
Bounding Loop Iterations for Timing Analysis

Christopher Healy∗ Mikael Sjödin† Viresh Rustagi‡ David Whalley∗

Abstract
Static timing analyzers need to know the minimum and
maximum number of iterations associated with each loop
in a real-time program so accurate timing predictions can
be obtained. This paper describes three complementary
methods to support timing analysis by bounding the num-
ber of loop iterations. First, an algorithm is presented
that determines the minimum and maximum number of
iterations of loops with multiple exits. Second, the loop-
invariant variables on which the number of loop iterations
depends are identified for which the user can provide min-
imum and maximum values. Finally, a method is given to
tightly predict the execution time of loops whose number
of iterations is dependent on counter variables of outer
level loops. These methods have been successfully inte-
grated in an existing timing analyzer that predicts the per-
formance for optimized code on a machine that exploits
caching and pipelining. The result is tighter timing analy-
sis predictions and less work for the user.

1. Introduction

To be able to predict the best-case execution times
(BCETs) and worst-case execution times (WCETs) of a
program, one must know the number of iterations that can
be performed by the loops in the program. Under certain
conditions, such as a loop with a single exit, many com-
pilers statically determine the exact number of loop itera-
tions [1]. Applications for determining this number
include more efficient implementations of loop unrolling
[2], software pipelining [3], and exploiting parallelism
across loop iterations [4]. When the number of iterations
cannot be exactly determined, it would be desirable in a
real-time system to know the lower and upper iteration
bounds. These bounds can be used by a timing analysis
tool to more accurately predict BCETs and WCETs.

Many existing timing analyzers require that a user
specify the number of iterations of each loop in the pro-
gram. This specification may be requested interactively
[5, 6]. Thus, each time the timing analyzer is invoked for

∗ Computer Science Department, Florida State University, Talla-
hassee, FL 32306-4530, phone: (850) 644-3506, e-mail: {healy, whal-
ley}@cs.fsu.edu

† Department of Computer Systems, Uppsala University, Swe-
den, phone: +46-18-4717605, e-mail: mic@docs.uu.se

‡ Objectime, Inc., 226 Airport Parkway, #480, San Jose, CA
95110, phone: (408) 441-1124, e-mail: vrustagi@objectime.com

a program, the bounds for every loop in the program must
be specified, which is error prone and tedious for the user.
Alternatively, one could specify this information as asser-
tions in the source code to prevent repeated specifications
of the same information [7, 8, 9]. However, there are still
several disadvantages. First, the user is still required to
write the assertions. Second, there is no guarantee that
the user will specify the correct minimum and maximum
iterations. This problem may easily occur when a user
changes the loop, but forgets to update the corresponding
assertion. Also, code generation strategies, such as
whether to place instructions for the loop exit condition
code at the beginning or end of the loop, may cause the
number of loop iterations to vary by one iteration.
Finally, compiler optimizations, such as loop unrolling,
may affect the number of times a loop iterates. Inhibiting
different code generation strategies or compiler optimiza-
tions to more easily estimate loop bounds would sacrifice
performance, which is quite undesirable.

It would be more desirable to have the compiler auto-
matically and efficiently determine the bounds for each
loop in a program when possible. Some work has been
recently accomplished to determine the number of loop
iterations automatically using abstract interpretation [10].
While this technique is quite powerful, it often results in
significant analysis overhead.

This paper describes three approaches that support tim-
ing analysis by bounding the number of loop iterations.
First, an algorithm is presented that determines a bounded
number of iterations for loops with multiple exits. Sec-
ond, the user can provide information for loop-invariant
variables on which the number of loop iterations depends.
Finally, a method is given to accurately predict the aver-
age number of iterations for loops whose number of itera-
tions can vary depending upon the values of counter vari-
ables of enclosing outer loops. All three of these
approaches are efficiently implemented and result in less
work for a user. The last approach also results in tighter
timing analysis predictions. These approaches were
implemented by modifying thevpo compiler [1] to ana-
lyze loops and this loop analysis information is passed to
a timing analyzer [11, 12, 13] to predict performance.

2. Iterations for Loops with Multiple Exits

In this section we present a method to determine a
bounded number of iterations for natural loops with

-1-
Copyright 1998 IEEE. Published in the Proceedings of RTAS’98.

multiple exits. (1) First, the conditional branches within
the loop that can affect the number of loop iterations are
identified. (2) Next, we calculate when each of the identi-
fied branches can change its result based on the number of
loop iterations performed. (3) Afterwards, the range of
loop iterations when each of these branches can be
reached is determined. (4) Finally, the minimum and
maximum number of iterations for the loop is calculated.

2.1. Identifying the Iteration Branches

Some terms are now defined to facilitate the presenta-
tion of the methods in this paper. A more complete
description can be found elsewhere [14]. Abasic blockis
a sequence of instructions with a single entry point at the
beginning and a single exit point at the end. Anatural
loop is a loop with a single entry point. Theheaderof a
natural loop is the single basic block where the loop is
entered. Transitions from within the loop to the header
are calledback edges. Block A dominatesblock B if
ev ery path from the initial node of the control flow graph
to B has to first go through A. For instance, the header
block of a natural loop dominates all other blocks in the
loop. Likewise, block Bpostdominatesblock A if all
control paths from block A eventually lead to block B. A
block always dominates and postdominates itself. We
define the number of loop iterations as the number of
times the header is executed once the loop is entered [11].

An iteration branchin a loop is a conditional transfer
of control where the choice between the two outgoing
transitions can directly or indirectly affect the number of
loop iterations. The iteration branches in the loop that can
directly affect this number are branches that have (1) a
transition to a basic block outside the loop or (2) a transi-
tion to the header block of the loop or to a block that is
postdominated by the header. Iteration branches that can
indirectly affect the number of loop iterations are those
branches that can conditionally reach blocks containing
different iteration branches. Figure 1 shows an algorithm
to calculate the set of iteration branches I for a loop.

I = {}
DO

FOR each block B in the loop LDO
IF (B has two succs S1 and S2) AND (B ∈/ I) THEN

IF (S1 ∈/ L) OR (S2 ∈/ L) OR
(S1 ∈ PostDom(Header(L))) OR
(S2 ∈ PostDom(Header(L))) OR
(there exists J,K∈ I AND J ≠ K AND

S1 ∈ PostDom(J)AND
S2 ∈ PostDom(K)) THEN

I = I ∪ B
WHILE (any change to I)

Figure 1: Finding the Set of Iteration Branches for a Loop

Figure 2(a) contains the code for a toy C function that
will be used to illustrate the algorithm for calculating loop

iteration bounds for loops with multiple exits. Figure 2(b)
depicts the RTLs, representing SPARC assembly instruc-
tions, that thevpo compiler has generated for this func-
tion. (No delay slots have been filled in order to simplify
the example.) Figure 2(c) explains the RTL notation used.
The loop consists of basic blocks 2, 3, 5, 6, 7, and 8. The
header of the loop is block 7. The algorithm shown in
Figure 1 identifies block 5 as containing an iteration
branch since it has a transition to block 6, which is post-
dominated by the loop header. Blocks 3, 5, and 7 are
identified as having iteration branches since they hav e a
transition to block 4, which is not in the loop. Block 2 is
added to the set of blocks containing iteration branches
since it can transfer to either block 3 or block 5, which
have been identified as containing iteration branches.

: allocated for variable jr[9]
: allocated for variable ir[10]
: high portion of addressHI[<address>]
: low portion of addressLO[<address>]
: integer memory referenceR[<address>]
: comparisonIC=<item>?<item>;
: conditional branchPC=IC<relop>0,<label>;
: returnPC=RT;
: unconditional jumpPC=<label>;

(c) Explanation of RTL Notation in Figure 2(b)

r[10]=0; 1
r[9]=1;
r[11]=HI[_somecond];
PC=L18;

2IC=r[9]?75;L19
PC=IC<=0,L21;

3r[8]=R[r[11]+LO[_somecond]];

L21 5

IC=r[8]?0;
PC=IC==0,L21;

4PC=RT;

IC=r[9]?300;
PC=IC>0,L17;

L17

r[10]=r[10]+1;

L18

6
r[9]=r[9]+3;

IC=r[10]?100; 7
PC=IC>=0,L17;

8PC=L19;

(b) Corresponding SPARC Instructions

(a) Source Code

for (i = 0, j = 1; i < 100; i++, j += 3)
if (j > 75 && somecond || j > 300)

break;
}

main()
{

int i, j;
extern int somecond;

Figure 2: Example Loop with Multiple Exits

-2-

Once the blocks containing iteration branches for the
loop have been identified, a precedence is established that
represents the order that these blocks can be executed on
any giv en iteration of the loop. This precedence relation-
ship can be represented as a Directed Acyclic Graph
(DAG). The nodes in the DAG represent the blocks con-
taining the iteration branches and two additional nodes,
continueand break. The construction of the DAG can
conceptually be accomplished by starting with the graph
representing the loop, replacing all back edges with tran-
sitions to continue, replacing each transition out of the
loop with a transition tobreak, and collapsing all nodes
that do not represent iteration branches. The actual imple-
mentation of the DAG construction started with only
nodes representingcontinue, break, and blocks containing
iteration branches and used domination and postdomina-
tion information to establish the edges between the nodes.
Figure 3 shows the DAG depicting the precedence rela-
tionship between the blocks containing exit conditions
from Figure 2.

7

2 break

break 5

3

continue break

Figure 3: Precedence Relationship
between Iteration Branches in Figure 2

2.2. Determining When Each Iteration Branch
Changes Direction

In this subsection a technique is presented that calcu-
lates when each iteration branch can change its result
based on the number of loop iterations performed. This
technique is similar to those used by other compilers that
can calculate the number of iterations of a loop with a sin-
gle exit [1]. For each iteration branch we derive the infor-
mation shown in Table 1. When all of the requirements
listed in Table 1 are satisfied, the iteration branch is classi-
fied asknown. Otherwise, the iteration branch is classi-
fied asunknown.

Using the derived values, we apply Equation 1 to
straightforwardly calculate on which iteration,Ni, that a
known iteration branchi will change direction. Table 2
shows the values derived for the example in Figure 2. The
iteration branch in block 3 is classified asunknownsince
thevariablesomecond is not a basic induction variable.

(1)Ni =




limit i − (initial i + beforei) + adjusti
beforei + afteri





+ 1

In addition, various checks have to be made in case the
iteration branch will always or never be satisfied. These
checks depend on whether thelimit is greater or less than
the initial value, whether the sum of thebeforeandafter
values are greater or less than zero, and the relational
operator used in the comparison. Figure 4 shows two
loops that require special checks. Our implementation
detects that the loop in Figure 4(a) exits after a single iter-
ation. Recall that the number of iterations is the number
of times that the loop header block (i.e. testingi > 100
in the example) is executed once the loop is entered. The
loop in Figure 4(b) is classified asunboundedsince the
loop may never exit depending on how overflow of neg-
ative integer values is handled.

(a) A Loop That Exits Immediately (b) A Loop That May Never Exit

for (i = 0; i > 100; i++)
A;

for (i = 0; i < 100; i--)
A;

Figure 4: Two Loops Requiring Special Checks

2.3. Determining the Iterations When Each
Iteration Branch Can Be Reached

The next step is to determine the iterations on which it
is possible to execute each node of the DAG. We record
this information as a range of iterations and attach a range
to each node and edge. To calculate these ranges the
DAG is processed in a preorder manner (i.e. all predeces-
sors of a node are processed before the node is pro-
cessed). The head of the DAG is assigned the range
[1..∞]. All other nodes are assigned a range that is the
union of the ranges of all incoming edges.

The outgoing edges of a nodei are assigned ranges
using one of the following two rules:

(1) If iteration branchi is known, thenrelopi and the direction
of the increment (i.e. the sign ofbeforei+afteri) is used to
determine which edge is taken the firstNi-1 iterations.
That edge is assigned the range that is the intersection of
[1..Ni-1] and the range of nodei. The other outgoing edge
is assigned the range that is the intersection of [Ni..∞] and
the range of nodei. If a range assigned to an outgoing
edge is empty, then this edge corresponds to an infeasible
transition and is deleted from the DAG.

(2) If iteration branchi is unknown, then both outgoing edges
are assigned the same range as nodei.

Figure 5 shows the DAG of iteration branches in Fig-
ure 3 with the range of possible iterations for each node
and edge also depicted. Nodes withknown iteration
branches are marked with aK and unknown iteration
branches are marked with aU. Iteration branch 7 will

-3-

Term Explanation Requirement

variable The control variable on which the branch depends,
which is the variable being compared in the block
containing the iteration branch.

The control variable must be a basic induction variable,
which is a variablev whose only assignments within the loop
are of the formv := v ± c wherec is a constant [14].

limit The value being compared to thevariable in the
block containing the branch.

The limit must be a constant. We will describe how this re-
quirement can be relaxed in Section 3.

relop The relational operator used to compare thevari-
ableand thelimit.

Our initial description requires that the relational operator be
an inequality operator (i.e. <,≤, ≥, and >). We will describe
how we relaxed this requirement in Subsection 2.5 to more
accurately handle the equality operators (i.e. == and !=).

initial The value of thevariable when the loop is
entered.1

The initial value must be a constant. We will describe how
this requirement can be relaxed in Section 3.

before The amount by which thevariable is changed be-
fore reaching the iteration branch in each itera-
tion.

The amount by which the control variable is incremented or
decremented must be a constant and these constant changes
must occur on each complete iteration of the loop.2

after The amount by which thevariable is changed af-
ter reaching the iteration branch in each iteration.

The amount by which the control variable is incremented or
decremented must be a constant and these constant changes
must occur on each complete iteration of the loop.

adjust An adjustment value of 0 or 1, which compensates
for the difference between relational operators
(e.g. < and≤).

Table 1: Information Calculated for Each Iteration Branch

branch variable register limit relop initial before after adjust class N

block 2 j r[9] 75 <= 1 0 3 1 known 26
block 3 somecond r[8] 0 == N/A 0 0 N/A unknown N/A
block 5 j r[9] 300 > 1 0 3 1 known 101
block 7 i r[10] 100 >= 0 0 1 0 known 101

Table 2: Derived Information for Each Iteration Branch in Figure 2

take the transition to branch 2 on the first 100 iterations.
Note this iteration range of [1..100] corresponds to the
variablei ’s value range of [0..99]. At this point, all val-
ues of variables have been abstracted as ranges of loop
iterations. Node 3’s iteration branch isunknown. Thus,
its two outgoing edges have ranges that match the range in
node 3. Node 5’s transition to abreakis deleted since the
range associated with that transition is empty (i.e. the
transition is not possible).

7

[1..∞]

K

2

[1..100]

K break

3

[26..100]

U

break

[26..100]

5

[1..100]

K

[1..100]

continue

[26..100]

[26..100]

[1..100] [101..∞]

[1..25]

Figure 5: DAG of Branches with Ranges of Iterations

2.4. Determining the Minimum and Maximum
Loop Iterations

The ranges of iterations associated with each node and
edge of the DAG can be used to calculate the minimum
and maximum number of iterations for the loop. To deter-
mine the minimum and maximum iteration value for each
iteration branch, the DAG is processed in a postorder
manner (i.e. all successors of the node are processed
before the node can be processed). The minimum and
maximum iteration values for the root node of the DAG
will be the minimum and maximum iteration values for
the entire loop. Figure 6 defines the notation used in this
subsection. Note that the range has been calculated using
the rules defined in Subsection 2.3.

The following rules are used to assign minimum and
maximum iteration values to edges.

1 This value is found by searching backwards in the control flow
for assignments tovariable. The search starts with the preheader, which
is the block that has a transition to the loop header and is not in the loop.

2 In other words, the basic blocks containing these changes must
dominate every predecessor block of the header that is in the loop.

-4-

<node_exit_min, node_exit_max>

<edge_exit_min, edge_exit_max>

[edge_range_min..edge_range_max]

highest loop iteration when this edge can be reached

lowest loop iteration when this edge can be reachededge_range_min:

edge_range_max:

edge_exit_min: first iteration when this edge may lead to a break

node_exit_min:

edge_exit_max:

first iteration when this node may lead to a break

node_exit_max:

first iteration when this edge must lead to a break

first iteration when this node must lead to a break

(on subsequent iterations it must also lead to a break)

(on subsequent iterations it must also lead to a break)

Figure 6: Notation Used in Rules
for Assigning Iteration Values

(1) If an edge is to abreak, then both theedge_exit_minand
edge_exit_maxare assigned the value ofedge_range_min.
This is the only point where aboundedvalue can be intro-
duced since these are the only points where the loop can
exit.

(2) If an edge is to acontinue, then theedge_exit_minand
edge_exit_maxvalues for that edge are marked as
unbounded, which we will represent with ‘_’. (These tran-
sitions do not supply any information about when the loop
exits.)

(3) Otherwise, the incoming edge is to a node representing an
iteration branch and theedge_exit_minandedge_exit_max
values assigned to the edge depend upon one of three possi-
ble relations between the range of the edge and the iteration
values of the node. These relations and the corresponding
edge assignments are depicted in Table 3. For example, the
edge assignment whennode_exit_minsatisfies case 1 and
node_exit_maxsatisfies case 2 would be <edge_range_min,
node_exit_max>. Case 1 depicts that theedge_exitis set to
edge_range_minsince this is the first iteration the edge can
be traversed when the edge may lead to abreak. Case 2
shows that theedge_exitis set to thenode_exitwhen it is
within the range of iterations that the edge is executed.
Case 3 illustrates that theedge_exitis set tounbounded
when there is no iteration on which the edge will be tra-
versed after the edge can lead to abreak.

2

3

1

Case Condition Test

node_exit < edge_range_min

edge_range_min <= node_exit &&
node_exit <= edge_range_max

edge_range_max < node_exit

edge_range_min

Assignment

Edge_Exit

node_exit

__

[edge_range_min..edge_range_max]

node_exit (i.e. node_exit_min or node_exit_max)

Table 3: Rules for Assigning
Iteration Values to an Incoming Edge

The following rules are used to assign minimum and
maximum iteration values to nodes.

(1) The node_exit_minfor a node is set to the smallest of the
bounded edge_exit_minvalues on the outgoing edges of
the node or is denoted asunboundedif both outgoing
edges haveunbounded edge_exit_minvalues. (The small-
est value represents the first possibility to exit the loop.)

(2) If the iteration branch associated with a node is classified as
known, then thenode_exit_maxfor the node is set to the
smallest of thebounded edge_exit_maxvalues on the out-
going edges or is denoted asunboundedif both outgoing
edges haveunbounded edge_exit_maxvalues. (The loop
has to exit when it will encounter abreak.)

(3) If the iteration branch associated with a node is classified as
unknown, then thenode_exit_maxfor the node is set to the
largest of theedge_exit_maxvalues on the outgoing edges
of the node or is denoted asunboundedif either outgoing
edge has anunbounded edge_exit_maxvalue. (Use the
largest value when it is not guaranteed that the node will
actually reach the exit associated with a lower value.)

Figure 7 shows the same DAG as in Figure 5, but with
minimum and maximum iteration values assigned to
edges and nodes. Node 5 and its incoming edges are
assignedunboundedvalues since there is no transition to a
break for the range of loop iterations in which they are
executed. Node 3 is assigned a minimum iteration value
of 26 since that is the first possible iteration at which the
node can take a transition to abreak. Node 3’s maximum
iteration value isunboundedsince node 3’s iteration
branch is classified asunknownand there is no guarantee
that the transition to thebreak from node 3 will ever be
taken. The minimum and maximum iterations for the
entire loop is 26 and 101, respectively, since these are the
iteration values in node 7, which is the root exit condition.

7 K

<26,101>
<26,_> <101,101>

break2 K

<26,_>

3 U

<26,_>

break 5 K

<_,_>

continue

<_,_><26,26>

<_,_>

<26,_>

<_,_>

Figure 7: DAG of Iteration Branches
with Minimum and Maximum Iteration Values

-5-

2.5. Supporting Iteration Branches Using
Equality Operators

As stated in Table 1, an iteration branch using an
equality operator (i.e. == or !=) was initially described as
always being treated as anunknownbranch. One reason
for not addressing iteration branches that use the equality
operators is that they may cause loop iteration ranges to
become noncontiguous and would complicate the algo-
rithms for bounding the number of iterations. However,
in many cases iteration branches with equality operators
can be handled using only contiguous ranges of iterations.
For instance, Figure 8(a) contains a loop with an equality
operator that our implementation was able to successfully
bound. Our implementation classifies iteration branches
with equality operators asknown when the following
three additional requirements to those specified in Table 1
are satisfied. (1) First, every path ending in a back edge in
the loop must include the iteration branch. Figure 8(b)
shows an example of a loop that may not execute the test
for equality on the iteration in which the loop could exit.
(2) Next, one of the outgoing transitions of the iteration
branch with an equality operator must be to abreak. (3)
Finally, the following expression, which is part of Equa-
tion 1, must result in an integral value.

limit i − (initial i + beforei)

beforei + afteri

In other words, thevariable must equal thelimit of the
iteration branch on some iteration. Figure 8(c) depicts a
situation where thevariable i will be assigned values (0,
3, ..., 99, 102, ...) that will skip over thelimit (100).

for (i = 0; i != 100; i++)
A;

(c) Unbounded Loop

(a) Bounded Loop (b) Potentially Unbounded Loop

for (i = 0; ; i++) {
if (i < 100 && somecond)

continue;
if (i == 50)

break;
}

for (i = 0; i != 100; i += 3)
A;

Figure 8: Examples of Loops with Iteration
Branches Using Equality Operators

3. Supporting a Nonconstant Loop-Invariant
Number of Iterations

Sometimes a bounded number of iterations for a loop
cannot be determined since the loop exit conditions
involve the values of variables. Traditionally, timing ana-
lyzers have resolved this problem by requiring a user to
specify the maximum number of iterations for a loop

interactively [5, 6] or as an assertion in the source code [7,
8]. Unfortunately, there is no guarantee that the user will
specify the correct number of iterations. Compilers may
employ different code generation strategies or compiler
optimizations that can affect the number of loop itera-
tions. Thus, ev en an astute user may incorrectly specify
the number of loop iterations.

All of the variables on which the number of loop itera-
tions depend are frequently loop invariant. In this case, a
loop-invariant expression is calculated to represent the
number of loop iterations. Essentially, we will still use
Equation 1 defined in Subsection 2.2, but relax the
requirement that thelimit and initial values have to be
constants. Figure 9 shows an example function and corre-
sponding SPARC RTLs. (Some other compiler optimiza-
tions, such as loop strength reduction, have not yet been
performed to simplify the example.) In this example, the
control variable for the loop isr[13] and the limit is
r[12] , which is loop invariant. The block preceding the
loop is examined to determine the value associated with
the limit, which is expanded in the following steps:

1. r[12] # from instruction 12
2. r[9]+r[10] # from instruction 5
3. r[9]+R[r[10]+LO[_n]] # from instruction 4
4. r[9]+R[HI[_n]+LO[_n]] # from instruction 3
5. m+n

: address of array a

: argument m

: variable sum

: variable i

r[8]

r[9]

r[11]

r[13]

int sumarray(a, m)
int a[], m;
{

int i, sum;
extern int n;

sum = 0;
valuebnd m[10:100] n[20:80]
for (i = 1; i < m+n; i++)

sum += a[i];
return sum;

}

(a) Source Code
(c) Register to Variable
Mapping in Figure 9(b)

1r[11]=0; # instruction 1
instruction 2r[13]=1;

r[10]=HI[_n];
r[10]=R[r[10]+LO[_n]];
r[12]=r[9]+r[10];
IC=0?r[12];
PC=IC>=0,L25;

instruction 3
instruction 4
instruction 5
instruction 6
instruction 7

L18 2r[10]=r[13]<<2; # instruction 8
r[10]=R[r[8]+r[10]];
r[11]=r[11]+r[10];
r[13]=r[13]+1;
IC=r[13]?r[12];
PC=IC<0,L18;

instruction 9
instruction 10
instruction 11
instruction 12
instruction 13

L25 3PC=RT; # instruction 14

(b) Corresponding SPARC Instructions

Figure 9: Loop with a Nonconstant
Loop-Invariant Number of Iterations

-6-

The registerr[9] has been allocated to the argument
m, whose value was also passed to the function in the
same register. The compiler remembers the register and
the blocks where each live range of a local variable or
argument is allocated to a register. Thus, the compiler
was able to associate the registerr[9] with the argument
mand that the memory reference is to the global variable
n. We use Equation 1 to generate a symbolic expression
(containing the local variablemand global variablen) to
represent the number of iterations.

N =




limit − (initial + before) + adjust

before+ after





+ 1

=




m + n − (1 + 1)

1 + 0





+ 0 + 1

= m + n − 1

When the compiler can determine that the number of
iterations is nonconstant and loop invariant, the loop-
invariant expression is passed to the timing analyzer. The
user is prompted by the timing analyzer for the minimum
and maximum values for each variable in this expression.
To simplify identification of these variables, the timing
analyzer also informs the user of the function and line
number associated with the loop. After receiving the min-
imum and maximum values for these variables, the timing
analyzer automatically calculates the minimum and maxi-
mum number of loop iterations.3

The authors also modified the compiler to allow the
user to specify assertions about the minimum and maxi-
mum values of variables associated with loops. The bold-
face line in Figure 9(a) contains assertions for the mini-
mum and maximum values of the variablesmandn. The
compiler uses the loop-invariant expression and replaces
the variables with the minimum and maximum specified
values. The minimum number of iterations of 29 and the
maximum number of iterations of 179 is automatically
passed to the timing analyzer and no intervention by the
user is required. Note that the form of a value assertion is
analogous to the form of timing constraint loop assertion
that can be specified in the same environment [15].

When a loop-invariant expression cannot be calculated,
the timing analyzer will prompt the user for the minimum
and maximum number of iterations instead of values of
variables. However, we hav e found that a constant or

3 Note that the timing analyzer will not permit the number of iter-
ations to be fewer than 1. In the above example, a user may indicate that
the minimum values ofm and n are both 0. Simply substituting these
values in the expression would result in the number of loop iterations be-
ing -1. But if the loop is entered, then it has to execute at least one itera-
tion since the number of iterations is defined as the number of times the
loop header block is executed.

loop-invariant number of iterations can be typically calcu-
lated for most loops in the numerical benchmarks and
applications we have examined.

4. Supporting Variant Number of Iterations

The previous sections described approaches to deter-
mine the minimum and maximum number of iterations for
a loop given that the number of iterations depends only
upon either constant or loop-invariant values. Unfortu-
nately, sometimes the number of iterations depends upon
values that can vary. For instance, the number of itera-
tions of an inner loop often depends on the loop control
variable of an outer loop. Consider the followingfor
loops extracted from a sort program:

for (i = 1; i < 99; i++)
for (j = i+1; j < 100; j++)

...

While the number of iterations of the inner loop is loop
invariant with respect to the inner loop, the number of
iterations varies depending on the value of the outer loop
control variable. The number of iterations for the inner
loop will range from 98..1. A naive assumption that the
worst-case number of iterations for the inner loop is
always 98 will result a significant overestimation when
estimating the worst-case performance of the outer loop.
Likewise, a significant underestimation of the best-case
performance of the outer loop would result if the number
of iterations of the inner loop is assumed to always be 1.

The average number of iterations of a inner loop with a
single exit can be calculated when the difference between
the number of loop iterations is incremented by a constant
value each time the inner loop is entered for each iteration
of the outer loop. Assume that:

(1) f is the number of iterations of the inner loop on the first
iteration of the outer loop,

(2) d is the difference in the number of inner loop iterations for
each successive iteration of the outer loop (note thatd may
be negative),

(3) n is the number of times that the outer loop iterates

The following equation represents the average ofn terms,
where each term is the number of iterations of the inner
loop on succeeding iterations of the outer loop. Note that
f + (n − 1)d is the number of iterations of the inner loop
on the last iteration of the outer loop. Thed difference
between the number of loop iterations can be guaranteed
to be a constant when (1) only thelimit or theinitial value
of the inner loop depends on an outer loopvariable and
(2) the increment(before+ after) of the outer loop is an
integral multiple of theincrementof the inner loop. Note
that the average number of iterations may still vary in best

-7-

and worst case since different values ofn may be used.

Navg(f , d, n) =
f + f + (n − 1)d

2

We determine if any of the variables upon which the
number of loop iterations depends is a basic induction
variable for an outer level loop that encloses the current
loop. This dependence could be from theinitial value or
the limit value of the current loop. Consider the source
code and corresponding RTLs in Figure 11. In the exam-
ple the initial value of the inner loop counter variable
r[10] is found to ber[11]+1 . The registerr[11] is
a basic induction variable for the outer loop. The com-
piler passes information about registerr[11] to the tim-
ing analyzer concerning the number of iterations of the
inner loop. This information includes theinitial value (1),
limit (99), andincrement(1) of r[11] . In addition, the
identification of the outer loop for whichr[11] is an
induction variable is also included. The timing analyzer
determines that the number of iterations of the inner loop
can vary from 98..1 since the initial value of the inner
loop (r[11]+1) can vary from 2..99. Note the last value
of r[11] at block 2 is 98 since after the increment in
block 4 the outer loop is exited. Thus, the average num-
ber of iterations for the inner loop will be:

f + f + (n − 1) * d

2
=

98+ 98+ (98− 1) * (−1)

2
= 49. 5

(c) Register to
Variable Mapping
for Figure 11(b)

...
for (i = 1; i < 99; i++)

for (j = i+1; j < 100;
j++)

...
...

r[11]=1;
...

r[10]=r[11]+1;
...

L17

...L21
r[10]=r[10]+1;
IC=r[10]?100;
PC=IC<0,L21;

r[11]=r[11]+1;
IC=r[11]?99;
PC=IC<0,L17;

...

r[11] :

allocated for variable j

allocated for variable i

r[10] :

(b) Corresponding
SPARC Instructions

(a) Source Code

5

4

3

2

1

Figure 11: Number of Inner Loop Iterations
Depends on the Outer Loop Counter Variable

When the timing analyzer performs loop analysis on a
loop whose number of iterations can vary depending upon
an outer loop induction variable, the analyzer will calcu-
late two sets of times. One set is the conventional best
and worst-case times. These times are calculated in case
there is a timing constraint or request for the best or

worst-case time for the inner loop. The other set is the
av erage best and worst-case times using the average num-
ber of iterations. Note that when the average number of
iterations is not an integer (49.5 in the example), the best-
case average time for the loop will be calculated with the
next lower integer (49 in the example) and the worst-case
av erage time will be calculated with the next higher inte-
ger (50 in the example). The reason for the slightly con-
servative approach is that the loop analysis algorithm used
by the timing analyzer is designed to work on an integral
number of iterations [11, 12, 13]. These best and worst-
case conventional and average times are passed up
through the timing tree, which contains a node for each
instance of a loop and function in the program. Included
with the average times is an identification of the outer
loop on which these average times depend. At the point
the outer loop is encountered, the conventional times are
abandoned and only the average times are used.

We enforced a couple of restrictions to ensure that an
av erage number of iterations could be safely used in the
timing analysis. First, we only use an average number of
iterations when an inner loop is executed on every path of
an outer loop. Figure 12 shows an outer loop with two
conditionally executed inner loops. The number of itera-
tions for the first inner loop varies from99..1 . The
number of iterations for the second loop varies from
1..99 . If the variablesomecond is true for the first
half of the outer loop iterations and false for the remain-
ing half, then an underestimation will occur in the worst-
case timing prediction if the average number of iterations
were used for either inner loop. Second, we do not use
the average times for an inner loop if it is nested within
another loop for which we would calculate an average
number of iterations. We hav e future plans to relax both
of these restrictions so the number of iterations for more
loops can be accurately bounded [16].

for (i = 0; i < 100; i++) {
if (somecond)

for (j = i+1; j < 100; j++)
A;

else
for (j = 0; j < i; j++)

A;
}

Figure 12: Example of
Conditionally Executed Inner Loops

Given these restrictions, the average number of itera-
tions can safely be used for the loop analysis in our timing
analyzer. We always choose the worst possible execution
time for a given iteration for our worst-case loop analysis.
Due to the manner in which our timing analyzer handles
cache misses, the predicted time for a given iteration can
never be exceeded by the predicted time for the following

-8-

iteration of the loop (i.e.predicted_time(iterationj) ≥ pre-
dicted_time(iteration j+1)) [11, 12, 13]. Thus, the worst-
case loop analysis using the average number of iterations
will be safe since the execution times of the firstNavg iter-
ations will be at least as long as the execution times of any
remaining iterations. An analogous argument can be
made for best case.

Tables 4 and 5 show example programs that benefit
from obtaining a more accurate estimation of loops whose
number of iterations can vary. Note that theSortprogram
has been used in the past as one of the test programs to
evaluate our timing analyzer [11, 12, 13]. These pro-
grams show the best and worst-case cycles required for
executing with instruction caching and pipelining for the
MicroSPARC I [17]. When using the average inner loop
predictions, the predicted execution times were signifi-
cantly tighter. TheSortandSymprograms did not have a
significant underestimation (i.e.previous ratio) in best
case. In the best case forSort the values were initially
sorted and the sort function exited once the array has been
detected to be in ascending order. Likewise, theSympro-
gram terminates when it finds the first pair of values that
are not equal. In worst case the number of iterations for
each inner loop dependent on an outer loop variable was
previously overestimated by about a factor of two. The
Integprogram had a higher best-caseprevious ratioand a
lower worst-caseprevious ratiosince there were other
loops in this program that contributed more significantly
to the total execution time.

Name Description or Emphasis

Integ Evaluates a Double Integral over a Trapezoidal Region
Interp Polynomial Interpolation of 500 Points
Sort Bubblesort of 500 Integers
Sym Tests If a 500x500 Matrix Is Symmetric

Table 4: Test Programs

Best-Case Results

Observed Previous Prev. Current Curr.
Estimated Estimated

Cycles Cycles
Cycles Ratio Ratio

Name

Integ 12,050,092 8,049,618 0.668 12,033,618 0.999
Interp 6,485,878 143,064 0.022 6,479,865 0.999
Sort 19,966 19,950 0.999 19,950 0.999
Sym 171 171 1.000 171 1.000

Worst-Case Results

Observed Previous Prev. Current Curr.
Estimated Estimated

Cycles Cycles
Cycles Ratio Ratio

Name

Integ 15,427,332 20,542,118 1.332 15,437,618 1.001
Interp 25,468,904 50,702,358 1.991 25,478,906 1.000
Sort 7,672,281 15,251,603 1.988 7,672,292 1.000
Sym 2,013,116 4,001,133 1.988 2,013,117 1.000

Table 5: Timing Analysis Results

5. Future Work

We plan to bound loop iterations for additional loops
that our approach currently does not address. Occasion-
ally, some loops have counter variables that are incre-
mented by nonconstants. If the sequence of values used
for the incrementcan be determined, then we may still be
able to calculate a bounded number of iterations. Like-
wise, we will attempt to address multiple nested loops that
are all dependent on the counter variables of outer loops.

Calculating the range of iterations when each block in
a loop may be executed has other useful applications.
This information may be used to modify our loop timing
analysis to obtain tighter timing predictions since the tim-
ing analyzer would know in which iterations each path
through a loop may be traversed. The fraction of time
that a path within a loop may be executed can also be
sometimes determined by examining the range of values
for outer level loop counter variables when branches
within that path depend on such variables. Thus, the
approach of calculating an average time for a loop or a
function may also be used to obtain tighter timing predic-
tions even when the number of loop iterations do not vary.
Finally, the range of iterations information for each block
may be used by an optimizing compiler to eliminate
nodes or transitions on infeasible paths and to restructure
loops to produce more efficient code.

6. Conclusions

In this paper we have presented three different methods
for bounding the number of iterations of a loop. First, a
method was described that determines the minimum and
maximum number of iterations of loops with multiple
exits and also detects infeasible paths. For instance, loops
of the form in Figure 13(a) that can exit prematurely when
some condition becomes true are quite common and the
bounded number of iterations of such loops can be
detected by the general algorithm presented in the paper.

Second, a nonconstant loop-invariant number of itera-
tions is calculated when the variables on which the num-
ber of iterations depends cannot change values inside of
the loop. Figure 13(b) depicts an example of this com-
mon type of loop. The user can specify the minimum and
maximum values of these variables by placing assertions
in the source code or by interactively responding to
prompts from the timing analyzer. These assertions are
more reliable than specifying the minimum and maximum
number of loop iterations directly since the user does not
have to be aware of the code generation strategies or opti-
mizations performed by the compiler.

-9-

...

if (somecond)

...

}

...
for (i = 0; i < n; i++) {

}

for (i = 0; i < 100; i++) {

...

}

for (i = 0; i < 99; i++)
for (j = i+1; j < 100; j++) {

(a) Loop with Multiple Exits

(b) Loop with a Nonconstant
Loop-Invariant Number

of Iterations

(c) Inner Loop Whose Number of Iterations
Depends on an Outer Loop Counter Variable

break;

Figure 13: Common Forms of Loops

Finally, timing analysis support is given to tightly pre-
dict the execution time of loops whose number of itera-
tions is dependent on counter variables of outer level
loops. These loops, such as the one shown in Figure
13(c), appear frequently in programs and can result in sig-
nificant underestimations in best-case predictions and
overestimations in worst-case predictions. Our approach
more tightly predicts loops when the initial value or limit
of the control variable in an inner loop depends on a con-
trol variable of an enclosing outer loop.

These methods have been successfully integrated in an
existing compiler and an associated timing analyzer that
predicts the performance for optimized code on a machine
that exploits caching and pipelining. The result is tighter
and more reliable timing analysis predictions and less
work for the user.

7. Acknowledgements

The authors thank Jack Davidson for allowingvpo
to be used for this research. Manuel Benitez implemented
the original algorithm invpo to calculate the number of
iterations of a loop with a single exit condition. Frank
Mueller provided several helpful suggestions on an earlier
draft of this paper.

8. References

[1] M. E. Benitez and J. W. Davidson, “A Portable Global
Optimizer and Linker,”Proceedings of the SIGPLAN ’88
Symposium on Programming Language Design and
Implementation, pp. 329-338 (June 1988).

[2] J. Hennessy and D. Patterson,Computer Architecture: A
Quantitative Approach, Second Edition,Morgan Kauf-
mann, San Francisco, CA (1996).

[3] M. Lam, “Software Pipelining: An Effective Scheduling
Technique for VLIW Machines,”Proceedings of the
SIGPLAN ’88 Symposium on Programming Language
Design and Implementation, pp. 318-328 (June 1988).

[4] H. S. Stone,High-Performance Computer Architecture,
Second Edition,Addison Wesley, Reading, MA (1990).

[5] C. Y. Park and A. C. Shaw, “Experiments with a Program
Timing Tool Based on a Source-Level Timing Schema,”
Computer24(5) pp. 48-57 (May 1991).

[6] Y. S. Li, S. Malik, and A. Wolfe, “Efficient Microarchi-
tecture Modeling and Path Analysis for Real-Time Soft-
ware,”Proceedings of the Sixteenth IEEE Real-Time Sys-
tems Symposium, (December 1995).

[7] R. Chapman, A. Wellings, and A. Burns, “Integrated
Program Proof and Worst Case Timing Analysis of
SPARK Ada,”Proceedings of the ACM SIGPLAN Work-
shop on Language, Compiler, and Tool Support for Real-
Time Systems, (June 1994).

[8] P. Puschner and C. Koza, “Calculating the Maximum
Execution Time of Real-Time Programs,”Real-Time Sys-
tems1(2) pp. 159-176 (September 1989).

[9] E. Kligerman and A. Stoyenko, “Real-Time Euclid: A
Language for Reliable Real-Time Systems,”IEEE Trans-
actions on Software Engineering12(9) pp. 941-949
(September 1986).

[10] A. Ermedahl and J. Gustafsson, “Deriving Annotations
for Tight Calculation of Execution Time,”Proceedings of
European Conference on Parallel Processing, pp.
1298-1307 (August 1997).

[11] R. Arnold, F. Mueller, D. Whalley, and M. Harmon,
“Bounding Worst-Case Instruction Cache Performance,”
Proceedings of the Fifteenth IEEE Real-Time Systems
Symposium, pp. 172-181 (December 1994).

[12] C. A. Healy, D. B. Whalley, and M. G. Harmon, “Inte-
grating the Timing Analysis of Pipelining and Instruction
Caching,”Proceedings of the Sixteenth IEEE Real-Time
Systems Symposium, pp. 288-297 (December 1995).

[13] R. T. White, F. Mueller, C. A. Healy, D. B. Whalley, and
M. G. Harmon, “Timing Analysis for Data Caches and
Set-Associative Caches,”Proceedings of the IEEE Real-
Time Technology and Applications Symposium, pp.
192-202 (June 1997).

[14] A. V. Aho, R. Sethi, and J. D. Ullman,Compilers Princi-
ples, Techniques, and Tools,Addison-Wesley, Reading,
MA (1986).

[15] L. Ko, C. Healy, E. Ratliff, R. Arnold, D. Whalley, and
M. Harmon, “Supporting the Specification and Analysis
of Timing Constraints,”Proceedings of the IEEE Real-
Time Technology and Applications Symposium, pp.
170-178 (June 1996).

[16] C. A. Healy,Addressing Data Dependencies for Timing
Analysis, PhD Prospectus, Florida State University
(April 1998).

[17] Texas Instruments, Inc.,Product Preview of the
TMS390S10 Integrated SPARC Processor, 1993.

-10-

