp but the value of the base register
can be expressed by gp+constant or sp+constant.
The technique uses a data flow analysis technique called
the use-def(ine) analysis [1] to derive expressions for base
registers that use only gp or sp. The second technique,
on the other hand, tries to reduce the WCET overestima-
tion resulting from the two conservative assumptions about
dynamic load/store instructions explained earlier. The next
two sections detail the two techniques.

3. Accurate Classification of Load/Store In-
structions

This section describes a technique that tries to minimize
the load/store instructions that are misclassified as dynamic
load/store instructions. As an example of such misclassifi-
cation, consider the following MIPS R3000 assembly code
fragment.

�����
addiu $15,$sp,16�����
lw $24,0($15)�����

In the extended timing schema approach, the load instruc-
tionlw $24,0($15) is classified as a dynamic load/store
instruction since its base register, register 15 ($15) in this
case, is other than gp or sp. Thus two cache miss penal-
ties are assumed for each of the references generated by
this load instruction. However, since the value of $15

at the load instruction can be symbolically expressed by
sp+16, which is determined by the preceding add instruc-
tion addiu $15,$sp,16, the load instruction is, in fact,
a static load/store instruction. A symbolic expression that
has only constants, gp, and sp in its expression such as
the one above is called a resolvable symbolic expression
in this paper. Note that the value of a resolvable symbolic
expression does not change within a function.

The technique explained in this section utilizes a global
data flow analysis called the use-def(ine) analysis [1] to de-
rive resolvable symbolic expressions for as many dynamic
load/store instructions as possible. In the data flow analysis
terms, $15 in the previous example is defined in the add
instruction and this definition reaches the load instruction
where $15 is used as its base register. In this case, the add
instruction is called a reaching definition for the use of $15
in the load instruction. Since the add instruction is the only
reaching definition for $15 in this example, the load instruc-
tion lw $24,0($15) can be symbolically replaced with
lw $24,16($sp) and, afterwards, it can be regarded as
a static load/store instruction. In general, there may be more
than one definition for a use and the procedure for finding
the set of reaching definitions for a use can be explained as
follows using data flow analysis terminology.

1. Define the following equation for each basic block3 B
and for each register

�
.

out � [B] � gen � [B] � > in � [B] � kill � [B] C	�
where in � [B] and out � [B] are the sets of the reaching
definitions for

�
at the entry and exit points of basic

block B, respectively. gen � [B] and kill � [B] are the
sets of the reaching definitions for

�
generated and

killed within basic block B, respectively. In our anal-
ysis, gen � [B] is the last instruction in basic block B
that has

�
as one of its target operands. If gen � [B] is

not empty, that is, if there is at least one instruction in
B that defines

�
, then kill � [B] is the set of all other

definitions of
�

in the program. On the other hand, if
gen � [B] is empty, kill � [B] is an empty set.

2. Perform an iterative forward data flow analysis [1] to
compute in � [B] and out � [B] for each basic block B
and for each register

�
. This iterative analysis uses

the following two equations:

out � [B] � gen � [B] � > in � [B] � kill � [B] C
�
in � [B] �

�

P ��
�������� B �
out � [P] �

where �
	 ����> B C is the set of predecessors of basic
block B. Initially, in � [B] and out � [B] are set to �

3A basic block is a sequence of consecutive instructions in which the
flow of control enters at the beginning and leaves at the end without halt or
possibility of branching except at the end [1].

and gen � [B], respectively, and the iteration continues
until all the in � [B]s and out � [B]s converge.

Deriving a resolvable symbolic expression for the base
register of a load/store instruction can be complicated when
a defining instruction for the base register, in turn, uses
registers other thangp orsp. For such a case, the definitions
of the intermediate registers should be resolved and this
process is repeated in the depth first search tree order until
one of the following three conditions holds.

1. A defining instruction is other than simple arith-
metic/logical instructions.

2. The tree forms a cycle.

3. All the leaf definitions have resolvable symbolic ex-
pressions.

The main source of the first case is when the defining in-
struction is a load instruction as in the case of pointer-based
references. On the other hand, the second case corresponds
to the case of array references. For these two cases, the base
register is marked as unresolvable.

For the last case, we compare all the reaching definitions
of each intermediate register. Only when all the reaching
definitions of every intermediate register have an identical
resolvable symbolic expression, the base register is replaced
by the derived resolvable symbolic expression. Any mis-
match among them means that there exists inconsistency
among the reaching definitions of a use. Thus the base reg-
ister, in this case, is marked as unresolvable. Figure 1-(b)
shows an example of the above process for the example
given in Figure 1-(a). In the example, the node at the root,
$15 in this case, contains the base register for which a resolv-
able symbolic expression is to be derived. In Figure 1-(b),
we can note that both of the two definitions reaching the
use of $15 in lw $25,12($15) have an identical resolv-
able symbolic expression, $sp+48 in this case. Thus the lw
$25,12($15) instruction is symbolically replaced with
lw $25,60($sp) and afterwards it is regarded as a static
load/store instruction.

4. Minimizing the WCET Overestimation Due
to Dynamic Load/Store Instructions

In Section 2, we explained that the extended timing
schema approach suffers from WCET overestimation due
to dynamic load/store instructions. This section explains a
technique for minimizing such overestimation. Before ex-
plaining the technique, let us consider, as an example of
WCET overestimation, the C code fragment given in Fig-
ure 2-(a). In the example, we assume the following:

2 S3SS33 SS3S2

S4

S 2

1

S2

M(21)M(4)M(19)M(2)

M(15)M(13)M(14)M(12)M(13)M(11)M(12)M(10)

a[0][0] a[1][0] a[0][1] a[1][1] a[1][0] a[2][0] a[1][1] a[2][1]

M(2) M(4)M(3) M(5)

miss

miss miss miss miss

miss miss miss miss misshit hit

miss miss miss miss

S

Figure 4. Actual cache hit/miss

1. F 1, which precedes the loop nest, references memory
locations

� > 2 C	� � > 19 C	� � > 4 C	� � > 21 C using static
load/store instructions where

� >�� C represents the
memory location that has � as its address.

2. Array a[][] that is referenced within the loop nest
has the memory map shown in Figure 2-(b).

3. F 4, which succeeds the loop nest, references mem-
ory locations

� > 2 C
� � > 3 C	� � > 4 C
� � > 5 C using static
load/store instructions.

4. The data cache is direct-mapped with eight cache
blocks and its block size is equal to the size of an
integer variable.

The extended timing schema approach assumes two
cache miss penalties for each of the references generated by
two array accesses a[i][j] and a[i+1][j] within the
loop nest since these array accesses are implemented by dy-
namic load/store instructions and these references are com-
pletely ignored in the calculation of first reference
and last reference of the statements (cf. Figure 3).

To compute the number of overestimated cache miss
penalties, consider the actual execution shown in Figure 4,
which gives the hit/miss of every data reference from the
program fragment. The overestimation due to the array ac-
cesses can be computed from this hit/miss information. On
one extreme, the reference to a[0][0] by F 2 does not suf-
fer from any overestimation since the reference is a cache
miss as predicted and, again as predicted, replaces from the
cache a memory block that would otherwise lead to a cache
hit (in this case

� > 2 C). On the other extreme, the reference
to a[1][0] by F 2 suffers from maximum overestimation
corresponding to two cache miss penalties. One cache miss
penalty overestimation is because the access is a cache hit,
contrary to the prediction. The other cache miss penalty
overestimation is because the replaced memory block is not
a useful one, again contrary to the prediction. The overes-
timation caused by other accesses to array a[][] can be

lw $25,12($15)

addiu $15, 48$sp,
addiu 32$15, $24,

addiu 16$24, $sp,

(a) control flow graph

)

addiu 48$15, $sp, addiu 32$15, $24,

addiu 16$24, $sp,

$15lw $25,12(

$15

$24

Level

0

1

2

3

4

(use)

(use)

(def)

(def)

(b) use-definition relation

Figure 1. Tree showing use-define relationship for a base register

int a[3][2];
���

array a[][] starts at ��� 10 � ���
�

1: �	�
������� ;��� �
1 references ��� 2 �
����� 19 �
����� 4 �
����� 21 � ���

for(i=0; i<2; i++)�
for(j=0; j<2; j++)�

�
2: �
��� a[i][j] ����� ;�
3: �
��� a[i+1][j] �
�	� ;�

�
�

4: �	�
������� ;��� �
4 references ��� 2 �
����� 3 �
�
��� 4 �
����� 5 � ���

M(10)

M(11)

M(12)

M(13)

M(14)

M(15)

M(0)

Memory map

a[0][0]

a[0][1]

a[1][0]

a[1][1]

a[2][0]

a[2][1]

(a) (b)

Figure 2. Example C code fragment

cache
block

reference
first last

reference

0

first

1

3
4
5
6
7

last
reference

0
1
2
3
4
5
6
7

2a[0][0]

a[1][0]

a[2][0]
a[2][1]

a[1][1]
a[1][0]

reference

a[1][1]

first

a[0][1]

reference

loop nest S4S1

M(2)
M(3)
M(4)
M(5)

miss
M(2)
M(19)
M(4)
M(21)

empty
empty

empty
empty

empty
empty
empty
empty
empty
empty
empty
empty

empty
empty

empty
empty

hit

hit

last
reference

array reference

empty
empty

empty
empty

empty
empty
empty
empty miss

2 misses for each

Figure 3. Cache hit/miss prediction by the extended timing schema approach

determined similarly and the results are given in Table 3.
A total of eight cache miss penalties are unnecessarily as-
sumed due to the references from the two dynamic load/store
instructions implementing the two array accesses.

a[i][j] # of overestimations

a[0][0] 0
a[0][1] 1
a[1][0] 2
a[1][1] 2

a[i+1][j] # of overestimations

a[1][0] 0
a[1][1] 1
a[2][0] 1
a[2][1] 1

Table 3. Overestimation due to array accesses

Our technique for minimizing WCET overestimation due
to dynamic load/store instructions is applied to each loop
nest that is defined by an outermost loop in functions and
proceeds as follows:

1. We identify the set of memory locations referenced by
each dynamic load/store instruction in the loop nest.

2. We compute the union of the sets of memory locations
referenced by the dynamic load/store instructions in
the loop nest.

3. We invalidate in last reference of the loop nest
the set of cache blocks corresponding to the above
union.

4. We derive a lower bound on the number of cache
hits generated by dynamic load/store instructions in
the loop nest and use this lower bound to tighten the
WCET bound of the loop nest.

By invalidating in last reference the cache blocks that
are accessed by dynamic load/store instructions in Step 3,
we no longer need to assume the one cache miss penalty
that arises from the conservative assumption that a reference
from a dynamic load/store instruction may replace a useful
cache block; we just assume only one cache miss penalty
for each reference from a dynamic load/store instruction.

The derivation of a lower bound on the number of cache
hits in Step 4 is based on the pigeonhole principle, which
is used by mathematicians to refer to the following simple
observation [12]. If we put
 objects into � boxes (pigeon-
holes), and if
 � � , then some boxes inevitably have more
than one object in them. In our analysis, the pigeonhole
principle says that if two dynamic load/store instructions
generate
 1 and
 2 references, respectively and they to-
tally reference less than
 3 distinct locations, then at least

 1 �
 2 �
 3 references from the two dynamic load/store
instructions are cache hits.

In our example in Figure 2, both
 1 and
 2 are 4, which
is derived from the loop bounds of the two loops in the loop
nest.
 3 is 6 since the distinct locations referenced by the

two array accesses are a[0][0] through a[2][1]. This
gives a lower bound of 2 (� 4 � 4 � 6) on the number of
cache hits generated by the two array accesses. The WCET
bound of the loop nest can be tightened by using this lower
bound on cache hits.

To systematically derive a lower bound on the number of
cache hits in this way, we should perform the following two
tasks:

1. The region of references by each dynamic load/store
instruction within a loop nest should be determined.

2. An upper bound on the number of distinct memory
locations referenced by the set of dynamic load/store
instructions in the loop nest should be derived.

The next two subsections detail the two tasks.

4.1. Specifying Reference Regions

This subsection explains how to derive the reference re-
gion of a dynamic load/store instruction. In general, a ref-
erence region is a multiset since duplicate reference ad-
dresses can be generated by a dynamic load/store instruc-
tion. Figure 5 shows the MIPS R3000 assembly code frag-
ment corresponding to the C code fragment in Figure 2.
The two shaded load instructions correspond to the two ar-
ray accesses made in statements F 2 and F 3, respectively.
The figure also shows the use-def tree for the base register
$15 used in lw $15,0($15), which is for array access
a[i][j]. The use-def tree for $25 in lw $25,0($25)
can be drawn similarly. From the use-def trees, reference re-
gions

�
1 and

�
2 corresponding to lw $15,0($15) and

lw $25,0($25), respectively can be specified as fol-
lows:

�
1 : 8 � $13 � 4 � $12 � $sp

0 � $13 � 1 � 0 � $12 � 1�
2 : 8 � $13 � 4 � $12 � $sp � 8

0 � $13 � 1 � 0 � $12 � 1

(1)

In the above, the ranges of registers $13 and $12 are obtained
from the loop bounds of the two loops in the loop nest.

In this paper, we restrict ourselves to reference regions
that can be specified in the following form:

� 1 � 1 � � 2 � 2 ��������� � � � � �	� �

where � 1
� �
�
� � � � are the registers for loop index variables and

��� � 1 ��
�� � , and � are constants. If a reference region
cannot be specified in the above form, we conservatively
assume two cache miss penalties for each reference from
the associated load/store instruction.

bb1:

 move $13,$0

L.1:

bb2:

 move $12,$0

L.2:

bb3:

 sll $24,$13,0x3

 addiu $15,$sp,0x0

 addu $15,$24,$15

 sll $25,$12,0x2

 addu $15,$25,$15

 lw $15,0($15)

 addu $24,$24,$15

 addu $25,$25,$24

 lw $25,0($25)

 addiu $12,$12,0x1

 slti $1,$12,0x2

 bne $1,$0,L.2

 nop

bb4:

 addiu $13,$13,0x1

 slti $1,$13,0x2

 bne $1,$0,L.1

 nop

 addiu $15,$sp,0x8

addu $15,$25,$15

sll $25,$12,0x2

$15$25

lw $15,0($15)

$15

$15

addiu $12,$12,0x1

move $12,$0

addiu $15,$sp,0x0

$24

$12

addu $15,$24,$15

move $13,$0

sll $24,$13,0x3

$13

addiu $13,$13,0x1

$12

$13

Figure 5. Assembly code and the use-def tree for lw $15,0($15)

4.2. Deriving a Lower Bound on Cache Hits

Once all the reference regions within a loop nest are de-
termined, we can derive a lower bound on the number of
cache hits generated by the reference regions. In our exam-
ple, a lower bound on the number of cache hits generated by
two reference regions

�
1 and

�
2 can be derived as follows:

�

 �
 � �
��6> � 1
C �
��6> � 2

C �
 > � 1 � �
2
C

� >
 > � 1
C ����> � 1

C�C � >
 > � 2
C ����> � 2

C�C �
 > � 1 � �
2
C

����> � 1
C ����> � 2

C � >
 > � 1
C �
 > � 2

C �
 > � 1 � �
2
C�C

����> � 1
C ����> � 2

C �
 > � 1 � �
2
C	� (2)

where
 � > � C is the number of elements in
�

(with duplica-
tion allowed),
 > � C the number of distinct elements in

�
,

and ��> � C the number of repeated elements in
�

. ��> � C can
be computed by the following equation:

��> � C �
�	 � C1
���
�
 � �
 ��
 � 	 �

�	 � C2
���
�
 � �
 ��
 � 	 �
where C1

� is the set of the index variables of the loops nest-
ing the corresponding load/store instruction of the reference
region

�
, C2

� the set of the index variables that appear in
the reference region expression, and ��
�
 � �
 ��
 � 	 the loop
bound of the loop that has � as its index variable. In our
example, ��> � 1

C ����> � 2
C � 0 since in both of the two refer-

ence regions
�

1 and
�

2 all the index variables appear in the
two reference region expressions.
 > � 1 � �

2
C is given by

the cardinality of the solution space ($131
� $132

� $121
� $122)

satisfying the following equation.

8 � $131 � 4 � $121 � 8 � $132 � 4 � $122 � 8 � (3)

0 � $131 � 1 � 0 � $121 � 1 �
0 � $132 � 1 � 0 � $122 � 1 � (4)

This diophantine equation4 is derived by equating the two
reference expressions in (1). The equation (3) can be ex-
pressed in a matrix form as follows:

�
$131 $121 $132 $122 �

���
�

8
4

� 8
� 4

����
� � �

8 � (5)

This equation can be solved using the generalized GCD test
[3]. The test gives the following solution space represented
by integer parameters, t=(

�
1,
�
2,
�
3).

$131 � �
1
� $121 � � 2

�
1 � �

2 � 2 �
$132 � �

3
� $122 � �

2 � 2
�
3 � (6)

We use the Fourier elimination method [3] to compute the
cardinality of the solution space t satisfying both (4) and (6).
This gives
 > � 1 � �

2
C , which is 2 in our example. This, in

turn, gives
�

 �
 � � 2 > � 0 � 0 � 2 C and this value is

used to tighten the WCET bound of the loop nest.

4An equation in integer variables is called a diophantine equation.

So far we considered only the case where there are two
reference regions. The equation (2) can be generalized for
the case where there are 	 reference regions in a loop nest.

�

 �
 � � ��
��� 1

��> � � C

�
�

� ��� 1 � ��� 2 � � C2

 > � � 1 � � � 2 C

�
�

� � � 1 � � � 2 � � � 3 � � C3

 > � � 1 � � � 2 � � � 3 C

...

� >	� 1 C � �

� ��� 1 �	�	�	� � ����
 � � C

 > � � 1 � ����� � � �
 C	�

where C � � 2 � � � 	 , is the set of all combina-
tions consisting of � reference regions. In this equation,

 > � � 1 � ����� � � ��
�� 1

C can be computed from
 >�> � � 1 � ����� �� �
 C � > � � 2 � ����� � � �
�� 1
C�C where

� � 1 � ����� � � �
 and� � 2 � ����� � � �
�� 1 are by-products from the computation of

 > � � 1 � ����� � � �
 C and
 > � � 2 � ����� � � �
�� 1

C . For example,

 > � 1 � �

2 � �
3
C can be computed from the intersection

of
�

1 � �
2 and

�
2 � �

3. In calculating the intersection,�
1 � �

2 and
�

2 � �
3 are regarded as if they were simple

reference regions.
In our previous discussion, we assume that disjoint ref-

erence regions do not conflict with each other in the cache.
In the case where they do conflict in the cache, we partition
the reference regions and disregard from the calculation of�

 �
 � the subregions that conflict in the cache. In the
case where the references from a static load/store instruc-
tion conflict with reference regions within the same loop
nest, we assume two cache miss penalties for each reference
of the static load/store instruction and process the reference
regions as previously.

4.3. Overall Framework

To summarize, the processing of a loop nest within the
proposed framework proceeds as follows:

Step 1. Mark invalid in last reference the cache blocks
corresponding to the union of the reference regions in
the loop nest.

Step 2. Compute the
�

 �
 � for the loop nest and use it to

tighten the WCET bound of the loop nest.

To illustrate the above procedure, we consider again the
example in Figure 2. Figure 6 shows Step 1 of the proce-
dure. We explicitly invalidate cache blocks in the loop nest’s
last reference that correspond to the union of two ref-
erence regions. For each of the eight array references from

the two reference regions in the loop nest, we assume only
one cache miss penalty in this revised procedure as com-
pared to two cache miss penalties in the previous approach
as shown in Figure 3. Using this method, we can eliminate
6 overestimated cache misses. However, we still have in the
resultant WCET bound of the loop nest two overestimated
cache misses which come from the fact that we have ignored
cache hits due to repeated references from the two dynamic
load/store instructions to the same memory locations, i.e.,
a[1][0] and a[1][1]. To eliminate such overestima-
tion we use

�

 �
 � , which is 2 as we showed earlier. This�

 �
 � information is used to tighten the WCET bound of
the loop nest obtained in Step 1. Overall, the revised pro-
cedure eliminates all the eight overestimated cache misses
that the previous approach suffered from.

For the simple example above, we have no overestimated
data cache misses due to references from dynamic load/store
instructions. In general, however, we may not completely
eliminate WCET overestimation due to dynamic load/store
instructions because of the following.

� We assume two cache miss penalties for each pointer-
based dynamic reference.

� We assume two cache miss penalties for each refer-
ence from a static load/store instruction that conflicts
in the cache with one or more reference regions in the
loop nest.

5. Experimental Results

To assess the effectiveness of the proposed techniques,we
compare the WCET bounds of several benchmark programs
predicted with and without applying the techniques using
the timing tool explained in [11]. The target machine of the
timing tool is an IDT7RS383 board. The target machine’s
CPU is a 20 MHz R3000 processor [8] which is typical of
a RISC processor. The machine has instruction and data
caches of 16 Kbytes each. Both caches are direct-mapped
and have block sizes of 4 bytes. The cache miss service
times of both the instruction and data caches are 4 cycles.

Five simple benchmark programs were used: Arrsum,
Fib, Isort, MM, and Sqrt. Arrsum calculates the total sum of
10 integer array elements. Fib computes the 30th element of
the Fibonacci sequence. Isort sorts 10 integer array elements
using the insertion sort algorithm. MM multiplies two 5 � 5
integer matrices. Sqrt performs the square root computation
on an integer number.

Table 4 compares the measured execution times and the
WCET bounds predicted by the timing tool for the five
benchmark programs. For each benchmark program, three
WCET predictions were made. A 	 � ����� 	 considers only
the effects of pipelined execution and instruction caching
treating each data reference as a cache miss. A 	 � �������
����� 	 � �

reference
first

cache
block

reference
first last

reference

0

3
4
5
6
7

last
reference

0
1
2

1

4
5
6
7

2
3

a[2][0]
a[2][1]

a[1][1]
a[1][0]

a[0][1]
a[0][0]

a[1][0]
a[1][1]

first
reference

loop nest S4S1

M(2)
M(3)
M(4)
M(5)

miss
M(2)
M(19)
M(4)
M(21)

empty
empty

empty
empty

empty
empty
empty
empty
empty
empty
empty
empty

empty
empty

miss

last
reference

array reference

empty
empty

empty
empty

1 miss for each

miss

miss

Figure 6. Cache hit/miss prediction by the extended timing schema approach when we apply the
proposed technique

Arrsum Fib Isort MM Sqrt
� ��� � ��	 ��� 242 683 2849 9141 302
A 	 � � ��� 	 256 710 6709 11653 327

A 	 ��� ��� �
����� 	 � � 296 710 8077 13153 327
A 	 ��� �
����� 	 � � 256 710 6517 10453 327

(unit: machine cycles)

Table 4. Measured and predicted execution
times of the benchmark programs

considers data caching effects in addition to the effects of
pipelined execution and instruction caching but without ap-
plying the techniques explained in this paper. As we men-
tioned earlier, in this prediction, the timing tool assumes
two cache miss penalties for each data reference generated
from a dynamic load/store instruction. Finally, A 	 �����
����� 	 � �
uses the proposed techniques while performing data caching
analysis. For all the three predictions, the timing effects of
pipelined execution and instruction caching are analyzed by
the same analysis technique explained in [11].

One interesting point from the results is that A 	 ��� �����
����� 	 � �
(which considers all the aspects of the target machine includ-
ing the data caching effects) yields looser WCET predictions
than A 	 ��� ��� 	 (which treats all data references as cache
misses) for Arrsum, Isort, and MM. This rather anomalous
result indicates the adverse impacts of dynamic load/store
instructions. The three benchmark programs have a large
number of data references from dynamic load/store instruc-
tions due to a large number of array references and the
timing tool assumes two cache miss penalties for such data
references in the case of A 	 � � ��� �
����� 	 � � . On the other hand,
in the case of A 	 ��� � � 	 , the timing tool assumes only one

cache miss penalty for such data references by treating all
the data references as cache misses including those from
static load/store instructions. Therefore, when data refer-
ences from dynamic load/store instructions are more than
half of the total data references, A 	 ��� � ���
��� � 	 � � yields a looser
prediction than A 	���� ��� 	 . Such a condition holds for the
three benchmark programs and, thus, A 	�������� �
����� 	 � � yields
looser predictions than A 	 ��� � � 	 .

This rather anomalous behavior is cured by applying the
proposed techniques. The boldfaced results in Table 4 for
the three benchmark programs that previously exhibited the
anomalous behavior now show significant improvements.
Most of the improvements come from by applying the sec-
ond technique since the three benchmark programs suffer
from WCET overestimation in A 	����������
����� 	 � � resulting from
a large number of data references from dynamic load/store
instructions.

The Fib and Sqrt benchmark programs do not contain any
dynamic load/store instructions and all the data references
from static load/store instructions are predicted to miss in
the cache both in A 	 ��� � ���
��� � 	 � � and A 	 ��� �
��� � 	 � � . Thus
there is no difference among A 	�������� 	 , A 	 � � ��� �
����� 	 � � and

A 	 � � �
 ���� 	 � � .
For all the benchmark programs except for Isort,

A 	 � � �
 ���� 	 � � gives a very tight WCET bound as compared
with the measured execution time. The WCET overestima-
tion in the Isort benchmark is caused by execution paths that
are infeasible in a real execution but considered in the WCET
prediction [15], which, we think, is an issue orthogonal to
the proposed techniques.

6. Conclusions

This paper has proposed two techniques for worst case
timing analysis of data caching. Our particular focus was

on dynamic load/store instructions for which most cur-
rent timing analysis techniques take very conservative ap-
proaches. The first technique aims at reducing the number
of load/store instructions that are misclassified as dynamic
load/store instructions. For this purpose, we make use of a
global data flow analysis technique. The second technique
tries to minimize WCET overestimation resulting from dy-
namic load/store instructions. The purposes of the second
technique are twofold. First, it reduces WCET overesti-
mation arising from the conservative assumption about dy-
namic load/store instructions that each reference from them
may replace a useful cache block (i.e., a cache block that
would otherwise lead to a cache hit). The reduction of
WCET overestimation was made possible by invalidating in
last reference of the containing loop nest the cache
blocks referenced by dynamic load/store instructions. Sec-
ond, the technique derives a lower bound on the number of
cache hits generated by dynamic load/store instructions and
uses this lower bound to tighten the WCET bound.

Results from a preliminary evaluation study have shown
that the two techniques significantly improve the tightness
of WCET bounds. The improvement was most noticeable
for programs that make heavy use of arrays, which are a
main source of dynamic load/store instructions.

The current derivation of a lower bound on the number of
cache hits due to dynamic load/store instructions is restricted
to cache hits that are made within individual loop nests. One
direction for future research is to derive a similar bound on
the number of cache hits that are made across loop nests.
This requires data dependence analysis between reference
regions that belong to different loop nests. Furthermore,
to determine the number of cache hits across two reference
regions belonging to two different loop nests, we have to
consider the set of memory references that come between
the two reference regions. Another future research direction
is to extend the second technique to handle the case where
the cache block size is larger than one word. Many computer
systems today use large cache block sizes to exploit spatial
locality in programs and we expect that the above extension
will enhance the applicability of the technique.

Acknowledgements

The authors wish to thank anonymous referees for their
constructive comments. The authors also thank C. Y. Park,
M. Lee, and S. Hong for many helpful discussions.

This work was supported in part by KOSEF (Grant
KOSEF-93-01-00-06).

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers Prin-
ciples, Techniques, and Tools. Addison-Wesley Publishing

Company, Reading, MA, 1988.
[2] R. Arnold, F. Mueller, D. Whalley, and M. Harmon. Bound-

ing Worst-Case Instruction Cache Performance. In Proceed-
ings of the 15th Real-Time Systems Symposium, pages 172–
181, 1994.

[3] U. Banerjee. Loop Transformations for Restructuring Com-
pilers: The Foundations. Kluwer Academic Publishers, Nor-
well, MA, 1993.

[4] C. N. Fischer and R. J. LeBlanc. Crafting a Compiler with C.
The Benjamin/Cummings Publishing Company, Inc., Red-
wood City, CA, 1991.

[5] C. A. Healy, D. B. Whalley, and M. G. Harmon. Integrating
the Timing Analysis of Pipelining and Instruction Caching.
In Proceedings of the 16th Real-Time Systems Symposium,
pages 288–297, 1995.

[6] J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers,
San Mateo, CA, 1990.

[7] Y. Hur, Y. H. Bae, S.-S. Lim, S.-K. Kim, B.-D. Rhee, S. L.
Min, C. Y. Park, M. Lee, H. Shin, and C. S. Kim. Worst
Case Timing Analysis of RISC Processors: R3000/R3010
Case Study. In Proceedings of the 16th Real-Time Systems
Symposium, pages 308–319, 1995.

[8] G. Kane and J. Heinrich. MIPS RISC Architecture. Prentice
Hall, Englewood Cliffs, NJ, 1992.

[9] R. M. Karp. A Characterization of the Minimum Cycle Mean
in a Digraph. Discrete Mathematics, 23:309–311, 1978.

[10] Y.-T. S. Li, S. Malik, and A. Wolfe. Efficient Microarchitec-
ture Modeling and Path Analysis for Real-Time Software.
In Proceedings of the 16th Real-Time Systems Symposium,
pages 298–307, 1995.

[11] S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min,
C. Y. Park, H. Shin, K. Park, and C. S. Kim. An Accurate
Worst Case Timing Analysis Technique for RISC Processors.
In Proceedings of the 15th Real-Time Systems Symposium,
pages 97–108, 1994.

[12] P. Linz. An Introduction to Formal Languages and Automata.
D. C. Heath and Company, Lexington, MA, 1990.

[13] J.-C. Liu and H.-J. Lee. Deterministic Upperbounds of the
Worst-Case Execution Times of Cached Programs. In Pro-
ceedings of the 15th Real-Time Systems Symposium, pages
182–191, 1994.

[14] K. Narasimhan and K. D. Nilsen. Portable Execution Time
Analysis for RISC Processors. In Proceedings of the Work-
shop on Architectures for Real-Time Applications, April
1994.

[15] C. Y. Park. Predicting Program Execution Times by Analyz-
ing Static and Dynamic Program Paths. Journal of Real-Time
Systems, 5(1):31–62, March 1993.

[16] P. Puschner and C. Koza. Calculating the Maximum Exe-
cution Time of Real-Time Programs. Journal of Real-Time
Systems, 1(2):159–176, Sept. 1989.

[17] A. C. Shaw. Reasoning About Time in Higher-Level Lan-
guage Software. IEEE Transactions On Software Engineer-
ing, 15(7):875–889, July 1989.

