Bounding Loop Iterations for Timing Analysis

Christopher Hea@ Mikael Sj('jdinJr Viresh Rustagl David WhaIIe)F

Abstract a program, the bounds for every loop in the program must

Static timing analyzers need to know the minimum angbe specified, which is error prone and tedious for the user.
maximum number of iterations associated with each loopAlternatively, one could specify this information as asser-
in a real-time program so accurate timing predictions can tions in the source cgde to prevent repeated specn‘lcatl(_)ns
be obtained. This paper describes three complementary?f the same information [7, 8, 9]. However, there are still
methods to support timing analysis by bounding the num_seyeral dlsadvantages. First, the user is still required to
ber of loop iterations. First, an algorithm is presented Write the assertions. Second, there is no guarantee that
that determines the minimum and maximum number ofhe user will specify the correct minimum and maximum
iterations of loops with multiple exits. Second, the loop- itérations. This problem may easily occur when a user
invariant variables on which the number of loop iterations changes the loop, but forgets to update the corresponding
depends are identified for which the user can provide min-@ssertion. Also, code generation strategies, such as
imum and maximum values. Finally, a method is given toWhether to place instructions for the loop exit condition
tightly predict the execution time of loops whose numbercode at the beginning or end of the loop, may cause the
of iterations is dependent on counter variables of outer 'umber of loop iterations to vary by one iteration.
level loops. These methods have been successfully intd=inally, compiler optimizations, such as loop unrolling,
grated in an existing timing analyzer that predicts the per- May affect the number of times a loop iterates. Inhibiting
formance for optimized code on a machine that exploitsdifferent code generation strategies or compiler optimiza-
caching and pipelining. The result is tighter timing analy- tions to more easily estimate loop bounds would sacrifice

sis predictions and less work for the user. performance, which is quite undesirable.
_ It would be more desirable to have the compiler auto-
1. Introduction matically and efficiently determine the bounds for each

)) . loop in a program when possible. Some work has been
To be able to predict the best-case execution timesyecently accomplished to determine the number of loop
(BCETSs) and worst-case execution times (WCETS) of ajierations automatically using abstract interpretation [10].

program, one must know the number of iterations that canyynile this technique is quite powerful, it often results in
be performed by the loops in the program. Under certaingjgnificant analysis overhead.

conditions, such as a loop with a single exit, many com- Thi q ibes th hes that 1
pilers statically determine the exact number of loop itera-. IS paper describes three approaches that support tim-

tions [1]. Applications for determining this number Ing analysis b_y boynding the number of Ic_)op iterations.
include more efficient implementations of loop unrolling First, an algorithm is presented that determines a bounded

[2], software pipelining [3], and exploiting parallelism number of iterations for loops with multiple exits. Sec-

across loop iterations [4]. When the number of iterationsonq the user can provide |nformat|on_for Ipop—lnvarlant
cannot be exactly determined, it would be desirable in avarlables on which the number of loop iterations depends.
Finally, a method is given to accurately predict the aver-

real-time system to know the lower and upper iteration

bounds. These bounds can be used by a timing analysigge number of iteratior_1$ for loops whose number of iterg—
tool to more accurately predict BCETs and WCETSs. tions can vary dependmg upon the values of counter vari-
ables of enclosing outer loops. All three of these

Many existing timing analyzers require that a user gpproaches are efficiently implemented and result in less
specify the number of iterations of each loop in the pro-\york for a user. The last approach also results in tighter
gram. This specification may be requested interactivelytiming analysis predictions. These approaches were
[5, 6]. Thus, each time the timing analyzer is invoked for implemented by modifying thepo compiler [1] to ana-
lyze loops and this loop analysis information is passed to
a timing analyzer [11, 12, 13] to predict performance.

OComputer Science Department, Florida State University, Talla-
hassee, FL 32306-4530, phone: (850) 644-3506, e-mail: {healy, whal-
ley}@cs.fsu.edu

t Department of Computer Systems, Uppsala University, Swe- 2. Iterations for Loops with Multiple Exits
den, phone: +46-18-4717605, e-mail: mic@docs.uu.se

T Objectime, Inc., 226 Airport Parkway, #480, San Jose, CA In this section we present a method to determine a

95110, phone: (408) 441-1124, e-mail: vrustagi@objectime.com - . .
P (408) 9i@obj bounded number of iterations for natural loops with

-1-
Copyright 1998 IEEE. Published in the Proceedings of RTAS'98.

multiple exits. (1) First, the conditional branches within iteration bounds for loops with multiple exits. Figure 2(b)
the loop that can affect the number of loop iterations aredepicts the RTLs, representing SPARC assembly instruc-
identified. (2) Next, we calculate when each of the identi- tions, that thevpo compiler has generated for this func-
fied branches can change its result based on the number ¢&ibn. (No delay slots have been filled in order to simplify
loop iterations performed. (3) Afterwards, the range of the example.) Figure 2(c) explains the RTL notation used.
loop iterations when each of these branches can béhe loop consists of basic blocks 2, 3, 5, 6, 7, and 8. The
reached is determined. (4) Finally, the minimum and header of the loop is block 7. The algorithm shown in
maximum number of iterations for the loop is calculated. Figure 1 identifies block 5 as containing an iteration
branch since it has a transition to block 6, which is post-
dominated by the loop header. Blocks 3, 5, and 7 are
Some terms are now defined to facilitate the presenta-ide”tiﬁed as having iteration branches since they have a
tion of the methods in this paper. A more complete transition to block 4, which is not i_n_the_loop._ Block 2 is
description can be found elsewhere [14]basic blockis added to the set of blocks containing iteration branches
since it can transfer to either block 3 or block 5, which

a sequence of instructions with a single entry point at the i o L X
beginning and a single exit point at the end.natural have been identified as containing iteration branches.

loop is a loop with a single entry point. Theaderof a
natural loop is the single basic block where the loop is
entered. Transitions from within the loop to the header
are calledback edges Block A dominatesblock B if o o
.. for (i=0,j=1;i<100; i++, j += 3)

every path from the initial node of the control flow graph if (j > 75 && somecond || j > 300)
to B has to first go through A. For instance, the header break;

block of a natural loop dominates all other blocks in the
loop. Likewise, block Bpostdominateslock A if all

2.1. ldentifying the Iteration Branches

main()

inti, j;
extern int somecond;

(a) Source Code

control paths from block A eventually lead to block B. A ;E,]o:]zo !
block always dominates and postdominates itself. We r[11]=HI[_somecond];
. . . PC=L18;
define the number of loop iterations as the number of
times the header is executed once the loop is entered [11]. IC=r9]775: >
PC=IC<=0,L21;

An iteration branchin a loop is a conditional transfer
of control where the choice between the two outgoing

r[8]=R[r[11]+LO[_somecond]];

transitions can directly or indirectly affect the number of IC=r[8]?0;
loop iterations. The iteration branches in the loop that can PC=IC==0L21;
directly affect this number are branches that have (1) a
transition to a basic block outside the loop or (2) a transi- L17 [Pe=RT: 4
tion to the header block of the loop or to a block that is \C=1[9]7300:
postdominated by the header. Iteration branches that can PC=IC>0,L17; 5
indirectly affect the number of loop iterations are those
branches that can conditionally reach blocks containing r[10]=r[10]+1; 6
different iteration branches. Figure 1 shows an algorithm et
to calculate the set of iteration branches I for a loop. C={10]7100; T
I={ PC=IC>=0,L17;
DO Y
FOR each block B in the loop LDO | PC=L19; 8

IF (B hastwo succs S1 and)SAND (B 1) THEN
IF(S10L) OR (S20L) OR
(S10PostDom(Header(L)) OR
(S2 0 PostDom(Header(L)) OR
(there exists J,KII AND J#K AND

(b) Corresponding SPARC Instructions

r[9] :allocated for variable j
r[10] : allocated for variable i

Hi[<address>] - high portion of address
S10PostDom(J)AND LO[<address>] :low portion of address
S2 0PostDom(K) THEN R[<address>] :integer memory reference
I=10B IC=<item>?<item>; : comparison

WHILE (any change to)l PC=IC<relop>0,<label>; : conditional branch
PC=RT,; :return

Figure 1: Finding the Set of Iteration Branches for a Loop PC=<label>; :unconditional jump

(c) Explanation of RTL Notation in Figure 2(b)

Figure 2(a) contains the code for a toy C function that

will be used to illustrate the algorithm for calculating loop Figure 2: Example Loop with Multiple Exits

Once the blocks containing iteration branches for the Oimit; — (initial; + before) + adjust J
loop have been identified, a precedence is established that Ni =0 before + after, oF
represents the order that these blocks can be executed on 0 ' 0

any given iteration of the loop. Thisf precedence _relation- In addition, various checks have to be made in case the
ship can be represented as a Directed Acyclic Graphyeration pranch will always or never be satisfied. These
(DAG). The nodes in th®AG represent the blocks con- opacks depend on whether fiit is greater or less than
taining the iteration branches and two additional nOdeS'theinitiaI value. whether the sum of tieforeand after
continueand break The construction of th®AG can \51yes are greater or less than zero, and the relational
conceptually be accomplished by starting with the graphqperator used in the comparison. Figure 4 shows two
representing the loop, replacing all back edges with trany,oq5 that require special checks. Our implementation
sitions to continue replacing each transition out of the - yaiects that the loop in Figure 4(a) exits after a single iter-
loop with a transition tdreak and collapsing all nodes 445, - Recall that the number of iterations is the number
that do not represent iteration branches. The actual impley times that the loop header block (i.e. testirg 100
mentation of theDAG construction started with only j, the example) is executed once the loop is entered. The
nodes representingpntinue break and blocks containing loop in Figure 4(b) is classified amboundedsince the

iteration branches and used domination and postdominaroop may never exit depending on how overflow of neg-
tion information to establish the edges between the nodes,;; o integer values is handled.

Figure 3 shows th®AG depicting the precedence rela- o , o ,
tionship between the blocks containing exit conditions 0r(=0:1>100: 7 for 0= 0i1<100:+)
from Figure 2. (a) A Loop That Exits Immediately (b) A Loop That May Never Exit

Figure 4: Two Loops Requiring Special Checks

1 @)

2.3. Determining the Iterations When Each
Iteration Branch Can Be Reached

The next step is to determine the iterations on which it
is possible to execute each node of the DAG. We record
continue break this information as a range of iterations and attach a range
to each node and edge. To calculate these ranges the
DAG is processed in a preorder manner (i.e. all predeces-
sors of a node are processed before the node is pro-
o) cessed). The head of tHeAG is assigned the range
2.2. Determining When Each Iteration Branch [1..0]. All other nodes are assigned a range that is the

Changes Direction union of the ranges of all incoming edges.

Figure 3: Precedence Relationship
between Iteration Branches in Figure 2

In this subsection a technique is presented that calcu- 1he outgoing edges of a nodeare assigned ranges
lates when each iteration branch can change its result'Sing one of the following two rules:
based on the number of loop iterations performed. This(1) If iteration branch is known thenrelopi and the direction
technique is similar to those used by other compilers that ~ of the increment (i.e. the sign béfore+after) is used to
can calculate the number of iterations of a loop with a sin- determine which edge is taken the fiNt1 iterations.
gle exit [1]. For each iteration branch we derive the infor- That edge is assigned the range that is the intersection of
mation shown in Table 1. When all of the requirements [1..Ni-1] and the range of node The other outgoing edge
listed in Table 1 are satisfied, the iteration branch is classi- 'S sSigned the range that is the intersectiomNokq] and

. - the range of nodé If a range assigned to an outgoing
fied asknown Otherwise, the iteration branch is classi edge is empty, then this edge corresponds to an infeasible

fied asunknown transition and is deleted from the DAG.
Using the derived values, we apply Equation 1 10 (2) if jteration branchi is unknown then both outgoing edges
straightforwardly calculate on which iteratioNi, that a are assigned the same range as node

knowniteration branch will change direction. Table 2 : . . -
shows the values derived for the example in Figure 2. The F|gur§ 5 shows th®AG of .|tera.t|on pranches In Fig-
iteration branch in block 3 is classified wsknownsince ure 3 with the range of possible iterations for each node

the variable somecond is not a basic induction variable. and edge also deplcted.. Nodes wihown !terat!on
branches are marked with K& and unknowniteration

branches are marked withla Iteration branch 7 will

Term Explanation Requirement

variable The control variable on which the branch depends The control variable must be a basic induction variable,
which is the variable being compared in the block which is a variable whose only assignments within the loof
containing the iteration branch. are of the fornv := v £ c wherec is a constant [14].
limit The value being compared to thariable in the The limit must be a constant. We will describe how this re-
block containing the branch. guirement can be relaxed in Section 3.
relop The relational operator used to compare vage- Our initial description requires that the relational operator be
ableand thdimit. an inequality operator (i.e. <, 2, and >). We will describe

how we relaxed this requirement in Subsection 2.5 to mare
accurately handle the equality operators (i.e. == and !=).

initial The value of thevariable when the loop is The initial value must be a constant. We will describe haw
entered- this requirement can be relaxed in Section 3.

before The amount by which theariable is changed be- The amount by which the control variable is incremented (or
fore reaching the iteration branch in each itera- decremented must be a constant and these constant changes
tion. must occur on each complete iteration of the I%)op.

after The amount by which theariable is changed af- The amount by which the control variable is incremented jor
ter reaching the iteration branch in each iteration. decremented must be a constant and these constant changes

must occur on each complete iteration of the loop.

adjust An adjustment value of 0 or 1, which compensates
for the difference between relational operators|
(e.g. < andk).

Table 1: Information Calculated for Each Iteration Branch

branch variable register limi relop initidl befofe after adjllist clags N
block 2 || j r[9] 75 <= 1 0 3 1 known 26
block 3 || somecond r[8] 0 == N/A 0 0 N/A unknown N/A
block 5 || j r[9] 300 > 1 0 3 1 known 101
block 7 || i r[10] 100 >= 0 0 1 0 known 101

Table 2: Derived Information for Each Iteration Branch in Figure 2

take the transition to branch 2 on the first 100 iterations.2.4. Determining the Minimum and Maximum

Note this iteration range of [1..100] corresponds to the Loop lterations

variablei 's value range of [0..99]. At this point, all val-

ues of variables have been abstracted as ranges of loop The ranges of iterations associated with each node and
iterations. Node 3's iteration branch imknown Thus, €dge of theDAG can be used to calculate the minimum
its two outgoing edges have ranges that match the range ignd maximum number of iterations for the loop. To deter-
node 3. Node 5’'s transition toteeakis deleted since the mine the minimum and maximum iteration value for each
range associated with that transition is empty (i.e. theiteration branch, thédAG is processed in a postorder

transition is not possible). manner (i.e. all successors of the node are processed
before the node can be processed). The minimum and
7 ¥ maximum iteration values for the root node of the DAG
[1.100 [1..0] 101.0] will be the minimum and maximum iteration values for
the entire loop. Figure 6 defines the notation used in this
K . .
2 break subsection. Note that the range has been calculated using
[26..100 [1..100] the rules defined in Subsection 2.3.
3 Y [L.25] The following rules are used to assign minimum and
26..1 - i i i
[26..100 [26..100] 26..100] maximum iteration values to edges.
break 5 ¢
[1.100] [1..100] ! This value is found by searching backwards in the control flow
for assignments teariable The search starts with the preheader, which
continue is the block that has a transition to the loop header and is not in the loop.
Figure 5:DAG of Branches with Ranges of Iterations ZIn other words, the basic blocks containing these changes must

dominate every predecessor block of the header that is in the loop.

The following rules are used to assign minimum and

[edge_range_min..edge_range_max] maximum iteration values to nodes.
<edge_exit_min, edge_exit_max>
(1) Thenode_exit_mirfor a node is set to the smallest of the
<node_exit_min, node_exit_max> bounded edge_exit_mialues on the outgoing edges of
the node or is denoted amboundedif both outgoing

edge_range_min: lowest loop iteration when this edge can be reache edges haveinbounded edge_exit_mialues. (The small-

edge_range_max: highest loop iteration when this edge can be reached est value represents the first possibility to exit the loop.)
ejge—e)fit—mi”: grSt lteration "":e” t:?s egge may 'Taddm a bb’ea"k (2) If the iteration branch associated with a node is classified as
edge_exit_max: first iteration when this edge must lead to a breal : ;

(on subsequent iterations it must also lead to a break) l;nmoa\lll\:gstthspt;rzgsgsggxgan;a)te(;tthn?&;?::s If)nsff:emottjrt]e
node_exit_min: first iteration when this node may lead to a break going edges or is denotedg aEboudeedf both outgoing
node_exit_max: first iteration when this node must lead to a break .

(on subsequent iterations it must also lead to a break) ﬁdges h&f.ve,lrr]IbOL.md(i‘ld Edge—e)%emg;alues' (The IOOp

as to exit when it will encounte a
Flfgur: 6'. thatllon U§ed\|/n|RuIes (3) If the iteration branch associated with a node is classified as
or Assigning lteration Values unknown then thenode_exit_masor the node is set to the

largest of theedge_exit_maxalues on the outgoing edges
of the node or is denoted aaboundedf either outgoing
edge has amunbounded edge_exit_mamlue. (Use the
largest value when it is not guaranteed that the node will

(1) If an edge is to #reak then both theedge exit_mirand
edge_exit_maare assigned the value efige_range_min
This is the only point where roundedvalue can be intro-

duced since these are the only points where the loop can . . .
exit. actually reach the exit associated with a lower value.)

(2) If an edge is to aontinue then theedge_exit_mirand 'F.igure 7 shows the same DA(;; as in Figure 5{ but with
edge_exit_ maxvalues for that edge are marked as Minimum and maximum iteration values assigned to
unboundedwhich we will represent with . (These tran- ~ €dges and nodes. Node 5 and its incoming edges are
sitions do not supply any information about when the loop assignedinboundedvalues since there is no transition to a
exits.) break for the range of loop iterations in which they are
Otherwise, the incoming edge is to a node representing arfeXecuted. Node 3 is assigned a minimum iteration value
iteration branch and thedge_exit_mirandedge_exit max Of 26 since that is the first possible iteration at which the
values assigned to the edge depend upon one of three possitode can take a transition tdeeak Node 3's maximum

ble relations between the range of the edge and the iteratioriteration value isunboundedsince node 3's iteration
values of the node. These relations and the correspondindoranch is classified amknownand there is no guarantee
edge assignments are depicted in Table 3. For example, thghat the transition to thbreak from node 3 will ever be
edge assignment wherode_exit_mirsatisfies case 1 and taken. The minimum and maximum iterations for the
node_exit_masatisfies case 2 would bedge_range_min gpiire Joop is 26 and 101, respectively, since these are the

nOde—eX't—ma’(. .Case 1 d.ep'CtS t.hat.tmg.e—ex'ts setto iteration values in node 7, which is the root exit condition.
edge_range_misince this is the first iteration the edge can

be traversed when the edge may lead twemk Case 2

shows that thedge_exiis set to thenode_exitwhen it is 7 ¢

within the range of iterations that the edge is executed. <26,101>
) " <26,_> <101,101>

Case 3 illustrates that thedge_exitis set tounbounded -

®3)

. K
when there is no iteration on which the edge will be tra- 2 break
versed after the edge can lead toeak o6 = <26, >
3 U
Edge_Exit <._>
Case Condition Test Amg:;mgt 26265 <26, > ..
1 ° node_exit < edge_range min edge range_min break 5\
o edge_range_min <= node_exit && . <__>
2 go&e_e?(i(<= edge_ran&e_max node_exit <, >
3 ° edge_range_max < node_exit — continue
[edge. range min..edge range_max] Figure 7:DAG of Iteration Branches
® node exit (i.e. node, exit_min or node_exit_max) with Minimum and Maximum Iteration Values

Table 3: Rules for Assigning
Iteration Values to an Incoming Edge

2.5. Supporting Iteration Branches Using
Equality Operators

interactively [5, 6] or as an assertion in the source code [7,
8]. Unfortunately, there is no guarantee that the user will
specify the correct number of iterations. Compilers may
As stated in Table 1, an iteration branch using anemploy different code generation strategies or compiler
equality operator (i.e. == or !=) was initially described as optimizations that can affect the number of loop itera-
always being treated as anknownbranch. One reason tions. Thus, even an astute user may incorrectly specify
for not addressing iteration branches that use the equalitthe number of loop iterations.
operators is that they may cause loop iteration ranges to

. : All of the variables on which the number of loop itera-
become noncontiguous and would complicate the algo-,. . .)
.) . X tions depend are frequently loop invariant. In this case, a
rithms for bounding the number of iterations. However,

:) . . ; loop-invariant expression is calculated to represent the
in many cases iteration branches with equality operators

can be handled using only contiguous ranges of iterationsnumber of loop iterations. Essentially, we will still use

. “Equation 1 defined in Subsection 2.2, but relax the
For instance, Figure 8(a) contains a loop with an equality . - o
. X requirement that théimit and initial values have to be
operator that our implementation was able to successfully

. i e . constants. Figure 9 shows an example function and corre-
bound. Our implementation classifies iteration branches 9 b

with equality operators ak&nown when the following sponding SPARC RTLs. (Some other compiler optimiza-

three additional requirements to those specified in Table 1“0”8’ such as .Ioop_ strength reduction, h:_;we not yet been
erformed to simplify the example.) In this example, the

are satisfied. (1) First, every path ending in a back edge ir} and the limit is

. . . . control variable for the loop if13
the loop must include the iteration branch. Figure 8(b) r1[12] which is loop invariaF\)nt.E[Tr}e block preceding the

shows an example of a loop that may not execute the te i
X . n . .. _loop is examined to determine the value associated with
for equality on the iteration in which the loop could exit. - S . . ;
the limit, which is expanded in the following steps:

(2) Next, one of the outgoing transitions of the iteration

branch with an equality operator must be toreak (3) 1.1[12] # from instruction 12
i i i ich i - 2. r[9]+r[10] # from instruction 5
Elnally, the foIIOW|r_19 expression, which is part of Equa 3 ([OJ+RIL0LOL n]] # from instruction 4
tion 1, must result in an integral value. 4. r[9]+R[HI[_nJ+LO[_n]] # from instruction 3
5. m+n

limit; — (initial; + before)
before + after;

int sumarray(a, m)

In other words, thevariable must equal théimit of the ‘{“‘ afl, m;

iteration branch on some iteration. Figure 8(c) depicts a inti, sum; 8] :address of array
situation where theariablei will be assigned values (0, extern int n; 9] - argument m

3, ..., 99, 102, ...) that will skip over thimit (100). sum =0; (1] variable sum

valuebnd m[10:100] n[20:80]
for (i =1;i < m+n; i++)

r[13] :variablei

for (i=0;;i++) { sum += afi;
if (i < 10(_) && somecond) return sum:
)) . continue;
for (i=0;i!=100; i++) if (i == 50) } (c) Register to Variable
A; break; (a) Source Code Mapping in Figure 9(b)
}
() Bounded Loop (b) Potentially Unbounded Loop r[11]=0; #instruction1 1
r[13]=1; # instruction 2
S L r[10]=HI[_n]; # instruction 3
for ('AT 0;i!=100;i+=3) f[L0]=R[FLL0J+LO[_n]]; # instruction 4
’ r[12]=r[9]+r[10]; # instruction 5
(c) Unbounded Loop 1C=07?r[12]; # instruction 6
PC=IC>=0,L25; # instruction 7

Figure 8: Examples of Loops with Iteration
Branches Using Equality Operators

L18 | r[10]=r[13]<<2;

r{10]=R[r[8]+r[10]];
r[11]=r[11]+r[10];

#instruction8 2
instruction 9
instruction 10

3. Supporting a Nonconstant Loop-Invariant r13]=r[13]+1; #instruction 11

. IC=r[13]?r[12]; # instruction 12

Number of Iterations PC=IC<0,L18; # instruction 13
Sometimes a bounded number of iterations for a loop L25 | PC=RT, #instruction 14 3 |

cannot be determined since the loop exit conditions
involve the values of variables. Traditionally, timing ana-
lyzers have resolved this problem by requiring a user to
specify the maximum number of iterations for a loop

(b) Corresponding SPARC Instructions

Figure 9: Loop with a Nonconstant
Loop-Invariant Number of Iterations

The register[9] has been allocated to the argument loop-invariant number of iterations can be typically calcu-
m whose value was also passed to the function in thdated for most loops in the numerical benchmarks and
same register. The compiler remembers the register anépplications we have examined.
the blocks where each live range of a local variable or
argument is allocated to a register. Thus, the compiler4, Supporting Variant Number of Iterations
was able to associate the regisfét with the argument
mand that the memory reference is to the global variable The previous sections described approaches to deter-
n. We use Equation 1 to generate a symbolic expressionmine the minimum and maximum number of iterations for
(containing the local variablemand global variable) to a loop given that the number of iterations depends only
represent the number of iterations. upon either constant or loop-invariant values. Unfortu-
nately, sometimes the number of iterations depends upon
values that can vary. For instance, the number of itera-

N = Himit - (initial + beforg + adjustd 1

0 before+ after U tions of an inner loop often depends on the loop control
m+n-(1+1)0 variable of an outer loop. Consider the followifay
= 5 1vo g" 0+1 loops extracted from a sort program:
for (i=1;i<99; i++)

=m+n-1 for (j = i+1; j < 100; j++)
When the compiler can determine that the number of
iterations is nonconstant and loop invariant, the loop- While the number of iterations of the inner loop is loop
invariant expression is passed to the timing analyzer. Thenvariant with respect to the inner loop, the number of
user is prompted by the timing analyzer for the minimum iterations varies depending on the value of the outer loop
and maximum values for each variable in this expression.control variable. The number of iterations for the inner
To simplify identification of these variables, the timing loop will range from 98..1. A naive assumption that the
analyzer also informs the user of the function and lineworst-case number of iterations for the inner loop is
number associated with the loop. After receiving the min- always 98 will result a significant overestimation when
imum and maximum values for these variables, the timingestimating the worst-case performance of the outer loop.
analyzer automatically calculates the minimum and maxi- Likewise, a significant underestimation of the best-case
mum number of loop iteratioris. performance of the outer loop would result if the number

The authors also modified the compiler to allow the of iterations of the inner loop is assumed to always be 1.

user to specify assertions about the minimum and maxi- The average number of iterations of a inner loop with a
mum values of variables associated with loops. The bold-single exit can be calculated when the difference between
face line in Figure 9(a) contains assertions for the mini-the number of loop iterations is incremented by a constant
mum and maximum values of the variabbeandn. The value each time the inner loop is entered for each iteration
compiler uses the loop-invariant expression and replace®f the outer loop. Assume that:

the variables with the minimum and maximum specified (1) fis the number of iterations of the inner loop on the first
values. The minimum number of iterations of 29 and the iteration of the outer loop,

maximum numt.)ell’ of iterations of 179, IS automatlcally (2) dis the difference in the number of inner loop iterations for
passed to the timing analyzer and no intervention by the" * ¢4ch successive iteration of the outer loop (notectady
user is required. Note that the form of a value assertionis pe negative),

analogous to the form of timing constraint loop assertion

PR . 3) nis the number of times that the outer loop iterates
that can be specified in the same environment [15]. (3) ni ! ' . Pt

The following equation represents the average tefms,
where each term is the number of iterations of the inner

g]nedtlrr:zlar:(?n?l?r?wlyr?jr;\tl)we”r %rfo ?eegigi:ﬁﬁ;fggéhgfT,;}Ln;?gf'°°p on succeeding iterations of the outer loop. Note that
f + (n - 1)d is the number of iterations of the inner loop

variables. However, we have found that a constant Oron the last iteration of the outer loop. THalifference

% Note that the timing analyzer will not permit the number of iter- between the number of loop |te_rat_|ons Ca_n _b_e guaranteed
ations to be fewer than 1. In theoale example, a user may indicate that 10 b€ @ constant when (1) only tiveit or theinitial value
the minimum values ofmandn are both 0. Simply substituting these of the inner loop depends on an outer leapiable and
values in the expression would result in the number of loop iterations be-(z) theincrement(before+ after) of the outer |00p is an
ing -1. Butif the | i tered, then it has t te at | t iteras . . .
ng -2 BUL I e 100p 1S SATETEd, Men 1 has [0 execuie &' 1east one ea; \raqral multiple of théncrementof the inner loop. Note

tion since the number of iterations is defined as the number of times thé . . -)
loop header block is executed. that the average number of iterations may still vary in best

When a loop-invariant expression cannot be calculated

and worst case since different valuesiofiay be used. worst-case time for the inner loop. The other set is the
f+f+(n-1)d average best and worst-case times using the average num-
— ber of iterations. Note that when the average number of
iterations is not an integer (49.5 in the example), the best-
We determine if any of the variables upon which the case average time for the loop will be calculated with the
number of loop iterations depends is a basic inductionnext lower integer (49 in the example) and the worst-case
variable for an outer level loop that encloses the currentaverage time will be calculated with the next higher inte-
loop. This dependence could be from thitial value or ger (50 in the example). The reason for the slightly con-
the limit value of the current loop. Consider the source servative approach is that the loop analysis algorithm used
code and corresponding RTLs in Figure 11. In the exam-by the timing analyzer is designed to work on an integral
ple theinitial value of the inner loop counter variable number of iterations [11, 12, 13]. These best and worst-
r[10] is found to be[11]+1 . The register[11] s case conventional and average times are passed up
a basic induction variable for the outer loop. The com- through the timing tree, which contains a node for each

Navy(f,d,n) =

piler passes information about registdrl] to the tim- instance of a loop and function in the program. Included
ing analyzer concerning the number of iterations of thewith the average times is an identification of the outer
inner loop. This information includes tidtial value (1), loop on which these average times depend. At the point

limit (99), andincrement(1) of r[11] . In addition, the the outer loop is encountered, the conventional times are
identification of the outer loop for whicj11] is an abandoned and only the average times are used.

induction variable is also included. The timing analyzer \yie enforced a couple of restrictions to ensure that an
determines that the number of iterations of the inner |°0paverage number of iterations could be safely used in the
can vary from 98..1 since the initial value of the inner timing analysis. First, we only use an average number of
loop ([11]+1) can vary from 2..99. Note the last value jterations when an inner loop is executed on every path of
of r{11] at block 2 is 98 since after the increment in a1 outer loop. Figure 12 shows an outer loop with two
block 4 the outer loop is exited. Thus, the average num-congitionally executed inner loops. The number of itera-

ber of iterations for the inner loop will be: tions for the first inner loop varies fro®9..1 . The
f+f+(n-1)*d _98+98+(98-1)*(-1) _ number of iterations for the second loop varies from
2 - 2 =49.5 1..99 . If the variablesomecond is true for the first

half of the outer loop iterations and false for the remain-

T . ing half, then an underestimation will occur in the worst-
I =1
case timing prediction if the average number of iterations
for (= 1: 1 < 99; i++) Y _ were used for either inner loop. Second, we do not use
for j = i+1; j < 100; L17 | r[10]=r[11]+1; 2 the average times for an inner loop if it is nested within
*) another loop for which we would calculate an average
Y - number of iterations. We have future plans to relax both
Sl S of these restrictions so the number of iterations for more
(a) Source Code IC=r[10]?100; loops can be accurately bounded [16].
PCEIC<o.L21, for (i = 0; i < 100; i++) {
if (somecond)
r[11]=r[11]+1; 4 for (j = i+1; j < 100; j++)
r[10] : allocated for variable j 1C=r[11]?99; A
rM11]: allocated for variable i PC=IC<0,L17; else
Y for (= 0;] < i; j++)
. ‘ 5 ‘ A;
(c) Register to }
Variable Mapping (b) Corresponding .
for Figure 11(b) SPARC Instructions Figure 12: Example of

) _ Conditionally Executed Inner Loops
Figure 11: Number of Inner Loop Iterations

Depends on the Outer Loop Counter Variable Given these restrictions, the average number of itera-

- _ tions can safely be used for the loop analysis in our timing
When the timing analyzer performs l00p analysis on a6 We always choose the worst possible execution

loop whose number of iterations can vary depending upony; e tor o given iteration for our worst-case loop analysis.

an outer loop induction variable, the analyzer will calcu- o {5 the manner in which our timing analyzer handles
late two sets of imes. One set is the conventional begi:ache misses, the predicted time for a given iteration can

and worst-case times. These times are calculated in casgy,or pe exceeded by the predicted time for the following
there is a timing constraint or request for the best or

-8-

iteration of the loop (i.epredicted_timéterationj) > pre-

dicted_timéterationj+1)) [11, 12, 13]. Thus, the worst-
case loop analysis using the average number of iterations We plan to bound loop iterations for additional loops
will be safe since the execution times of the fitsig iter-
ations will be at least as long as the execution times of any@lly, some loops have counter variables that are incre-
remaining iterations. An analogous argument can bemented by nonconstants. If the sequence of values used
made for best case.

Tables 4 and 5 show example programs that benefit
from obtaining a more accurate estimation of loops whose

number of iterations can vary. Note that 8matprogram
has been used in the past as one of the test programs to Calculating the range of iterations when each block in
evaluate our timing analyzer [11, 12, 13]. These pro-a loop may be executed has other useful applications.
grams show the best and worst-case cycles required foff his information may be used to modify our loop timing

executing with instruction caching and pipelining for the analysis to obtain tighter timing predictions since the tim-
MicroSPARC | [17]. When using the average inner loop iNg analyzer would know in which iterations each path

predictions, the predicted execution times were signifi-through a loop may be traversed. The fraction of time
cantly tighter. TheSortandSymprograms did not have a
significant underestimation (i.grevious ratig in best

case. In the best case fBort the values were initially
sorted and the sort function exited once the array has beeWithin that path depend on such variables. Thus, the
detected to be in ascending order. Likewise Simpro-
gram terminates when it finds the first pair of values thatfunction may also be used to obtain tighter timing predic-
are not equal. In worst case the number of iterations fortions even when the number of loop iterations do not vary.
each inner loop dependent on an outer loop variable waginally, the range of iterations information for each block
previously overestimated by about a factor of two. Themay be used by an optimizing compiler to eliminate
Integ program had a higher best-cgsevious ratioand a

lower worst-caseprevious ratiosince there were other

loops in this program that contributed more significantly

to the total execution time.

Name Description or Emphasis

Integ Evaluates a Double Integral over a Trapezoidal Region

Interp | Polynomial Interpolation of 500 Points

Sort Bubblesort of 500 Integers

Sym Tests If a 500x500 Matrix Is Symmetric

Table 4: Test Programs
Best-Case Results
Observed Previous Prev. Current Curr.
Name Estimated) Estimated ’
Cycles Cycles Ratio Cycles Ratiq
Integ 12,050,092 8,049,618 0.668 12,033,618 0,999
Interp 6,485,878 143,064 0.022 6,479,865 0.999
Sort 19,966 19,950 0.999 19,950 0.999
Sym 171 171| 1.000 171 1.000
Worst-Case Results
Observed Previous Prev. Current Curr.
Name Estimated . Estimated .
Cycles Cycles Ratio Cycles Ratiq

Integ 15,427,332 20,542,118 1.332 15,437,618 1/001
Interp | 25,468,904/ 50,702,358 1.991 25,478,906 1/000
Sort 7,672,281| 15,251,603 1.988 7,672,292 1,000
Sym 2,013,116 4,001,133 1.988 2,013,117 1.000

Table 5: Timing Analysis Results

5. Future Work

that our approach currently does not address. Occasion-

for theincrementcan be determined, then we may still be
able to calculate a bounded number of iterations. Like-
wise, we will attempt to address multiple nested loops that
are all dependent on the counter variables of outer loops.

that a path within a loop may be executed can also be
sometimes determined by examining the range of values
for outer level loop counter variables when branches

approach of calculating an average time for a loop or a

nodes or transitions on infeasible paths and to restructure
loops to produce more efficient code.

6. Conclusions

In this paper we have presented three different methods
for bounding the number of iterations of a loop. First, a
method was described that determines the minimum and
maximum number of iterations of loops with multiple
exits and also detects infeasible paths. For instance, loops
of the form in Figure 13(a) that can exit prematurely when
some condition becomes true are quite common and the
bounded number of iterations of such loops can be
detected by the general algorithm presented in the paper.

Second, a nonconstant loop-invariant number of itera-
tions is calculated when the variables on which the num-
ber of iterations depends cannot change values inside of
the loop. Figure 13(b) depicts an example of this com-
mon type of loop. The user can specify the minimum and
maximum values of these variables by placing assertions
in the source code or by interactively responding to
prompts from the timing analyzer. These assertions are
more reliable than specifying the minimum and maximum
number of loop iterations directly since the user does not
have to be aware of the code generation strategies or opti-
mizations performed by the compiler.

(4]

for (i =0;i<100; i++) {

for (i=0;i<n;i++){ [5]
if (somecond)
break; }
' (b) Loop with a Nonconstant
} Loop-Invariant Number [6]

(a) Loop with Multiple Exits of Iterations

for (i=0;i<99; i++)
for (j = i+1;j < 100; j++) {

) (7]

(c) Inner Loop Whose Number of Iterations
Depends on an Outer Loop Counter Variable

Figure 13: Common Forms of Loops

Finally, timing analysis support is given to tightly pre- [8]
dict the execution time of loops whose number of itera-
tions is dependent on counter variables of outer level
loops. These loops, such as the one shown in Figurd®]
13(c), appear frequently in programs and can result in sig-
nificant underestimations in best-case predictions and
overestimations in worst-case predictions. Our approach
more tightly predicts loops when the initial value or limit [10]
of the control variable in an inner loop depends on a con-
trol variable of an enclosing outer loop.

These methods have been successfully integrated in afi1]
existing compiler and an associated timing analyzer that
predicts the performance for optimized code on a machine
that exploits caching and pipelining. The result is tighter
and more reliable timing analysis predictions and less[12]
work for the user.

7. Acknowledgements (13
The authors thank Jack Davidson for allowirmp

to be used for this research. Manuel Benitez implemented

the original algorithm invpo to calculate the number of

iterations of a loop with a single exit condition. Frank [14]

Mueller provided several helpful suggestions on an earlier

draft of this paper.

8. References sl

[1] M. E. Benitez and J. W. Davidson, “A Portable Global
Optimizer and Linker,Proceedings of the SIGPLAN '88
Symposium on Programming Language Design and
Implementation pp. 329-338 (June 1988). [16]

[2] J. Hennessy and D. Patters@gmputer Architecture: A
Quantitative Approach, Second EditioMorgan Kauf-
mann, San Francisco, CA (1996).

[3] M. Lam, “Software Pipelining: An Effective Scheduling
Technique for VLIW Machines,Proceedings of the
SIGPLAN ’'88 Symposium on Programming Language
Design and Implementatiorpp. 318-328 (June 1988).

(17]

-10-

H. S. Stone High-Performance Computer Architecture,
Second EditionAddison Wesley, Reading, MA (1990).

C.Y. Park and A. C. Shaw, “Experiments with a Program
Timing Tool Based on a Source-Level Timing Schema,”
Computer24(5) pp. 48-57 (May 1991).

Y. S. Li, S. Malik, and A. Wolfe, “Efficient Microarchi-
tecture Modeling and Path Analysis for Real-Time Soft-
ware,” Proceedings of the Sixteenth IEEE Real-Time Sys-
tems SymposiyrDecember 1995).

R. Chapman, A. Wellings, and A. Burns, “Integrated
Program Proof and Worst Case Timing Analysis of
SPARK Ada,”Proceedings of the ACM SIGPLAN Work-
shop on Language, Compiler, and Tool Support for Real-
Time Systemg$June 1994).

P. Puschner and C. Koza, “Calculating the Maximum
Execution Time of Real-Time ProgramBRgal-Time Sys-
temsl1(2) pp. 159-176 (September 1989).

E. Kligerman and A. Stoyenko, “Real-Time Euclid: A
Language for Reliable Real-Time SystemiBEE Trans-
actions on Software Engineerind2(9) pp. 941-949
(September 1986).

A. Ermedahl and J. Gustafsson, “Deriving Annotations
for Tight Calculation of Execution TimeProceedings of
European Conference on Parallel Processingp.
1298-1307 (August 1997).

R. Arnold, F. Mueller, D. Whalley, and M. Harmon,
“Bounding Worst-Case Instruction Cache Performance,”
Proceedings of the Fifteenth IEEE Real-Time Systems
Symposiumpp. 172-181 (December 1994).

C. A. Healy, D. B. Whalley, and M. G. Harmon, “Inte-
grating the Timing Analysis of Pipelining and Instruction
Caching,” Proceedings of the Sixteenth IEEE Real-Time
Systems Symposiump. 288-297 (December 1995).

R. T. White, F. Mueller, C. A. Healy, D. B. Whalley, and
M. G. Harmon, “Timing Analysis for Data Caches and
Set-Associative CachesProceedings of the IEEE Real-
Time Technology and Applications Symposiupp.
192-202 (June 1997).

A. V. Aho, R. Sethi, and J. D. Ullma@ompilers Princi-
ples, Techniques, and Toolkddison-Wesley, Reading,
MA (1986).

L. Ko, C. Healy, E. Ratliff, R. Arnold, D. Whalley, and
M. Harmon, “Supporting the Specification and Analysis
of Timing Constraints,’Proceedings of the IEEE Real-
Time Technology and Applications Symposiupp.
170-178 (June 1996).

C. A. Healy,Addressing Data Dependencies for Timing
Analysis, PhD Prospectus, Florida State University
(April 1998).

Texas Instruments, Inc.Product Preview of the
TMS390S10 Integrated SPARC Proces$683.

