In Proceedings of the 2nd IEEE Real-Time Technology and Applications Symposium, pages 230-240, June 1996.

Efficient Worst Case Timing Analysis of Data Caching

Sung-Kwan Kim Sang Lyul Min
Department of Computer Engineering
Seoul National University
Seoul 151-742, Korea
symin@dandelion.snu.ac.kr

Abstract

Recent progress in worst case timing analysis of pro-
gramshasmadeit possibleto performaccuratetiming anal-
ysis of pipelined execution and instruction caching, which
is necessary when a RISC processor is used as the tar-
get processor of a real-time system. However, there has
not been much progress in worst case timing analysis of
data caching. Thisis mainly due to load/store instructions
that reference multiple memory locations such as those used
to implement array and pointer-based references. These
load/store instructions are called dynamic load/store in-
structions and most current analysis techniques take a very
conservative approach to their timing analysis. In many
cases, it is assumed that each of the references from a dy-
namic load/store instruction will miss in the cache and re-
placea cacheblock that would otherwise lead to a cachehit.
This conservative approach resultsin severe overestimation
of the worst case execution time (WCET). This paper pro-
poses two techniques to minimize the WCET overestimation
dueto such load/storeinstructions. The first technique uses
a global data flow analysis technique to reduce the number
of load/store instructions that are misclassified as dynamic
load/store instructions. The second technique utilizes data
dependence analysis to minimize the adverse impact of dy-
namicload/storeinstructions. Thispaper also comparesthe
WCET bounds of simple benchmark programsthat are pre-
dicted with and without applying the proposed techniques.
Theresults show that they significantly (up to 20%) improve
the accuracy of WCET estimation especially for programs
with a large number of references from dynamic load/store
instructions.

1. Introduction

To calculate tight worst case execution time (WCET)
bounds of programs is an important research topic in the
real-time computing area since most scheduling algorithms

Rhan Ha
Department of Computer Engineering
Hong-1k University
Mapo-gu, Seoul 121-791, Korea
rhanha@cs.hongik.ac.kr

for real-time systems assume that such boundsare available
a priori to base their scheduling decison. For a RISC
processor, however, the calculation of atight WCET bound
of a program involves difficulties that come from the very
characteristics of RISC processors:. pipelined executionand
instruction/data caching. Recently there has been much
progress in worst case timing analysis for RISC processors
[2,5,7,10, 11, 13, 14].

However, most of the previous studies focused mainly
on the timing analysis of pipelined execution and instruc-
tion caching, while largely ignoring the data caching effects
[2, 5, 10, 13, 14]. Even the approaches that do consider
the timing effects of data caching have severe restrictions.
For example, the technique explained in [11] requires that
the addresses of referencesfrom each program construct be
fixed. For instruction block? references, such arequirement
is satisfied for programming languagesthat do not have any
dynamic control flow structures such as computed got os.
However, in the case of data block references, the require-
ment does not hold in general. For example, a load/store
instruction that is used to implement an array access ref-
erences many different memory locations. If a load/store
instruction references more than one memory location, it
is called a dynamic load/store instruction and the extended
timing schema approach [11] on which this paper is based
takes a very conservative approach to such load/store in-
structions. Theapproach assumesthat each of thereferences
from a dynamic load/store instruction misses in the cache
and replaces from the cache a memory block that would
otherwise lead to a cache hit. This conservative approach
results in severe overestimation of the WCET for programs
with a large number of dynamic load/store instructions for
array and pointer-based references[7].

This paper proposes two techniques to minimize the
WCET overestimation resulting from dynamic load/store
instructions. The first technique uses a global data flow

1A block is the minimum unit of information that can be either present
or not present in the cache-main memory hierarchy [6]. We assume without
loss of generality that memory references are in the unit of blocks.

analysis technique [1] to reduce the number of load/store
instructions that are misclassified as dynamic load/store in-
structions. The second technique utilizes a data dependence
analysis technique [3] to minimize the WCET overestima-
tion resulting from the two conservative assumptions ex-
plained earlier.

Thispaperisorganizedasfollows. Inthenext section, we
describe the timing schemaapproach [17] and itsextensions
[7, 11] on which our two proposed techniques are based.
Sections 3 and 4 present, in detail, the two techniques. In
Section 5, we givethe resultsfrom our experimentsto assess
the effectiveness of the proposed techniques. Finaly, we
conclude this paper in Section 6.

2. Timing Schema Approach and I tsExtensions

A timing schemais a set of formulasfor reasoning about
thetiming behavior of variouslanguage constructs[17]. Ta-
ble 1 givesatiming schemafor computing WCET bounds of
commonly used language constructs. Methodsbased onthis
timing schema can derive a WCET bound of a given pro-
gram by processing the program'’s syntax tree in a bottom-
up manner and applying the formulas according to language
constructs[16, 17].

The timing schema approach is simple and allows for
efficient bottom-up timing analysis of programs. One prob-
lem with this approach, however, is that in its purest form
it lacks provisions for the case where program constructs
have variable execution times depending on factors that are
not known when the program constructs are processed in a
bottom-up manner. Such a case, for example, arises when
the target processor has cache memories. With cache mem-
ories, the execution time of a program construct is affected
by the cache hits/misses of memory references (instruction
fetches, loads, and stores) made by the program construct
and these cache hits/misses, in turn, are affected by memory
references made by other program constructs.

The extended timing schema approach [11] is pro-
posed to rectify the problem above. In this approach, the
WCET bound in the original timing schema approach is
replaced with what is called the worst case timing abstrac-
tion (WCTA) [11]. In general, a program construct may
have more than one execution path as in the case of an if
statement and the WCETSs of these execution paths may
differ significantly depending on other program constructs.
Thus, the worst case execution path of a program construct
may not always be determined by simply analyzing the pro-
gram construct independently of other program constructs.
For this reason, the WCTA of a program construct contains
timing information of every execution path in the program
construct that might be the worst case execution path of the
program construct.

The WCTA of a program construct contains, for each

execution path in the program construct, what is called the
path abstraction (PA) of the execution path. The PA of
an execution path encodes the factors that affect the (worst
case) execution time of the execution path but are not known
when the execution path is processed in abottom-up manner.
For example, when the target processor has cache memory,
such factors include the first reference to each cache block
assuming a direct mapped cache [11]. The hitsmisses of
these references significantly affect the execution time of
the execution path but they cannot be determined when the
execution path is processed. For this reason, the PA in-
cludes two components called fi r st ref erence and
| ast reference. The first _reference compo-
nent encodesthefirst referenceto each cache block fromthe
associated execution path. Determination of the hitmisses
of referencesinf i r st _r ef er ence requirestheinforma-
tion about the cache contents at the entry of the execution
path. Such cache contents are determined by the last ref-
erence to each cache block from the preceding execution
path. For this reason, each PA has this last reference in-
formation encoded in | ast _r ef er ence. In addition to
thefirst referenceandl ast _r ef er ence compo-
nents, each PA hast,, .., which is the WCET bound of the
execution path. Initially, its value is computed by assuming
that all the memory referencesinfir st ref erence are
cache misses but is later revised as the program syntax tree
is processed.

This extended timing information leads to timing for-
mulas that are different from those of the original timing
schemain that & (concatenation) and prune operations on
PAs are newly defined to replace the + and max operations
on the WCET bounds in the original timing schema. The
@ operation between two PAs models the execution of one
path followed by that of another path and yields the PA of
the combined path. During this operation, the hits/misses of
the memory references in the succeeding execution path’s
first_referencecanbedeterminedfromthepreceding
execution path’sl ast _r ef er ence. Theadditional cache
hits determined in this way are reflected in the ¢,,,,,. Of the
combined path, thustightening the previously overestimated
WCET bound.

The prune operation, which is the counterpart of the
max operation of the original timing schema, is performed
on the set of PAs of a program construct and prunesthe PAs
whose associated execution paths cannot be the worst case
execution path of the program construct. In other words,
a PA of aprogram construct can be pruned if its WCET is
always smaller than the WCET of another PA in the same
program construct regardless of what the surrounding pro-
gram constructs are.

Table 2 showsthetiming formul as of the extended timing
schema. Thetiming formulafor S: S;; S, first enumerates
all the possible execution paths within S;; S,. The prune

(I | Formulas for computing WCET bounds [

S S S T(S) =T(51)+T(S

Sp, respectively.

where T'(S), T(S1), and T'(S,) are the WCET bounds of S, Sy, and

2)

S:if (exp) then S; dse S, | T(S) = max(T'(exp) + T(S1), T(exp) + T(S2))

S: while (exp) $ T(S) = N X (T(exp)
where N isaloop boun:

d+ T(51)) + T(exp)

S: f(expy, - . ., €XPn) T(S) =T(exp1)+ ..

-+ T(expn) + T(£0)

Table 1. Formulas for computing WCET bounds of various language structures in the timing schema

approach

(| Form

ulasfor computing WCTASs [

S S S W(S) = W(S1) D W(S2)

where W (), W(S1), and W(S2) are the WCTAs of S, S1, and \So, respectively
and @ isdefinedaswl@ Wy = {w1 & wa|wy € Wi, ws € Wa}.

S if (exp) then S, dse S, | W(S) = (W(exp) @ W(S1)) [J (W(exp) @ W(S2))

S: while (exp) S1 wW(S) = (@ivzl(W(ewp) @ W(S1))) @ W (exp)

S @y, -, &Pn) W(S) = W(exp) @5 .. @) Wlewpn) D W(J0)

Table 2. Formulas for computing WCTAs of variou
schema approach

operation after the enumeration (although it is not shown in
the formula) prunes a subset of the resulting PAs whose as-
sociated execution paths cannot be the worst case execution
path of S. Similarly, the timing formulafor an if statement
enumerates all the execution paths in both the then path
and the else path. As previously, the execution paths that
cannot be the worst case execution path of the if statement
are pruned.

The timing formula for a loop statement with a loop
bound N models the unrolling of the loop N times. This
approachisexact butiscomputationally intractablefor large
N. In[11], Lim et al. give an efficient approximate loop
timing analysis method using a maximum cycle mean algo-
rithm due to Karp [9]. This approximate analysis method
has an O(|P|®) time complexity where P is the set of the
execution pathsin theloop body that might be theworst case
execution path of theloop body (i.e., the set of the execution
pathsin W (exp) €@ W (S1) that survive the pruning).

Function calls are processed like sequential statements.
The WCTAs of functionsare calculated in reverse topologi-
cal order in the call graph? so that the WCTASs of callees are
available when the caller is processed.

2A call graph contains the information on how functions call each other
[4]. For example, if f cdls g, then an arc connects f’s vertex to that of g
in their call graph.

s language constructs in the extended timing

Data caching analysis within the extended timing
schema approach: To compute first _reference
and| ast _r ef er ence for datacaching analysis purposes,
we need to know the reference address of each load/store
instruction in program constructs. For this purpose, in
the extended timing schema approach load/store instruc-
tions are categorized into the following two classes depend-
ing on whether their reference addresses are fixed or vari-
able: dtatic load/store instructions and dynamic load/store
instructions. A load/store instruction is categorized as a
dtatic load/storeinstruction if its reference address does not
change. Otherwiseit is categorized as a dynamic load/store
instruction. For dynamic load/store instructions, the ex-
tended timing schema approach takes a very conservative
approach; it assumes two cache miss penaltiesfor each ref-
erencefrom dynamicload/storeinstructionsand completely
ignorestheminthecalculationof f i r st _r ef er ence and
| ast ref erence. One cache miss pendty is because
the reference may miss in the cache. The other cache miss
penalty is because the reference may replace a cache block
that would contribute a cache hit in the datacaching analysis
without such references. Although this approach is smple,
it suffers from severe overestimation of the WCET espe-
cialy when there are alarge number of dynamic load/store
instructionsin the program.

Most RISC processors, for which the extended tim-

ing schema approach is targeted, are load/store archi-
tectures and they provide a very limited set of ad-
dressing modes for load/store instructions. Often, the
base_r egi st er +di spl acenent addressing mode is
the only addressing mode provided as in the case of MIPS
R3000 [8]. In this addressing mode, the address of an
operand in memory is specified by the sum of the base reg-
ister’s value and the displacement.

In MIPS R3000, a static load/store instruction has either
gp (global pointer) register or sp (stack pointer) register as
its base register. The gp register is used to access global
data and its value does not change throughout the program
execution. The sp register is used to access local dataand
its value does not change within a function. A dynamic
load/store instruction has a base register other than gp or
sp register andisused to implement array and pointer-based
references.

The two techniques proposed in this paper aim at min-
imizing the WCET overestimation resulting from dynamic
load/store instructions. The first technique tries to reduce
the number of load/store instructions that are misclassified
asdynamicload/storeinstructions. Such amisclassification,
for example, occurswhen aload/store instruction has abase
register other thangp or sp but the value of the base register
can be expressed by gp+const ant or sp+const ant .
The technique uses a data flow analysis technique called
the use-def(ine) analysis [1] to derive expressions for base
registers that use only gp or sp. The second technique,
on the other hand, tries to reduce the WCET overestima
tion resulting from the two conservative assumptions about
dynamic load/store instructions explained earlier. The next
two sections detail the two techniques.

3. Accurate Classification of Load/Store In-
structions

This section describes a technique that tries to minimize
the load/store instructions that are misclassified as dynamic
load/store instructions. As an example of such misclassifi-
cation, consider the following MIPS R3000 assembly code
fragment.

addi u $15, $sp, 16

| w $24, 0($15)

In the extended timing schema approach, the load instruc-
tionl w $24, 0($15) isclassified asadynamicload/store
instruction since its base register, register 15 ($15) in this
case, is other than gp or sp. Thus two cache miss penal-
ties are assumed for each of the references generated by
this load instruction. However, since the value of $15

at the load instruction can be symbolically expressed by
sp+16, which is determined by the preceding add instruc-
tionaddi u $15, $sp, 16, theload instructionis, in fact,
a static load/store instruction. A symbolic expression that
has only constants, gp, and sp in its expression such as
the one above is called a resolvable symbolic expression
in this paper. Note that the value of a resolvable symbolic
expression does not change within a function.

The technique explained in this section utilizes a global
dataflow analysis called the use-def(ine) analysis[1] to de-
rive resolvable symbolic expressions for as many dynamic
load/store instructions as possible. In the dataflow analysis
terms, $15 in the previous example is defined in the add
instruction and this definition reaches the load instruction
where $15 isused asits base register. In this case, the add
instruction is called a reaching definition for the use of $15
in the load instruction. Since the add instruction is the only
reaching definition for $15 in this example, the load instruc-
tionl w $24, 0($15) can be symbolically replaced with
[w $24, 16($sp) and, afterwards, it can be regarded as
astatic load/storeinstruction. In general, there may be more
than one definition for a use and the procedure for finding
the set of reaching definitions for a use can be explained as
follows using data flow analysis terminology.

1. Definethefollowing equation for each basic block® B
and for each register R.

outR[B] = gen[B] U (in®[B] — kill [B]),

wherein®[B] and out ?[B] arethe sets of thereaching
definitions for R at the entry and exit points of basic
block B, respectively. gen®[B] and kill2[B] are the
sets of the reaching definitions for R generated and
killed within basic block B, respectively. In our anal-
ysis, gen®[B] is the last instruction in basic block B
that has R as one of its target operands. If gen®[B] is
not empty, that is, if thereis at least oneinstructionin
B that defines R, then kill 2[B] is the set of all other
definitions of R inthe program. On the other hand, if
gen®[B] is empty, kill Z[B] is an empty set.

2. Perform an iterative forward data flow analysis[1] to
compute in®[B] and out®[B] for each basic block B
and for each register R. This iterative analysis uses
the following two equations:

out?[B] = gen®[B]U (in®[B] — killZ[B]),
inR[B] = J out?[p,
Pepred(B)

where pred(B) is the set of predecessors of basic
block B. Initialy, in®[B] and out?[B] are set to (§

3A basic block is a sequence of consecutive instructions in which the
flow of control enters at the beginning and leaves at the end without halt or
possibility of branching except at the end [1].

and gen®[B], respectively, and the iteration continues
until al thein®[B]s and out£[B]s converge.

Deriving a resolvable symbolic expression for the base
register of aload/store instruction can be complicated when
a defining instruction for the base register, in turn, uses
registersother thangp or sp. For such acase, thedefinitions
of the intermediate registers should be resolved and this
process is repeated in the depth first search tree order until
one of the following three conditions holds.

1. A defining ingtruction is other than ssmple arith-
metic/logical instructions.

2. Thetreeformsacycle.

3. All the leaf definitions have resolvable symbolic ex-
pressions.

The main source of the first case is when the defining in-
gtruction is aload instruction asin the case of pointer-based
references. On the other hand, the second case corresponds
to the case of array references. For these two cases, the base
register is marked as unresolvable.

For the last case, we compare all the reaching definitions
of each intermediate register. Only when all the reaching
definitions of every intermediate register have an identical
resolvable symbolic expression, the base register isreplaced
by the derived resolvable symbolic expression. Any mis-
match among them means that there exists inconsistency
among the reaching definitions of ause. Thusthe base reg-
ister, in this case, is marked as unresolvable. Figure 1-(b)
shows an example of the above process for the example
givenin Figure 1-(a). In the example, the node at the root,
$15inthiscase, containsthe baseregister for whicharesolv-
able symbolic expression is to be derived. In Figure 1-(b),
we can note that both of the two definitions reaching the
useof $15inl w $25, 12($15) havean identical resolv-
able symbolic expression, $sp+48 in this case. Thusthel w
$25, 12($15) instruction is symbolically replaced with
I w $25, 60($sp) and afterwardsit isregarded asastatic
load/store instruction.

4. Minimizing the WCET Overestimation Due
to Dynamic L oad/Store Instructions

In Section 2, we explained that the extended timing
schema approach suffers from WCET overestimation due
to dynamic load/store instructions. This section explains a
technique for minimizing such overestimation. Before ex-
plaining the technique, let us consider, as an example of
WCET overestimation, the C code fragment given in Fig-
ure 2-(a). In the example, we assume the following:

M@ | M(19) M@ | M)

miss miss miss miss

) S S S S S S S
M@10) | M(12) | ML) | M@3) | M(12) | M14) | M@3) | M(15)
a[0][0]| a[1][O] | a[O0][1]| a[1][1] |a[1][0]| a[2][O] | a[1][1]| a[2][1]

miss miss miss miss hit miss hit miss
M(2) M(3) M(4) M(5)
miss miss miss miss

Figure 4. Actual cache hit/miss

1. S1, which precedesthe loop nest, references memory
locations M (2), M (19), M (4), M(21) using static
load/store instructions where M (k) represents the
memory location that has k as its address.

2. Array a[][] that is referenced within the loop nest
has the memory map shown in Figure 2-(b).

3. S4, which succeeds the loop nest, references mem-
ory locations M (2), M (3), M (4), M (5) using static
load/store instructions.

4. The data cache is direct-mapped with eight cache
blocks and its block size is equal to the size of an
integer variable.

The extended timing schema approach assumes two
cache miss penaltiesfor each of the referencesgenerated by
two array accessesali][j] anda[i +1][j] withinthe
loop nest since these array accesses are implemented by dy-
namic load/store instructions and these references are com-
pletely ignored in the calculation of fi r st ref erence
and| ast _r ef er ence of the statements (cf. Figure 3).

To compute the number of overestimated cache miss
penalties, consider the actual execution shown in Figure 4,
which gives the hit/miss of every data reference from the
program fragment. The overestimation due to the array ac-
cesses can be computed from this hit/missinformation. On
one extreme, thereferenceto a[0] [0] by S» doesnot suf-
fer from any overestimation since the reference is a cache
miss as predicted and, again as predicted, replaces from the
cache amemory block that would otherwise lead to a cache
hit (in this case M (2)). On the other extreme, the reference
toa[1] [0] by S, suffers from maximum overestimation
corresponding to two cache miss penalties. One cache miss
penalty overestimation is because the access is a cache hit,
contrary to the prediction. The other cache miss penalty
overestimation is because the replaced memory block is not
auseful one, again contrary to the prediction. The overes-
timation caused by other accessesto array a[][] can be

Level

: 0
addiu $24, $sp,16 1 (use)
addi u $15,$sp,48
addi u $15, $24,32
{addi u $15,$sp,48 J [addi u $15, $24,32] 2 (def)
Iw $25, 12($15) 3 ()
+ (o
(@) control flow graph (b) use-definition relation
Figure 1. Tree showing use-define relationship for a base register
int a[3][2]; /+xaraya[][] startsat M(10) x/ Memory map
Sl: : M(0)
/* S1 references M (2), M (19), M (4), M (21) =/ . .
for(i=0; i<2; i++) . .
{ M(10) | al0][0]
for(j=0; j<2; j++) MLy | alo][1]
M(12) | al1][0]
S cealillj] - M@3) | al1][1]
Sa: coeali+10[§] - M(14) | al2][0]
) M@s) | al2][1]
} :
5’4: ;
/* Sa references M (2), M (3), M (4), M (5) =/
@ (b)
Figure 2. Example C code fragment
S loop nest S
first | ast first | ast first | ast
reference reference reference reference reference reference
cache
block 0 ..empty 0
1 . empty) 1
. 2 —empty - hit 2 .
3 empty miss 3
. e | T i o
4 —empty hit 4
o 5 empty miss 5 L]
6 _.empty 6
7 empty ‘ 7
2 misses for each
array reference

Figure 3. Cache hit/miss prediction by the extended timing schema approach

determined similarly and the results are given in Table 3.
A total of eight cache miss penalties are unnecessarily as-
sumed dueto thereferencesfrom thetwo dynamicload/store
instructions implementing the two array accesses.

a[i][j] [[#of overestimations | ([ali+1][j] [#of overestimations]
a[0] [O 0 a[1][0 0

a[0][1 1 a[1][1 1
a[1][0 2 a[2][0 1
a[1][1 2 a[2][1 1

Table 3. Overestimation due to array accesses

Our techniquefor minimizing WCET overestimation due
to dynamic load/store instructions is applied to each loop
nest that is defined by an outermost loop in functions and
proceeds as follows:

1. Weidentify the set of memory locationsreferenced by
each dynamic load/store instruction in the loop nest.

2. We computethe union of the sets of memory locations
referenced by the dynamic load/store instructions in
the loop nest.

3. Weinvadlidatein| ast _r ef er ence of theloop nest
the set of cache blocks corresponding to the above
union.

4. We derive a lower bound on the number of cache
hits generated by dynamic load/store instructions in
the loop nest and use this lower bound to tighten the
WCET bound of the loop nest.

By invalidatinginl ast _r ef er ence thecacheblocksthat
are accessed by dynamic load/store instructions in Step 3,
we no longer need to assume the one cache miss penalty
that arisesfrom the conservativeassumption that areference
from a dynamic load/store instruction may replace a useful
cache block; we just assume only one cache miss penalty
for each reference from a dynamic load/store instruction.

The derivation of alower bound on the number of cache
hitsin Step 4 is based on the pigeonhole principle, which
is used by mathematicians to refer to the following simple
observation[12]. If we put n objectsinto m boxes (pigeon-
holes), andif n > m, then some boxesinevitably have more
than one object in them. In our analysis, the pigeonhole
principle says that if two dynamic load/store instructions
generate n; and ny references, respectively and they to-
tally reference less than n3 distinct locations, then at least
n1 + ny — na references from the two dynamic load/store
instructions are cache hits.

In our examplein Figure 2, both n; and n, are 4, which
is derived from the loop bounds of the two loopsin the loop
nest. n3 is 6 since the distinct locations referenced by the

two array accessesarea[0] [O] througha[2] [1] . This
gives a lower bound of 2 (= 4 + 4 — 6) on the number of
cache hits generated by the two array accesses. The WCET
bound of the loop nest can be tightened by using this lower
bound on cache hits.

To systematically derive alower bound on the number of
cache hitsin thisway, we should perform the following two
tasks:

1. The region of references by each dynamic load/store
instruction within aloop nest should be determined.

2. An upper bound on the number of distinct memory
locations referenced by the set of dynamic load/store
instructions in the loop nest should be derived.

The next two subsections detail the two tasks.
4.1. Specifying Reference Regions

This subsection explains how to derive the reference re-
gion of a dynamic load/store instruction. In general, a ref-
erence region is a multiset since duplicate reference ad-
dresses can be generated by a dynamic load/store instruc-
tion. Figure 5 shows the MIPS R3000 assembly code frag-
ment corresponding to the C code fragment in Figure 2.
The two shaded load instructions correspond to the two ar-
ray accesses made in statements .S, and S, respectively.
The figure also shows the use-def tree for the base register
$15 used in | w $15, 0($15), which is for array access
a[i][j]. Theuse-def treefor $25inl w $25, 0($25)
can bedrawn similarly. Fromthe use-def trees, referencere-
gions R; and R, correspondingto | w $15, 0($15) and
I w $25, 0($25), respectively can be specified as fol-
lows:

Ry : 8x$13+4x%12+ $sp
0<$13<1,0<%12<1 (1)

Ry, : 8%$13+4x%$12+$sp+8
0<$13<1,0<%12<1

Inthe above, therangesof registers$13 and $12 are obtained
from the loop bounds of the two loopsin the loop nest.

In this paper, we restrict ourselves to reference regions
that can be specified in the following form:

o i +alb+ ...+ a1, +c,

wherels, ..., I, aretheregistersfor loopindex variablesand
a;, 1 <1i<m,andc areconsants. If areferenceregion
cannot be specified in the above form, we conservatively
assume two cache miss penalties for each reference from
the associated |oad/store instruction.

nove $13, $0

nove $12, $0

-

sl $24, $13, 0x3
addi u $15, $sp, 0x0
addu $15, $24, $15
sl $25, $12, 0x2
addu $15, $25, $15

I'w $25, 0($25)

addi u $12, $12, Ox1
slti $1, $12, 0x2
bne $1,$0,L.2
nop

bb4:
addi u $13, $13, Ox1
slti $1, $13, 0x2
bne $1,%0,L.1
nop

Iw $15, 0($15)

addu $15, $25, $15

[sn $25, $12, 0x2] [addu $15, $24, $15]

lw $15, 0($15)
addi u $15, $sp, 0x8
addu $24, $24, $15

addiu $12, $12, 0x1]

[nove $13, $0

[addiu $15, $sp, Ox0]

] [addiu $13, $13, 0x1

Figure 5. Assembly code and the use-def tree for | w $15, 0($15)

4.2. Deriving a Lower Bound on Cache Hits

Once al the reference regions within aloop nest are de-
termined, we can derive a lower bound on the number of
cache hits generated by the reference regions. In our exam-
ple, alower bound on the number of cache hitsgenerated by
two referenceregions Ry and R, can be derived asfollows:

MinHit = n*(R1) + n*(R2) — n(R1 U Ry)

= (n(R1) + s(R1)) + (n(R2) + s(R2)) — n(R1 U Rp)
s(R1) + s(R2) + (n(R1) + n(R2) — n(R1 U Ry))
= s(R1) + s(Rz) + n(R1N Ry), 2

where n*(R) isthe number of elementsin R (with duplica-
tion allowed), n(R) the number of distinct elementsin R,
and s(R) the number of repeated elementsin R. s(R) can
be computed by the following equation:

s(R) = H loop_bound; — H loop_boundy,
1eCy, 1eC%,

where C}, isthe set of the index variables of the loops nest-
ing the corresponding load/store instruction of the reference
region R, C% the set of the index variables that appear in
the reference region expression, and loop_bound; the loop
bound of the loop that has I as its index variable. In our
example, s(R1) = s(R2) = 0sincein both of thetwo refer-
enceregions Ry and R; all theindex variables appear in the
two reference region expressions. n(R; N Ry) is given by

the cardinality of the solution space ($13;, $13;, $12;, $12,)
satisfying the following equation.

8x$13; +4+$12, =8+ $13, +4x$12,+8, (3

0<$13;, <1, 0<$12, <1, 4
0<%13, <1, 0<%12 <1

This diophantine equation® is derived by equating the two
reference expressions in (1). The equation (3) can be ex-
pressed in amatrix form as follows:

8
(813, $12, 813 812)| o [=(8) ©®

-4

This equation can be solved using the generalized GCD test
[3]. Thetest givesthe following solution space represented
by integer parameters, t=(t1,t2,t3).

$13; = ty,
$13; = t3,

$12) = -2t + t + 2, ©6)
$12, = t, — 2t3.

We use the Fourier elimination method [3] to compute the
cardinality of the solution spacet satisfying both (4) and (6).
Thisgivesn(R; N Ry), whichis 2 in our example. This, in
turn, gives MinHit = 2 (= 0+ 0+ 2) and this value is
used to tighten the WCET bound of the loop nest.

4An equation in integer variables is called a diophantine equation.

So far we considered only the case where there are two
reference regions. The equation (2) can be generalized for
the case where there are r referenceregionsin aloop nest.

MinHit = i s(R;)
=1
X
<Ri,,Ri,>€C;
- X

<Rij,Riy,Ri;>€Cs

TL(Ril n Riz)

TL(Ril n Riz n Ris)

+ (=1 >

<Rij,...Ri, >eC,

n(Rh N---N Rir>,

where C,, 2 < k < r, is the set of al combina
tions consisting of k reference regions. In this equation,
n(R;, N---N Ry, ,,) can be computed fromn((R;, N---N
Rzk) n (Rlz n---N Rik+1)) where Ri1 n---N Rzk and
R;, N ---N R;, ., are by-productsfrom the computation of
n(R;,N---NR;)andn(R;, N---NRy,,,). For example,
n(R; N R, N R3) can be computed from the intersection
of R1 N R, and R, N R3. In calculating the intersection,
Ry N R, and R, N R3 are regarded as if they were simple
reference regions.

In our previous discussion, we assume that digoint ref-
erence regions do not conflict with each other in the cache.
In the case where they do conflict in the cache, we partition
the reference regions and disregard from the calculation of
MinHqt the subregions that conflict in the cache. In the
case where the references from a static load/store instruc-
tion conflict with reference regions within the same loop
nest, we assume two cache miss penaltiesfor each reference
of the static load/store instruction and process the reference
regions as previoudly.

4.3. Overall Framework

To summarize, the processing of a loop nest within the
proposed framework proceeds as follows:

Step 1. Markinvaidinl ast r ef er ence the cache blocks
corresponding to the union of the referenceregionsin
the loop nest.

Step 2. Compute the Min Hit for the loop nest and use it to
tighten the WCET bound of the loop nest.

To illustrate the above procedure, we consider again the
example in Figure 2. Figure 6 shows Step 1 of the proce-
dure. Weexplicitly invalidate cacheblocksin theloop nest’'s
| ast _r ef er ence that correspond to the union of two ref-
erenceregions. For each of the eight array references from

the two reference regions in the loop nest, we assume only
one cache miss penalty in this revised procedure as com-
pared to two cache miss penalties in the previous approach
as shown in Figure 3. Using this method, we can eliminate
6 overestimated cache misses. However, we gtill havein the
resultant WCET bound of the loop nest two overestimated
cache misseswhich comefrom thefact that we haveignored
cache hits due to repeated references from the two dynamic
load/store instructions to the same memory locations, i.e.,
a[1][0] and a[1] [1] . To eliminate such overestima-
tion we use Min Hit, which is 2 aswe showed earlier. This
MinHit informationis used to tighten the WCET bound of
the loop nest obtained in Step 1. Overal, the revised pro-
cedure eliminates all the eight overestimated cache misses
that the previous approach suffered from.

For the simple exampl e above, we have no overestimated
datacache missesdueto referencesfrom dynamicload/store
instructions. In general, however, we may not completely
eliminate WCET overestimation due to dynamic load/store
instructions because of the following.

¢ We assumetwo cache miss penaltiesfor each pointer-
based dynamic reference.

¢ We assume two cache miss penalties for each refer-
ence from a static load/store instruction that conflicts
in the cache with one or morereferenceregionsin the
loop nest.

5. Experimental Results

To assessthe effectiveness of the proposed techniques, we
comparethe WCET boundsof several benchmark programs
predicted with and without applying the techniques using
thetiming tool explained in [11]. The target machine of the
timing tool is an IDT7RS383 board. The target machine's
CPU is a 20 MHz R3000 processor [8] which is typical of
a RISC processor. The machine has instruction and data
caches of 16 Khytes each. Both caches are direct-mapped
and have block sizes of 4 bytes. The cache miss service
times of both the instruction and data caches are 4 cycles.

Five simple benchmark programs were used: Arrsum,
Fib, Isort, MM, and Sgrt. Arrsum calculatesthetotal sum of
10integer array elements. Fib computesthe 30th element of
the Fibonacci sequence. Isort sorts10integer array elements
using theinsertion sort algorithm. MM multipliestwo 5 x 5
integer matrices. Sgrt performsthe square root computation
on an integer number.

Table 4 compares the measured execution times and the
WCET bounds predicted by the timing tool for the five
benchmark programs. For each benchmark program, three
WCET predictions were made. Predpy; considers only
the effects of pipelined execution and instruction caching
treating each data reference as a cache miss. Pred}’, [*'

S loop nest S
first | ast first | ast first | ast
ref erence ref erence reference ref erence ref erence ref erence

fegco ety empy cemy empty 0

1 empty _empty e ETIRLY U empty 1
o 2 M@ empty a[0][0] 4 X ofmssie mME 2 .
R 3 M9 _empty afo][1] =~ 8 AMISSE- M@ 3 .

4 M@ empty a[1][0] a[1}{O}+~ X opmusS M@ 4
¢ 5 M@ _empty ia[l][1]-afi}{i} X ofmissie M@ 5 *

6 empty _empty a[2][0] g x] empty 6

7 empty empty Ika[2][1] : X empty 7

~ 1missforeach
array reference

Figure 6. Cache hit/miss prediction by the extended timing schema approach when we apply the

proposed technique

I | Arrsum | Fib | Isort | MM | Sort ||
Measured 242 | 683 | 2849 | 9141 | 302
Predp, 256 | 710 | 6709 | 11653 | 327
Predy, ¥ 296 | 710 | 8077 | 13153 | 327
Pred?y . p 256 | 710 | 6517 | 10453 | 327

(unit: machine cycles)

Table 4. Measured and predicted execution
times of the benchmark programs

considers data caching effects in addition to the effects of
pipelined execution and instruction caching but without ap-
plying the techniques explained in this paper. Aswe men-
tioned earlier, in this prediction, the timing tool assumes
two cache miss penalties for each data reference generated
fromadynamicload/storeinstruction. Finally, Predy ;.
usesthe proposed techniqueswhile performing data caching
analysis. For al the three predictions, the timing effects of
pipelined execution and instruction caching are analyzed by
the same analysi s technique explained in [11].
Oneinteresting point fromtheresultsisthat Pred}’, 77,
(which considersall theaspectsof thetarget machineinclud-
ing thedatacaching effects) yieldslooser WCET predictions
than Predpr (which treats all data references as cache
misses) for Arrsum, Isort, and MM. This rather anomalous
result indicates the adverse impacts of dynamic load/store
instructions. The three benchmark programs have a large
number of data references from dynamic load/storeinstruc-
tions due to a large number of array references and the
timing tool assumes two cache miss penalties for such data
references in the case of Pred}, {7,,. On the other hand,
in the case of Predp 1, the timing tool assumes only one

cache miss penalty for such data references by treating all
the data references as cache misses including those from
static load/store instructions. Therefore, when data refer-
ences from dynamic load/store instructions are more than
half of thetotal datareferences, Pred}’, 72, yieldsalooser
prediction than Predp, ;. Such acondition holds for the
three benchmark programs and, thus, Pred}’, 7', yields
looser predictionsthan Predp ;.

This rather anomalous behavior is cured by applying the
proposed techniques. The boldfaced results in Table 4 for
the three benchmark programsthat previously exhibited the
anomalous behavior now show significant improvements.
Most of the improvements come from by applying the sec-
ond technique since the three benchmark programs suffer
from WCET overestimation in Pred}’, ', resulting from
alarge number of data references from dynamic load/store
instructions.

TheFib and Sgrt benchmark programsdo not contain any
dynamic load/store instructions and all the data references
from static load/store instructions are predicted to miss in
the cache both in Pred}’, %', and Pred}),, . Thus

no opt

there is no difference anong Predp, s, Predp) ;)\ and
Pred¥; ,p.

For al the benchmark programs except for Isort,
Predj’)”i r4+p 9ivesavery tight WCET bound as compared
with the measured execution time. The WCET overestima-
tioninthelsort benchmark is caused by execution pathsthat
areinfeasibleinareal executionbut consideredinthe WCET
prediction [15], which, we think, is an issue orthogonal to
the proposed techniques.

6. Conclusions

This paper has proposed two techniques for worst case
timing analysis of data caching. Our particular focus was

on dynamic load/store instructions for which most cur-
rent timing analysis techniques take very conservative ap-
proaches. The first technique aims at reducing the number
of load/store instructions that are misclassified as dynamic
load/store instructions. For this purpose, we make use of a
global data flow analysis technique. The second technique
tries to minimize WCET overestimation resulting from dy-
namic load/store instructions. The purposes of the second
technique are twofold. Firgt, it reduces WCET overesti-
mation arising from the conservative assumption about dy-
namic load/store instructions that each reference from them
may replace a useful cache block (i.e., a cache block that
would otherwise lead to a cache hit). The reduction of
WCET overestimation was made possible by invalidating in
| ast _r ef er ence of the containing loop nest the cache
blocks referenced by dynamic load/store instructions. Sec-
ond, the technique derives a lower bound on the number of
cache hits generated by dynamic load/store instructions and
uses this lower bound to tighten the WCET bound.

Results from a preliminary evaluation study have shown
that the two techniques significantly improve the tightness
of WCET bounds. The improvement was most noticeable
for programs that make heavy use of arrays, which are a
main source of dynamic load/store instructions.

The current derivation of alower bound on the number of
cache hitsdueto dynamicload/storeinstructionsisrestricted
to cache hitsthat are madewithin individual loop nests. One
direction for future research is to derive a similar bound on
the number of cache hits that are made across loop nests.
This requires data dependence analysis between reference
regions that belong to different loop nests. Furthermore,
to determine the number of cache hits across two reference
regions belonging to two different loop nests, we have to
consider the set of memory references that come between
thetwo referenceregions. Another future research direction
isto extend the second technique to handle the case where
thecacheblock sizeislarger than oneword. Many computer
systems today use large cache block sizes to exploit spatial
locality in programs and we expect that the above extension
will enhance the applicability of the technique.

Acknowledgements

The authors wish to thank anonymous referees for their
constructive comments. The authors also thank C. Y. Park,
M. Lee, and S. Hong for many helpful discussions.

This work was supported in part by KOSEF (Grant
KOSEF-93-01-00-06).

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers Prin-
ciples, Techniques, and Tools. Addison-Wesley Publishing

(2]

(3]

(4]

(9]

(6]

(7]

(8]
(9]
[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

Company, Reading, MA, 1988.

R. Arnold, F. Mueller, D. Whalley, and M. Harmon. Bound-
ing Worst-Case | nstruction Cache Performance. In Proceed-
ings of the 15th Real-Time Systems Symposium, pages 172—
181, 1994.

U. Banerjee. Loop Transformations for Restructuring Com-
pilers. TheFoundations. Kluwer Academic Publishers, Nor-
well, MA, 1993.

C. N. Fischer and R. J. LeBlanc. Crafting a Compiler with C.
The Benjamin/Cummings Publishing Company, Inc., Red-
wood City, CA, 1991.

C. A. Healy, D. B. Whalley, and M. G. Harmon. Integrating
the Timing Analysis of Pipelining and Instruction Caching.
In Proceedings of the 16th Real-Time Systems Symposium,
pages 288-297, 1995.

J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers,
San Mateo, CA, 1990.

Y. Hur, Y. H. Bag, S.-S. Lim, S.-K. Kim, B.-D. Rheg, S. L.
Min, C. Y. Park, M. Lee, H. Shin, and C. S. Kim. Worst
Case Timing Anaysis of RISC Processors: R3000/R3010
Case Study. In Proceedings of the 16th Real-Time Systems
Symposium, pages 308-319, 1995.

G. Kane and J. Heinrich. MIPSRISC Architecture. Prentice
Hall, Englewood Cliffs, NJ, 1992.

R.M. Karp. A Characterization of the Minimum CycleMean
in a Digraph. Discrete Mathematics, 23:309-311, 1978.
Y.-T. S. Li, S. Mdlik, and A. Wolfe. Efficient Microarchitec-
ture Modeling and Path Analysis for Real-Time Software.
In Proceedings of the 16th Real-Time Systems Symposium,
pages 298-307, 1995.

S-S. Lim, Y. H. Bag, G. T. Jang, B.-D. Rhee, S. L. Min,
C. Y. Park, H. Shin, K. Park, and C. S. Kim. An Accurate
Worst Case Timing Analysis Techniquefor RI SC Processors.
In Proceedings of the 15th Real-Time Systems Symposium,
pages 97-108, 1994.

P.Linz. Anlntroduction to Formal Languages and Automata.
D. C. Heath and Company, Lexington, MA, 1990.

J-C. Liuand H.-J. Lee. Deterministic Upperbounds of the
Worst-Case Execution Times of Cached Programs. In Pro-
ceedings of the 15th Real-Time Systems Symposium, pages
182-191, 1994.

K. Narasimhan and K. D. Nilsen. Portable Execution Time
Analysis for RISC Processors. |n Proceedings of the Work-
shop on Architectures for Real-Time Applications, April
1994,

C.Y. Park. Predicting Program Execution Times by Analyz-
ing Static and Dynamic Program Paths. Journal of Real-Time
Systems, 5(1):31-62, March 1993.

P. Puschner and C. Koza. Calculating the Maximum Exe-
cution Time of Real-Time Programs. Journal of Real-Time
Systems, 1(2):159-176, Sept. 1989.

A. C. Shaw. Reasoning About Time in Higher-Level Lan-
guage Software. |EEE Transactions On Software Engineer-
ing, 15(7):875-889, July 1989.

