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CROSS REFERENCE TO RELATED APPLICATIONS

This patent claims the benefit of priority from U.S. Provisional Patent Application Serial No. 61/311815,
entitled "Ultrafast Residue Number System Using Intermediate Fractional Approximations That Are Rounded
Directionally, Scaled and Computed," filed on March 9, 2010, incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

The invention relates to performing residue number system calculations, and in particular, to reduced
complexity algorithms and hardware designs for performing residue number system calculations. This
invention is in the field of the Residue Number Systems (RNS) and their applications.

§ 1 BACKGROUND OF THE INVENTION

The RNS uses a set “M” of pair-wise co-prime positive integers called as the “moduli”

M {m1,m2, · · · ,mr, · · · ,mK} where mr > 1 ∀ r ∈ 1,K and gcdmi,mj 1 for i 6 j ( B-1 )

Note that | M | the number of moduli K (also referred to as the number of “channels” in the literature)
We use the term “component-modulus” to refer to any single individual modulus (ex: mr) in the set M.
For the sake of convenience, we also impose an additional ordering constraint: mi <mj if i < j

Total-modulusM 4 m1×m2× . . .×mK . TypicallyM>>K ( B-2 )
Any integer Z ∈ 0,M−1, can be uniquely represented by the ordered-touple (or vector) of residues:
∀ Z ∈ 0,M−1; Z ≡ Z z1,z2, · · · ,zK where, zr Z mod mr, r 1, · · · ,K ( B-3 )
Conversion from residues back to an integer is done using the “Chinese Remainder Theorem” as follows:

Z ZT mod M ( B-4 ) where ZT

(
K∑
r1

Mr ·ρr

)
( B-5 )

and ρr zr ·wr mod mr, r 1, · · · ,K where ( B-6 )

outer-weights M i

M
mi

; & inner-weights wi

( 1
M i

mod mi

)
are constants for a given M ( B-7 )

The Residue Number Systems (abbreviated “RNS”) have been around for while [1]. The underlying
Residue Domain representation (or simply Residue Representation, abbreviated “RR”) has some unique
attributes (explained below) that make it attractive for signal processing. It is therefore not surprising that the
early work in this area was contributed by the signal-processing community.

Thereafter, from the late 1970s through the mid 1980s, the field of cryptology was revolutionized by the
invention of the 3 most fundamental and widely used cryptology algorithms, viz., Diffie-Hellman, RSA, and
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Elliptic-curves. In the beginning, the aforementioned cryptology algorithms were not easy to implement in
hardware. However, as semiconductor device sizes kept on shrinking, the hardware that could be integrated
on a single chip kept on becoming larger as well as faster. As a result, today (in 2011) it possible to easily
realize the cryptographic (abbreviated “crypto”) algorithms in hardware. The word-lengths used in crypto
methods are substantially larger as compared with wordlengths required by other applications; typical crypto
word lengths today are at least 256 bits or higher. It turns out that the same attributes of the Residue
Number Systems that are attractive for signal processing are also beneficial when implementing cryptographic
algorithms at long word-lengths. Consequently the cryptology and computer-arithmetic communities also
started researching RNS. This coincidental convergence of goals (to research and improve RNS, which is
now shared by the signal processing, cryptology as well as computational/computer arithmetic communities)
has in-turn led to a resurgence of interest as well as activity in the RNS [2].

§ 1.1 Advantages of the Residue Domain Representation

The main advantage of the Residue Number (RN) system is that in the Residue-Domain (RD ), the operations
{±,×, ?} can be implemented on a per-component/channel basis, wherein the processing required in any
single channel is completely independent of the processing required in any other channel. In other words,
these operations can be implemented fully in parallel on a per-channel basis as follows:

Z X ‡ Y⇒ zr xr ‡ yr mod mr, r 1, · · · ,K where ‡ ∈ {±,×, ?} (1)

Note that equality of two numbers can be checked by comparing their residues which can be done in parallel
in all channels. In other words, in the RD , the most fundamental operations viz., addition/subtraction, equality
check AND Multiplication can all be performed in parallel in each channel independently of any other
channel(s). This independence of channels implies that each of the above operations can be implemented
with On computing effort (operations/steps), where

dlgMe n (2)

i.e., n is the number of bits required to represent the total-modulusM or the overall range of the RNS.

In contrast, in the regular integer domain, a multiplication is a convolution of the digit-strings representing the
two numbers being multiplied. A convolution is substantially more expensive than add/subtract operations
(Addition/Subtraction fundamentally require On operations and can be implemented in Olgn delay using the
“carry-look-ahead” method and its variants. Naive paper-and-pencil multiplication, requires On2 operations.
Asymptotically fastest multiply methods use transforms such as floating point FFT (Fast Fourier Transform)
or number-theoretic transforms to convert the convolution in the original domain into a point-wise product in
the transform domain, so that the number of operations required turns out to be ≈On lgn; for further details,
please refer to [3]).

Thus, performing the multiplications in the RD is substantially faster as well as cheaper (in terms of intercon-
nect length and therefore h/w area as well as power consumption). Consequently, wherever multiplication is
heavily used, adopting the RR can lead to smaller and faster realizations that also consume less power. For
example:
(i) Filtering is heavily used in signal processing. Most of the effort in filtering is in the repeated multiply and
add operations. It is therefore not surprising that the first practical use of the RNS was in synthesizing fast
filters for signal processing.
(2) Multiplication (note that squaring is a special case of multiplication) also gets used heavily in long-
wordlength cryptology algorithms. Therefore RD implementations of cryptological algorithms are also
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smaller, faster and consume lower power.

§ 1.2 Disadvantages of the Residue Domain Representation

Together with the advantages, also come some of the disadvantages of the residue domain: when compared
to the “easy operations” above, several fundamental operations are relatively a lot more difficult to realize in
the RD [1, 4–6]:

1. Reconstruction or conversion back to a weighted, non redundant positional representation (ex, binary
or decimal or the “mixed-radix” representation [4])

2. Base extension or change.
3. Sign and overflow detection or equivalently, a magnitude-comparison.
4. Scaling or division by a constant, wherein, the divisor is known ahead of time (such as the Modulus in

the RSA or Diffie-Hellman algorithms)
5. Division by an arbitrary divisor whose value is dynamic, i.e., available only at run-time.

Reconstruction in the regular format by directly using the CRT turns out to be a slow operation. Note
that a straightforward/brute-force application of the CRT entails directly implementing Equation ( B-4 ).
Accordingly, ZT is fully evaluated first, and then a division by the modulusM is carried out to retrieve
the remainder (Z). For long word-lengths (ex, in cryptography applications) the final division by M is
unacceptably slow and inefficient.

Re-construction by evaluating the mixed-radix representation takes advantage of the “mixed-radix” repre-
sentation associated with every residue-domain-representation [4], wherein a number is represented by an
ordered set of digits. The value of the number is a weighted sum where the weights are positional (just
like the weights of a normal single radix decimal or binary representation). As a result, a digit-by-digit
comparison starting with the most-significant-digit is feasible. However, to the best of our knowledge it takes
OK2 sequential operations (albeit on small sized operands of about the same size as the component-moduli
mi) in the residue-domain. The inherently sequential nature of this method makes it slow.

Moreover, at a first glance, it appears that for magnitude-comparison and division, the operands need to be
fully reconstructed in the form of a unique digit string representing an integer either in the regular or the
mixed-radix-format.

§ 1.3 Related Prior Art

§ 1.3.1 Base-extension or change

In a sign-magnitude representation or a radix-complement (such as the two’s complement) representation, a 32
bit integer can be easily extended into a 64 bit value. The corresponding operation in the RNS is considerably
more involved. Related Prior work in this area falls under two categories, each is briefly explained next.

§ 1.3.1.A deploying a redundant modulus

Shenoy and Kumarersan [7] start by re-expressing the CRT in a slightly different form:
Z ZT −α ·M where 0≤ α≤K−1
In the above equation α ≡ RC is the only unknown. It is clear that knowledge of (Z modme), i.e., the
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residue/remainder of Z, w.r.t. one extra/redundant modulus me is sufficient to determine the value of RC .
They assume the availability of such an extra residue, which lets them evaluate α≡ RC.

This base extension method has been widely adopted in the literature. For example, Algorithms for modular
multiplication developed by Bajard et. al. [8, 9] perform their computations in two independent RNS systems
and change base from one to the other using the shenoy-kumaresan method. This is done so as to avoid a
full reconstruction at intermediate steps. As a result, they end up requiring a base-conversion in each step
and consequently, their algorithm requires OK units of delay when OK dedicated processing elements are
available (where K = the total number of moduli or channels in the RNS system).

§ 1.3.1.B Iterative determination of RC

Another base-extension algorithm related to our work is described in [10–13]. They show a method to
evaluate an approximate estimate R̂C in a recursive, bit-by-bit (i.e., one bit-at-a-time) manner and then derive
conditions under which the approximation is error-free. This method is at the heart of their base-extension
algorithm.
The recursive structure of this method makes it relatively slower and cumbersome.

The idea of using the “fractional-representation” of CRT has been around for a while. For instance,
Vu [14,15] proposed using a Fractional interpretation of the CRT in the mid 1980s. However, he ends up using
a very high (actually the FULL) precision: dlgK ·Me bits (see equations (13) and (14) in reference [15]).

§ 1.3.2 Sign detection and magnitude comparison

In the RNS, the total range is divided into positive and negative intervals of the same length (to the extent
possible). For example, if the set of RNS moduli is M {2,3,5,7} thenM 210 and the overall range of the
RNS is [−105,104], where,
the numbers 1 through 104 represent ve numbers, and
the numbers 105 thru 209 represent −ve numbers from −105 to −1, respectively.
In general, all negative values in the range [−M−1,−1] satisfy the relation

−a modM ≡ M−a (3)

Sign detection in the RNS is not straightforward, rather, it has been known to be relatively difficult to realize
in the Residue Domain.
Likewise, comparison of magnitudes of two numbers represented as residue touples is also not straightforward
(independent of whether or not negative numbers are included in the representation). For instance, with the
same simple moduli set M {2,3,5,7} above, note that
19≡ 1,1,4,5 and 99≡ 1,0,4,1 while 79≡ 1,1,4,1 and the negative number −101≡ 1,1,4,4.
In other words, the touples of remainders corresponding to ve and −ve numbers cannot be easily distin-
guished.

Prior Work on Sign Detection and Magnitude Comparison

Sign detection operation has been known to be relatively difficult to realize in the RNS for a while (early works
date back to 1960’s, for example [1,16]). Recent works related to Sign detection in RNS have tended to focus
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on using moduli having special forms [17, 18], which limits their applicability. The idea of “core-functions”
was introduced in [19] in the context of coding-theory. RNS sign-detection algorithms based on idea of using
“core-functions” have been published [20–22]. However, these methods are unnecessarily complicated and
appear to be useful only with moduli with special properties [22], limiting their applicability.

Lu and Chiang [23, 24] introduced a method to use the least significant bit (lsb ) to keep track of the sign.
However, tracking the lsb of arbitrary (potentially all possible) numbers is not an easy task. In their quest to
keep track of the lsb , Lu and Chiang first proposed an exhaustive method in their first publication [23];
which turns out to be infeasible for all but small toy examples because the size of their look-up table was the
same as the total rangeM. In the follow up publication, they abandoned the exhaustive look-up approach [24]
and ended up unnecessarily using the full precision, just as Vu does in his work [15].

§ 1.3.3 Scaling or division by a constant

In general, “scaling” includes both multiplication as well as division by a fixed constant, (viz., the scaling
factor Sf ). Early versions of signal processors often deployed a fixed-point format which necessitated
scaling to cover a wider dynamic range of input values. Consequently, scaling has been heavily used in
signal processing. It is therefore not surprising that the early work in realizing the scaling operation in the
residue-domain comes from the signal-processing community [25, 26].
Shenoy and Kumaresan [27, 28] introduced a scaling method that works only if the constant divisor has the
special form

D md1 ·md2 · · ·mds wherein s < K and

{md1 ,mds · · ·mds} ⊂ {m1,m2, · · · ,mk} M the set of RNS moduli (4)

i.e., the divisor is a factor of the overall modulus M . This restriction renders their method inapplicable in
most cryptographic algorithms; because the modulus (aka, the constant divisor) N is either a large prime
number (as in elliptic curve methods) or a product of two large primes numbers (as in RSA). In either case, it
does not share a factor with the total modulusM.

All methods and apparata for scaling in the RNS that have been published thus far [21, 29–31]; including
more recent ones [31–33] are either limited to special moduli or are more involved than necessary because
they all attempt to estimate the remainder first, subtract it off and then arrive at the quotient, which is the
quantity of interest in scaling. Consequently, none of the methods or apparata are even remotely similar to
the new algorithm that I have invented for RNS division by a constant.

§ 2 SUMMARY OF THE INVENTION

The following presents a simplified summary in order to provide a basic understanding of some aspects of the
claimed subject matter. This summary is not an extensive overview, and is not intended to identify key or
critical elements, or to delineate any scope of the disclosure or claimed subject matter. The sole purpose of the
subject summary is to present some concepts in a simplified form as a prelude to the more detailed description
that is presented later. In one exemplary aspect, a method for performing reconstruction using a residue
number system is disclosed. A set of moduli is selected. A reconstruction coefficient is estimated based on
the selected set of moduli. A reconstruction operation is performed using the reconstruction coefficient. In
another exemplary aspect, an apparatus for performing reconstruction using a residue number system includes
means for selecting a set of moduli, means for estimating a reconstruction coefficient based on the selected
set of moduli and means for performing a reconstruction operation using the reconstruction coefficient. In yet
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another exemplary aspect, a computer program product comprising a non-volatile, computer-readable medium,
storing computer-executable instructions for performing reconstruction using a residue number system, the
instructions comprising code for selecting a set of moduli, estimating a reconstruction coefficient based on
the selected set of moduli and performing a reconstruction operation using the reconstruction coefficient is
disclosed. In yet another exemplary aspect, a method for performing division using a residue number system
comprises selecting a set of moduli, determining a reconstruction coefficient and determining a quotient
using an exhaustive pre-computation and a look-up strategy that covers all possible inputs. In yet another
exemplary aspect, a method of computing a modular exponentiation in a residue number system includes
iterating, without converting to a regular integer representation, by performing modular multiplications and
modular squaring and computing the modular exponentiation as a result of the iterations.

§ 3 BRIEF DESCRIPTION OF DRAWINGS

Figure 1 : shows summation of fraction estimates (obtained via look-up-tables) to
estimate the Reconstruction Coefficient.

Figure 2 : is a flow chart for the Reduced Precision Partial Reconstruction ( “RPPR” ) algorithm.

Figure 3 : is a schematic block diagram of a generic architecture to implement the RPPR algorithm.

Figure 4 : illustrates conventional method of incorporating negative integers in the RNS.

Figure 5 : illustrates sign and Overflow Detection by Interval Separation ( SODIS ).

Figure 6 : Flow chart for the Quotient First Scaling ( QFS ) algorithm.

Figure 7 : is a schematic timing diagram for the QFS algorithm.

Figure 8 : is a flow chart for the modular exponentiation algorithm.

Figure 9 : is a flow chart representation of a process of performing reconstruction using
a residue number system.

Figure 10 : is a block diagram representation of a portion of an apparatus for performing reconstruction
using a residue number system.

Figure 11 : is a flow chart representation of a process of performing division using a
residue number system.

Figure 12 : is a block diagram representation of a portion of an apparatus for performing
division using a residue number system.

Figure 13 : is a flow chart representation of a process of computing a modular exponentiation using
a residue number system.

Figure 14 : is a block diagram representation of a portion of an apparatus for computing
a modular exponentiation using a residue number system.
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§ 4 DETAILED DESCRIPTIONS

In this section, first, I explain my moduli-selection method. After that, each new algorithm illustrated in
detail. Since the “RPPR” algorithm is used in all others, it has been explained in more detail than other
algorithms.

Notations used in this document

Notations-1 Math Functions, symbols

The symbol ≡ means “equivalent-to”; whereas the symbol 4 means “is defined as”
LHS 4 Left Hand Side of a relation; RHS 4 the right-hand-side
a mod b 4 the remainder when integer a is divided by integer b.
ulp ≡ wight or value a unit or a “1” in the least-significant-place
gcd 4 greatest common divisor (also known as highest common factor or hcf)
lg ≡ log-to-base 2, ln ≡ log-to-base-e, log ≡ log-to-base-10
floor function: bxc the largest integer≤ x≡ Round to the nearest integer toward−
ceiling function: dxe the smallest integer≥ x≡ Round to the nearest integer toward
truncation : truncx only the integer-part of x≡ Round toward 0
O( ) ≡ Order-of or the big-O function as defined in the algorithms literature (for example see [3]).
| · | ≡ cardinality if argument is a set; ≡ absolute value of integer argument.
“RR ” is abbreviation for “Residue Representation”, “RD ” is abbreviation for “Residue Domain”,
“integer-domain” refers to the set of all integers Z.
? denotes the “equality-check” operation.

Notations-2 Algorithm Pseudo-code

The pseudo-code syntax closely resembles MAPLE [34] syntax.
Lines beginning with # as well as everything between /∗ and ∗/are comments.

All entities/variables with a bar on top are vectors/ordered-touples (ex, Z≡ z1, · · · ,zK )

Operations that can be implemented in parallel in all channels are shown inside a square/rectangular box. for exam-
ple Z X ‡ Y⇒ zr xr ‡ yr mod mr, r 1, · · · ,K

Brief introduction to RNS and canonical Definitions

Definition 1 : We define “Reconstruction-Remainders” to be the component-wise values
ρ1,ρ2, · · · ,ρK defined by relations ( B-6 ) above.

Note that Equation ( B-4 ) can be re-written as ZT Z Q ·M ( B-8.1 )

or equivalently as Z ZT −Q ·M where, ( B-8.2 )

Q

⌊
ZT

M

⌋
Quotient when ZT is divided by M 4 RC ⇒ 0≤ RC ≤K−1 ( B-9 )

Definition 2 : We define the coefficient ofM (which is denoted by the variable Q) in Equations ( B-8.∗ )
to be the “Reconstruction-Coefficient” and henceforth denote it by the dedicated symbol “RC ”

Definition 3 : Full reconstruction of the integer corresponding to a residue-touple refers to the process of retrieving
the entire unique digit-string representing that integer in a non-redundant, weighted-positional format (such as
two’s complement or decimal or the mixed-radix format).

D-4 : Full-precision ≡ dT base-b digits; where dT dlogbMKe ≈dlogbMe4 nb; sinceM>>K ( B-10 )

If the base b 2 then nb n2 is the bit-length required to represent the total modulusM or the overall range of the RNS;
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and is therefore also denoted simply by the variable n without any subscript.

Definition 5 : Any method/algorithm that simply determines the value of RC without attempting to fully recon-
struct Z is referred-to as a “Partial-Reconstruction” (PR).

Evaluating RC yields an exact equality (Eqn. ( B-8.2 )) for the target integer Z, without any “mod” i.e., remaindering
operations in it (unlike the statement of CRT, Eqn. ( B-4 )). For most operations (especially division with a constant)
such an exact equality for Z suffices, i.e., there is no need to fully reconstruct Z. This is why
Partial-Reconstruction (i.e., evaluating RC ) is an important enabling step underlying most other operations

§ 4.1 Moduli selection

Note that a modulus of value mr needs a table with (mr− 1) entries to cover all possible values of the
reconstruction-remainder ρr w.r.t. mr, (excluding the value 0). Therefore, the total number of memory
locations required by all moduli is

# memory locations required
K∑
r1
mr−1≈

K∑
r1
mr
4 TM (5)

Thus, in order to minimize the memory needed, each component modulus should be as small as it can be.

Therefore, in order to cover a range [0,R] we select smallest consecutive K prime numbers starting with
either 2 or 3, such that their product exceeds R:

M {m1,m2, · · · ,mK} {2,3, · · · ,K-th prime number}, where
K∏
t1
mt M>R (6)

This selection leads to the following two analytically tractable approximations:

〈1〉 The notation defines mK to be the K-th prime number. In other words, K is the index of prime
number whose value is mK . Consequently, K and mK can be related to each other via the well-known
“prime-counting” function [35] defined as

πx The number of prime numbers≤ x ≈ x

lnx and therefore (7)

K πmK ≈
(
mK

lnmK

)
(8)

〈2〉 The overall modulusM becomes the well known “primorial” function [36] which for any positive
integer N is denoted as “N#” and defined as

N# 1 if N 1
product of all prime numbers ≤N , otherwise (9)

(Note that a the definition as well as the notation for the primorial is analogous to the well known “factorial”
function (N !)). The primorial function satisfies well-known identities [36, 37]

2N < N#< 4N 22N and (10)

N# ≈ OeN for large N (11)

As a result, to be able to represent n bit numbers (i.e. the range [0,2n−1]) , in the residue domain using all
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available prime numbers (starting with 2), the total modulus satisfies

M ≈ expmK > 2n and therefore (12)

mK ≈ lnM ln2n n · ln2 (13)

Substituting this value of mK in Eqn. (8), K, the number of moduli required to cover all “n”–bit long
numbers can be approximated as :

K πmK ≈
(
mK

lnmK

)
≈ n ln2

lnn ln2 ≈O
(
n

lnn

)
≈O

( lgM
ln lgM

)
(14)

These analytic expressions are extremely important because they imply :

A.1 K <mK <<M (which follows from relations (13) and (14) above.) Moreover, both (15)

A.2 maximum-modulus mK as well as the number of moduli K grow logarithmically w.r.t.M (16)

i.e., linearly w.r.t. the wordlength n (since n dlgMe).

§ 4.1.1 moduli selection enables exhaustive look-up strategy that covers all possible inputs

The attributes A.1 and A.2 make it possible to exhaustively deploy pre-computation and lookup because
they guarantee that the total amount of memory required grows as a low degree polynomial of the wordlength
n.

In other words, the main novelty in my method of moduli selection and its real significance is the fact that I
leverage the selection to enable an exhaustive pre-computation and look-up strategy that covers all possible
input cases. This exhaustive pre-computation and look-up in turn makes my algorithms extremely simple,
efficient and therefore ultrafast because I deploy the maximum amount of pre-computation possible, and
perform as much of the task ahead of time as possible; so that there is not much left to be done dynamically
at run-time (a perfect example of this is the new “Quotient First Scaling” algorithm for RNS division by a
constant divisor that is explained in detail in Section § 4.5 below).

In other words, the “minimization” of the total number of look-up table entries is the best possible scenario,
but it is not necessary to obtain the major benefits that are illustrated for the first time in this invention. There
is a lot more flexibility in selecting the moduli as long as they do not make it infeasible to deploy the exhaustive
precomputation strategy.

Consider a concrete example: Suppose the claims section says “select moduli so as to minimize the total
amount of look-up table memory required.”

If the desired range is all 32-bit numbers, then the set of moduli M {2,3,5,7,11,13,17,19,23,29}
minimizes the total number of look-up table entries required.

Now, one can replace any component modulus from the above set (for example, say the modulus 29) with
another prime number (such as 31, 37 or even 101). The resulting moduli set does not minimize the total
number of look-up table entries required, but it is sufficiently close and would not make much of a difference
in the ability to deploy the exhaustive precomputation strategy. In the strict sense, however, the modified
moduli set does not satisfy the “minimization” criteria and this fact might be used to wiggle around having to
acknowledge the use of intellectual property claimed by this patent.

We would therefore like to clarify that the spirit of this part of the invention (i.e., the moduli selection method)
can be better captured by the following description:
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Select the set moduli so as to simultaneously bound both
(i) mk = the maximum value in the set of moduli M by a low degree polynomial in n,
as well as
(ii) K = the total number of moduli in the set M |M| (also known as the number of RNS channels) by
another low degree polynomial in the wordlength n.
(both polynomials could be identical which is a special case). Following usual practices, we consider any
polynomial of degree ≤ 16 to be a low-degree polynomial.

In closing we would like to point out some additional benefits of our moduli selection :
+1 : This selection is general, in the sense that for any value of R multiple moduli sets always exist.
+2 : The moduli are relatively easy to find, since prime numbers are sufficiently densely abundant

irrespective of the value of R.
+3 : It fully leverages the parallelism inherent in the RNS
+4 : limiting mK and K to small values makes it more likely that the entire RNS fits in a single h/w module.

§ 4.2 The Reduced Precision Partial Reconstruction ( “RPPR” ) algorithm

This is a fundamental algorithm that underlies all other algorithms to follow. To speed-up the Partial-
Reconstruction, we combine the information contained in both integer as well as fractional domains. We
express the CRT in the form:

ZT
M RC

Z

M

(
K∑
r1

ρr
mr

)
4 S where, fr

ρr
mr

⇒ (17)

RC bSc the integer part of the sum of fractions, and (18)
Z

M
S−bSc the fractional part of the sum of fractions (19)

Relation (18) states that RC can be approximately estimated as the integer part of a sum of at most K proper
fractions fr, r 1, · · · ,K. (proper fractions because the numerator ρr is a remainder w.r.t. mr; and therefore
it is strictly less than mr).

To speed up such an estimation of the RC , we leverage pre-computation and look-up: for each modulus mr,
we pre-calculate the value of each of the (mr−1) fractions, i.e., all possible fractions that can occur, and
store them in the look-up table (denoted by Tmr )

Tmr [ 1
mr

, 2
mr

, · · · , Mr−2
mr

, mr−1
mr

]⇒ the i-th entry in the table Tmr i fi,r
i

mr
(20)

(if ρr 0 then the table entry is 0 which need not be explicitly stored).

The important point is that The look-up table for each modulus mr can be accessed independent of (and
therefore in parallel with) the look-up table for any other modulus ms where r 6 s.

The fractional values (obtained from the tables) are then added up as illustrated in Figure 1

§ 4.2.1 Derivation of the algorithm and novel aspects therein

⊙
1 First, note that we need to estimate the integer part of a sum of fractions, i.e., we need to be able to

accurately evaluate the most-significant digits/portion of the sum as illustrated in Figure 1. The important
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point is that whenever a computation needs to generate the “most-significant”
bits/digits of the target, approximation methods can be used . For instance, in a division, “Quotient” is a
lot easier to approximate than the “Remainder”.
In other words, using the rational-domain interpretation allows us to focus on values that represent the
“most-significant” bits/digits of the target and therefore approximation methods can be invoked.⊙

2 The implication is that the precision of the individual fractional values that get added need not be
very high. All that is required is that the fractions fi,r

i
mr

be calculated to enough precision so that
when they are all added together, the error is small enough so as not to reach up-to and affect the least
significant digit of the integer part (to the extent possible).
Let the radix/base of the number representation be b and let wf be the number of fractional (radix-b) digits
required. Then, for each fraction fi we generate an upper and lower bound as follows:

For ρi 6 0, let ρi
mi

fi the exact value of the reconstruction-fraction in channel i (21)

fi 0.d1d2 · · ·dwf |dwf 1dwf 2 · · · (22)

Truncation of fi to wf digits yields an under-estimate: f̂i_low 0.d1d2 · · ·dwf
≤ fi (23)

and 0≤ fi− f̂i_low 0.0 · · ·0dwf 1dwf 2 · · · < 1/bwf (24)

However, a ceiling or rounding-toward- to retain wf fractional digits adds a ulp to the

least significant digit (lsd), yielding an over-estimate: (25)

f̂i_high 0.d1d2 · · ·dwf
1 f̂i_low ulp≥ fi where ulp

1
bwf

(26)

and 0≤ f̂i_high−fi < 1/bwf (27)

combining (23) and (26) we get f̂i_low ≤ fi ≤ f̂i_high f̂i_low ulp (28)

Summing relations (28) over all i from 1, · · · ,K we obtain

f̂1_low · · · f̂K_low ≤ f1 · · · fK RC

Z

M
≤ f̂1_low · · · f̂K_low nz ·ulp (29)

where, nz number_of_nonzero_residues_in_the_touple (30)

The understand the upper limit in relation (29) above, note that each non-zero ρi makes the corresponding
over-estimate higher than the under-estimate by a ulp, as per Eqns (21), (23) and (26).

Let Ŝlow 4 f̂1_low · · · f̂K_low and Îlow 4
⌊
Ŝlow

⌋
integer part of Ŝlow (31)

Ŝhigh 4 Ŝlow nz ·ulp and Îhigh 4
⌊
Ŝhigh

⌋
integer part of Ŝhigh (32)

Taking the “floor” of each expression in the inequalities in relations (29) above; substituting the floors from
Eqns (31) and (32); and using the identity⌊
RC

Z

M

⌋
RC we obtain (33)

Îlow ≤ RC ≤ Îhigh so that (34)

if Îlow Îhigh then the estimate RC Ihigh Ilow must be exact (35)

since both upper and lower bounds converge to the same value. In practice (numerical simulations), this case
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is encountered in an overwhelmingly large fraction of numerical examples. Moreover,

Since nz ≤K⇒ nz ·ulp≤K ·ulp (36)

by selecting wf so as to ensure K ·ulp K/bwf < 1 from (29) we get (37)

Ŝlow ≤ RC

Z

M
≤ Ŝlow 1 (38)

taking the floor of each expression in the relation above yields

Îlow ≤ RC ≤ Îlow 1 (39)

In other words, even in the uncommon/worst cases, wherein, Îlow 6 Îhigh, relation (39) demonstrates that the
estimate of RC can be quickly narrowed down to a pair of consecutive integers.⊙

3 It is intuitively clear that further “disambiguation” between these choices needs at least one bit of
extra information. This information is obtained from the value (Z modme) where me is the extra modulus.
For efficiency, me should be as small as possible. Accordingly, our method leads to only two scenarios:
[a] ifM is odd then me 2 is sufficient for disambiguation
[b] otherwise if 2 is included in the set of moduli M, then me 4 is sufficient for disambiguation

⇒me ∈ {2,4} (this is analytically proved in [38]) (40)

Note that when M includes “2” as a modulus, it already contains the value (z1 Z mod 2), i.e., the least
significant bit of the binary representation of Z. The value (Z mod 4) therefore conveys only one extra bit
of information beyond what the residue touple conveys.⊙

4 It is reasonable to assume that for primary/external inputs the extra-info is available. The exhaustive
pre-computations can also assume that the extra-info is available. Starting with these, we generate the
extra-bit of information (either explicitly or implicitly) for every intermediate value we calculate/encounter.
This is done in a separate dedicated channel. Let

W ∗ X where ∗ is a unary operation. Then, (41)

W modme ∗ X modme mod me for ∗ ∈ {left-shift, power} (42)

If the operation is a right shift, then finding the remainder of the shifted value w.r.t. me, is slightly
more involved but it can be evaluated using a method identical to “Quotient_First_Scaling”,
i.e., “Divide_by_Constant”, which explained in detail in Section § 4.5 below.

Likewise, let

Z X ⊗ Y where ⊗ is a binary operation. Then, (43)

Z modme X modme ⊗ Y modme modme for ⊗ ∈ {±,×} (44)

Finally, since division is fundamentally a sequence of shift and add/subtract operations, as long as we keep
track of the remainder of every intermediate value w.r.t. me, we can also derive the values of (Quotient
modme) and (Remainder modme). Thus all the basic arithmetic operations are covered.

§ 4.2.2 Analytical Results

Result 1 Pre-conditions : Let the radix of the original (non-redundant, weighted and positional, i.e., usual)
number representation be denoted by the symbol “b” (note that b 10 yields the decimal representation, b 2
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gives the binary representation). Suppose integer Z z1,z2, · · · ,zK is being partially re-constructed and the
extra-bit-of-information, i.e., the value of (Z modme) is also available. Let

ZT
M

≈ Ŝ Î F̂
K∑
r1
f̂r where, (45)

Î bŜc the integer part of the approximate sum Ŝ, and (46)

F̂ Ŝ− Î the fractional part of the sum, and (47)

f̂i f̂i_low TruncwF fi truncation of fi to wF digits where (48)

fi
ρi
mi
⇒ 0≤ fi < 1 (49)

and ρi values are the reconstruction-remainders defined in Equation ( B-6 )

Let δ

(
ZT
M
− Ŝ

)
be the total error in the approximate estimate Ŝ (50)

and let the Reconstruction-Coefficient RC be estimated as RC ≈ Î then, (51)

Result 1 : In order to narrow the estimate of the Reconstruction Coefficient RC

down to two successive integers, viz., Î or (Î 1), it is sufficient to carry out the summation of the fractions
(whose values can obtained from the look-up-tables) in a fixed-point format with no more than a total of wT
radix-b digits, wherein

wT wI wF where (52)

wI Number of digits allocated to the Integer part, and (53)

wF Number of digits allocated to hold the fractional part (54)

where the precisions (i.e., the digit lengths) of the integer and fractional parts satisfy the conditions:

R1.1 wI dlogbKe (55)

R1.2 wF
⌈
logbK ·∆∆∆uuzf

⌉
where, K = number of moduli = |M|, and (56)

∆∆∆uuzf ≡ “Unicity Uncertainty Zone Factor”, that satisfies ∆∆∆uuzf ≥ 2 (57)

R1.3 The Rounding mode adopted in the look-up-tables (when limiting the pre-computed
values of the fractions to the target-precision) as well as during the summation of
fractions as per equation (51) must be TRUNCATION , i.e., discard excess bits.

For the proof of the above result as well as all other analytical results stated below, please refer to [38].

Result 2 : In order to disambiguate between the two possible values of the Reconstruction Coefficient i.e.,
select the correct value (Î) or (Î 1), a small amount of extra information is sufficient.

R2.1 In particular, (prior) knowledge of the remainder of Z (the integer being partially reconstructed), w.r.t.
one extra component modulus me that satisfies

gcdM,me <me is sufficient for the disambiguation. (58)

R2.2 For computational efficiency, the minimum value of me that satisfies (58) should be selected.
Such a selection gives rise to the following two canonical cases:
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⊙
1 M is odd : In this case, me 2 is sufficient for disambiguation.⊙
2 M contains the factor 2 : then, me 4 is sufficient for disambiguation.
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§ 4.2.3 RPPR Algorithm: illustrative examples

The pre-computations and Look-up-tables needed for the partial reconstruction are illustrated next.

§ 4.2.3.A First an example with small values, to bootstrap the concepts

Let the set of moduli be M {3,5,7,11}, so that, K = 4,M = 1155, and let me 2

modulus table entries for row mr : column i← i
mr

↓mr 1 2 3 4 5 6 7 8 9 10
3→ 0.3 0.6
5→ 0.2 0.4 0.6 0.8
7→ 0.1 0.2 0.4 0.5 0.7 0.8

11→ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Table 1: Look-up table for the RPPR algorithm for the RNS-ARDSP system with M = {3,5,7,11}. This
table uses the value of ρr as the address to look-up the fraction ρr

mr
⇒ explicit value of ρr is needed. In this

case K 4 and ∆∆∆uuzf 2 and therefore wI dlog104−1e 1 integer decimal-digit and
wF dlog104×2e 1 fractional decimal-digit. Accordingly, all the entries in the table have a single fractional
digit. In this toy example we have deliberately left the table entries in the fixed-point fractional form for the
sake of clarity (rather than scaling them by the factor 101 and listing them as integers).

Then, the look-up table for the RPPR algorithm is shown in Table 1.

The table consists of 4 subtables (one per-channel/modulus) that are independently accessible in parallel. For
each value of mr, the table consists of a row that simply stores the approximate pre-computed values of the
fractions 1

mr
, 2
mr

, · · · , mr−1
mr

.

§ 4.2.3.B Further Optimization: Skip the computation of ρr values

Note that instead of explicitly calculating ρr and then using it as an index into a table, the residue zr could be
directly used as an index into a table that stores the appropriate values of the precomputed fractions.

ρr
mr

(
wi×zr modmr

mr

)
(59)

The resulting table is illustrated in Table 2.

In this toy example the number fractional digits required for intermediate computations is 1 which is not a
sizable reduction from the full precision which is 3 digits.

The the following non-trivial long-wordlength example demonstrates the truly drastic reduction in precision
that is afforded by our novel algorithm.
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modulus table entries for row mr : column i← i×wi modmr
mr

↓mr 1 2 3 4 5 6 7 8 9 10
3→ 0.3 0.6
5→ 0.2 0.4 0.6 0.8
7→ 0.2 0.5 0.8 0.1 0.4 0.7

11→ 0.1 0.3 0.5 0.7 0.9 0.0 0.2 0.4 0.6 0.8

Table 2: Residue Addressed Look-up Table (RAT) for the RPPR algorithm for the RNS-ARDSP system
with M = {3,5,7,11}. This table is a further optimized version of Table 1 above: here, the residue value zr
is directly used as the address of a location that stores the corresponding value of wi×zr modmr

mr
in the rth

row (i.e., sub-table) for component-modulus mr. Calculation of ρr is not required when this table is used.
Note that the only difference between this table and Table 1 is a permutation of the entries in sub-tables for
those moduli mi for which the “inner-weights” are larger than unity (in this case wi > 1 for the last two rows
corresponding to moduli 7 and 11).

§ 4.2.3.C A nontrivial long word-length example

Now consider the partial reconstruction of numbers with a word-length = 256 bits. Here the range is R 2256.
In this case, first 44 prime-numbers are required to cover the entire range. Therefore K 44 and
M = {2, 3, 5, 7, 11, · · · , 181, 191, 193}, me 4, and the product of all the component-moduli is
M = 198962376391690981640415251545285153602734402721821058212203976095413910572270
and the ratio

(
M

2256

)
≈ 1.718 mK = m44 = 44th prime number = 193

The word-length required to representM is

n dlog10Me d77.298e 78 decimal digits (60)

and the word length required for ZT is

dT dlog10M×44e d78.9e 79 digits (61)

Hence, any conventional full re-construction method to evaluate RC requires at least a few operations on 79
digit-long integers.

In contrast, our new partial-reconstruction method requires a drastically smaller precision as well as a drasti-
cally small number of simple operations (only additions) to accurately evaluate the reconstruction coefficient
RC . As per Result R1.2 above, the number of fractional digits required in the look-up-tables as well as in
intermediate computations is only

wF dlog1044×2e 2 decimal fractional digits. (62)

When addition of such fractions is considered, the integer part that can accrue requires no more than 2
additional digits (since we are adding at most K 44 values, and each is a proper fraction their sum must be
less than 44 and therefore requires no more than 2 decimal digits to store the integer-part).
Therefore, the total number of digits required in all intermediate calculations is as small as 4, which
is a drastic reduction from 79. (In general the reduction in precision is from OlgM required by
conventional methods versus the much smaller amount Olg lgM required by our method).

Another extremely important point: by appropriate scaling, all the fixed point fractional values in the
table can be converted into integers. Correspondingly, all the fixed-point computations (additions and
subtractions of these fractions) are also scaled and can therefore be realized as integer-only operations.
The obvious scaling factor is 10wF . The resulting look-up-table that contains the scaled integers as its
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entries is illustrated in Table 3.

component
Table enties for row mr : column i←

⌊
i×wr modmr×Cs

mr

⌋
modulus
↓mr

1 2 · · · 189 190 191 192
2→ 50
3→ 66 33

· · ·
...

...
· · ·

191→ 71 42 · · · 57 28
193→ 77 55 · · · 44 22

Table 3: The Redsidue Addressed Table RAT for the RPPR algorithm for the RNS-ARDSP system with
first 44 prime numbers as moduli, i.e., M = {2,3,5,7,11,· · · , 191, 193}. The fixed point truncated values of
the fractions are scaled by a factor of Cs 102.

Note that un-scaling requires a division. But since the scaling factor is a power of the radix of the underlying
number representation, un-scaling can be achieved simply by left-shift and truncation of integers. Thus, with
the scaling, floating point computations are entirely avoided.

Next we formally specify the algorithm and simultaneously illustrate it for two examples:
1. Example 1: find RC for value X=641 in the small wordlength case.
inputs: X 3,4,1,2 (note that the fully reconstructed value for this touple viz., “641” is not known to the
algorithm. It is only given the touple) and the extra-info value (X modme 1));
2. Example 2: find RC for the value “X=1” in the long=wordlength case.
(inputs: X 1,1, · · · ,1,1 and (X modme 1));
Right below every step of the algorithm, the computations actually performed for each of the two examples
are also illustrated inside “comment-blocks”

§ 4.2.4 Specification of the algorithm via Maple-style pseudo-code

Algorithm Reduced_Precision_Partial_Reconstruction (Z,ze)

# Inputs : residue-touple Z z1,z2, · · · ,zK, extra-info ze = (Z mod me), me ∈ {2,4}

# Output: Exact value of the Reconstruction Coefficient RC

# Pre-computation : moduli, M, me, all constants (ex, Mj ,wj 1/Mj modmj , · · ·)
# create(Reconstruction__Table(s));

# Step 1 : using zr as the indexes, look up ultra low precision estimates f̂r, r 1..K
# Note that this can be done in parallel in all channels
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nz 0 ;
for i from 1 to K do # for each channel i

if zr 0 then
f̂r 0;
nzr 1;

else
f̂r zr th element in the look-up-table for mr ;
nzr 0;

fi; # same as “end if”
od; # same as “end for”

# Example 1 : K 4 values read from Table 1 above (and scaled by the factor Cs = 10) = [5,1,2,6]
# Example 2 : K 44 pre-scaled values read from Table 2 above = [50, 61, · · · , 71,77]

# Step 2 : Sum all the f̂r values with a total of only wT digits of precision to obtain the bounds

Ŝlow

K∑
r1
f̂r ; nz

K∑
r1
nzr ; and Ŝhigh Ŝlow nz;

# Example 1 : Ŝlow = 5+1+2+6 = 14 and Ŝhigh = 14+4 = 18
# Example 2 : Ŝlow = (50 + 61 + · · · + 71 + 77) = 2581 and Ŝhigh = 2581+44 = 2625

# Step 3: unscale and take the floor of the bounds to obtain integer bounds on RC

# note that these can be realized as a right-shift followed by truncation

Îlow

⌊
Ŝlow
Cs

⌋
and Îhigh

⌊
Ŝhigh
Cs

⌋
# Example 1 : Îlow b14

10c 1 and Îhigh b18
10c 1

# Example 2 : Îlow b2589
100 c 25 and Îhigh b2625

100 c 26

# Step 4: check if upper & lower integer bounds have same value. if yes, return it as the correct answer

if (Îlow Îhigh) then

Return(Îlow);
fi;
# Example 1 : both upper and lower bounds converge to the same value 1⇒ correct value of RC = 1, and is returned
# Example 2 : Bounds do not converge to the same value⇒ need to disambiguate between {25,26} using extra info

# Step 5: disambiguate using extra-info

if (ZT modme

{
Îlow ·M modme Z modme

}
modme) then

Ans := Îlow;
else

Ans := Îhigh;
end if;
# Example 2 : it can be verified that: ZT mod 4 1 6 25×2 1 mod 4 3 mod 4 but
# (ZT mod 4 X 26×2 1 mod 4 1 mod 4
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Return(Ans); # Output = correct value of RC 2

End__Algorithm

The correctness of the algorithm can be proved by invoking Results 1, 2 and other equations and identities
presented in this document. In addition, the algorithm has been implemented in Maple (software) and
exhaustively verified for small wordlengths (upto 16 bits). A large number of random cases (> 105) for long
wordlengths (up to 220 ≈ million-bits) were also run and verified to yield the correct result.

§ 4.2.5 RPPR Architecture

Figure 3 illustrates the block diagram of an architecture to implement the RPPR algorithm. The main goal
of the architecture is to fully leverage the parallelism inherent in the RNS. There are K channels, each
capable of performing all basic arithmetic operations, viz.,
{ ±,×, division, shifts, powers, equality-check, comparison, .... } modulo mr

which is the component-modulus value for that particular channel.
In addition, each channel is also capable of accessing it’s own look-up-table(s) (independent of other channels).
Finally there is a dedicated channel corresponding to the extra modulus me 2 or me 4 that evaluates Z
modme for every non-primary integer Z (non-primary refers to a value that is not an external input or is not
one of the precomputed values).

We would like to emphasize that the schematic diagram is independent of whether the actual blocks in it
are realized is in hardware or software. The parallelism inherent in the RNS is independent of whether it is
realized in h/w or s/w. This should be contrasted with some other speed-up techniques (such as rendering
additions/subtractions constant-time by deploying redundant representations) that are applicable only in
hardware [39].

§ 4.2.6 Delay models and assumptions

In order to arrive at concrete estimates of delay, we assume a fully dedicated h/w implementation. Each
channel has its own integer ALU that can perform all operations modulo any specified modulus. Among all
the channels, the K-th one that performs all operations modulo-mK requires the maximum wordlength since
mK is the largest component-modulus.

The maximum channel wordlength is : nK lgmK ≈Olgn≈ lg lnM≈ lg lgM (63)

Note that this is drastically smaller than the wordlength nc required for conventional binary representation,
which is roughly On, the number of bits required to representM.

In accordance with the literature, we make the following assumptions about delays of hardware modules
〈A−1〉 A carry-look-ahead adder can add/subtract two operands within a delay that is logarithmic w.r.t. the
wordlength(s) of the operands.
〈A−2〉 Likewise, a fast hardware multiplier (which is essentially a fast multi-operand accumulation tree
followed by a fast carry-lookahead-adder and therefore) also requires a delay that is logarithmic w.r.t. the
wordlength of the operands.
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More generally, a fast-multi-operand addition of K numbers each of which is n-bits long requires a delay of

OlgK Olgn lgK which becomes ≈Olgn in our case. (64)

〈A−3〉 Assuming that the address-decoder is implemented in the form of a “tree-decoder”, a look-up table
with L entries requires ≈OlgL delay to access any of it’s entries.
〈A−4〉 We assume that dedicated shifter(s) is(are) available. A multi-stage-shifter (also known as a “barrel”
shifter [4, 40]) implements shift(s) of arbitrary (i.e., variable) number of bit/digit positions, where the delay is
≈Olgmaximum_shift_distance_in_digits) units.

§ 4.2.7 Estimation of the total Delay

The preceding assumptions, together with Equation (63) imply that the delay ∆ CH all operations within
individual channels can be approximated to be

∆ CH ≈ lgmK ≈Olg lgn≈ lg lg lgM (65)

which very small.

The delay estimation is summarized in Table 4.

Algorithm Step no: can individual Approximate Delay
and operation(s) channels work as a function of Justification
performed in parallel? wordlength n

1: Compute or look-up ρr values yes Olg lgn Equation (65)

2: Using ρr as the index yes Olg lgn Equation (65)
look up estimates f̂r

3: Add all the estimates No OlgK ≈ Assumption 〈A−2〉
Olgn and Equation (64)

4: Un-scale the sum back No Olg lgn realized via a shift and
and truncate truncation

5: Check if upper and lower bounds obvious, equality check
converge to the same value No O1 on small values

6: Disambiguation No Olg lgn me ∈ {2,4}⇒
tiny operands

Overall delay ≡ Latency Olgn dominant “functional”
component

TABLE 4: ESTIMATION OF THE DELAY REQUIRED BY THE RPPR ALGORITHM

As seen in the table, the dominant delay is in Step 3, the accumulation of values read from the per-channel
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look-up tables.
Therefore, the overall delay is ≈Olgn≈Olg lgM

§ 4.2.8 Memory required by the PR algorithm

The r-th channel associated with modulus mr has its own Look-up table with (mr−1) entries (since the case
where the remainder is “0” need not be stored). Hence, the number of storage locations needed is

K∑
r1
mr−1<K ·mK ≈OK2 ≈On2 (66)

Each location stores a fractional value that is no longer than wF digits ≈Olgn bits. Therefore,

total storage (in bits) = On2 (locations) ×Olgn (bits per locations) ≈On2 lgn bits (67)

There are several important points to note:

1 . Although the above estimate makes it look as-though it is a single chunk of memory, in reality it is not.
Realize that each channel has its own memory that is independently accessible. The implications are:

2 . The address-selector (aka the decoder) circuitry is substantially smaller and therefore faster (than if the
memory were to be one single block).

3 . It is a READ-ONLY memory, the precomputed values are to be loaded only once, they never need
to be written again. In a dedicated VLSI implementation, it would therefore be possible to utilize highly
optimized, smaller and faster cells.

§ 4.3 Base change/extension

Those familiar with the art will realize that once the “RPPR” algorithm yields an exact equality for the
operand (being partially re-constructed), a base-extension or change is straightforward.

Without loss of generality, the algorithm is illustrated via an example which extends a randomly generated
32-bit long unsigned integer to a 64-bit integer (without changing the value), which requires an extension of
the residue touple as shown below.

In order to cover the (single-precision) range [0, 232] , the moduli set required is

M M32 {2,3,5,7,11,13,17,19,23,29} so that K |M| 10, and total product M 6469693230,

the reconstruction weights are Mi
M
mi

, i 1, · · · ,10 3234846615, 2156564410, 1293938646,

924241890, 588153930, 497668710, 380570190, 340510170, 281291010, 223092870

and the inner weights are wi

( 1
Mi

)
modmi, i 1, · · · ,10 1,1,1,3,1,11,4,9,11,12
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In order to cover the double-precision range [0, 264] , the extended moduli set required is

Mext M64 {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53} so that Kext |Mext| 16, and

total product Mext 32589158477190044730

Let the single precision operand be Z 1355576195 ≡ Z 1,2,0,1,6,12,3,10,10,21
and ze Z mod 4 3. The CRT expresses the value Z in the form

Z 3234846615×ρ1 2156564410×ρ2 · · · 223092870×ρ10−6469693230 RCz
(68)

where, ρi zi×wi modmi is the reconstruction remainder for channel i, for i 1, · · · ,10
and RCz

the reconstruction coefficient for Z
The only unknown in Eqn (68) is RCz

which can be determined using the “RPPR” algorithm yielding an
exact integer equality, enabling a straightforward evaluation of the extra-residues needed to extend the residue
touple. For example the first extra-modulus in the example at hand is m11 31. Accordingly,
Zext11 z11 Z mod 31
Note that 3234846615 mod 31, · · · ,6469693230 mod 31 are all constants for a given RNS and can be
pre-calculated and stored. In general we always assume that whichever values can be pre-computed are
actually pre-computed. Thus

θi,j Mi modmej for i 1, · · · ,K and j K 1, · · · ,Kext (69)

are all pre-computed and stored, so that the operation of evaluating the remainder w.r.t. an extra modulus
mer in the extended RNS system (such as the modulus 31 in the running example at hand) simplifies to

Z modmer

(
θ1,er

ρ1 θ2,er
ρ2 · · · θK,er

ρK − ∆er RCz

)
mod mer (70)

where, ∆er M mod mer

Next, we specify the algorithm exactly in Maple-style pseudo-code.

§ 4.3.1 Specification of the algorithm via maple-style pseudo-code

Algorithm Base_extension_using_RPPR_method (Z,ze)

/∗ Inputs : residue-touple Z z1,z2, · · · ,zK, extra-info ze = (Z mod me), me 4
corresponding to a 32 bit unsigned integer Z ∗/

# Output: residue touple for the 64-bit extension of Z

/∗ Pre-computation : original moduli-set M32 {2,3, · · · ,29} , |M32| K32 10
extended moduli-set M64 {2,3, · · · ,53} , |M64| K64 16
all constants (ex, Mj ,wj 1/Mj modmj , · · ·)
Reconstruction__Table(s) for both M32 and M64, etc. ∗/

# Step 1 : evaluate RCz
using the “RPPR” algorithm

RCz
= Reduced_Precision_Partial_Reconstruction ( Z,ze) ;

# Step 2 : evaluate the extra residues as per Eqns (68) and (70)
# This can be executed in parallel in all channels corresponding to the extension moduli
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for i from 1 to Ke do # in each extension channel i
sum := 0;
for j from 1 to Ke do

sum sum ρj×θi,j ;
od;
zi sum−∆i RCz

mod mi ;
Z concatZ,zi ; # append the new residue to the residue touple

od ;

Return(Z) 2

End__Algorithm

§ 4.4 Sign and Overflow Detection by Interval Separation ( SODIS )

The next canonical operation I have sped-up is sign-detection. The new algorithms for sign-detection in the
RNS are illustrated in this section.

As illustrated in Figure 4, fundamentally, the RNS representation does allow a separation of positive and
negative integers into distinct non-overlapping regions (what is meant here is that the RNS mapping is not so
strange as to “mix” positive and negative numbers throughout the entire range. It takes an “interval” (namely
the interval including all negative integers) and faithfully (i.e., without changing the length of the interval)
simply translates (or displaces) it into another another “interval” which is not surprising since the “mapping”
corresponding to the translation is the simple first degree equation describing the “modulo” operation, i.e.,
Eqn. (3))

Q : Where then is the problem in sign detection?

A : (i) Note that a “re-construction” of the overall magnitude is necessary

(ii) For the efficiency of representation (i.e., in order not to waste capacity) the following
additional constraint is also imposed in most RNS implementations.

F−max Fmax 1 (71)

In other words, ALL the unsigned integers in the range [0,M− 1] are utilized, not a single digit value is
wasted.
An unfortunate by-product of this quest for representational efficiency is that consecutive integers Fmax and
F−max end up having opposite signs. Consequently, re-construction must be able to distinguish between
consecutive integers, i.e., the resolution of the re-construction must be full, i.e., in fractional computations

ulp<
1
M

(72)

This, in-turn requires that all fractional computations must be carried out to the full precision, thereby
rendering them slow.

The main question therefore is whether it is possible to make do with the drastically reduced precision we
wish to deploy? and if so, then how?

The answer is to insert a sufficiently large “separation-zone” between the positive and negative regions, as
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illustrated in Figure 5.

In Figure 5, note that

both “0” as well asMe correspond to the actual magnitude 0 (73)

unsigned integers {1, · · · ,Fmax} represent ve values and (74)

unsigned integers {F−max, · · · ,Me −1} represent −ve values

{−Me −F−max, · · · ,−1 }, respectively, wherein (75)

Unsigned Integer Fmax represents the maximum positive magnitude allowed, and (76)

Unsigned Integer F−max represents the max. −ve magnitude allowed = (Me −F−max) (77)

The interval between Fmax and F−max is the separation zone (78)

Most practical/useful number representations try to equalize the number of ve values and the number of −ve
values included in order to attain maximal amount of symmetry. This yields the constraint

F−max ≈Me −Fmax (79)

Intuitively, it is clear that equal lengths should be allocated to
(1) the ve interval
(2) the −ve interval and
(3) the separation-zone between the opposite polarity intervals.

For this to be possible, the extended modulusMe must satisfy Me > 3 ·Fmax (80)

Finally, the attainment of maximal possible symmetry dictates that to the extent possible, the separation-zone
must be symmetrically split across the mid-point of the range [0, (Me −1)]. Note that Figure 5 incorporates
all these symmetries.

With the separation interval in place, note that all ve numbers Z within the range [1,Fmax] when represented
as fractions of the total magnitudeMe now satisfy

0< Z

Me
<

1
3 (81)

Likewise, all −ve numbers Z−when represented as fractions of the total magnitudeMe satisfy

2
3 <

Z−

Me
< 1 (82)

But Eqn (19) (repeated here for the sake of convenience) states that

Z

M
S−bSc the fractional part of the sum of fractions≈

K∑
r1
f̂r (83)

In other words, the separation interval enables the evaluation of the sign of the operand under consider-
ation by examining one (or at most two) most significant digits of the accumulated sum of fractions.
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Recall that in the partial reconstruction, the integer part of the sum-of-fractions was of crucial importance. It is
quite striking that when the interval separation is properly leveraged as illustrated herein, the most significant
digit(s) of the fractional part also convey equally valuable information, viz., the sign of the operand.

As per Equations (81) and (82) the natural choice of the detection boundaries T and T− is specified by the
relations

T

Me

1
3 0.333 · · · and (84)

T−

Me

2
3 0.666 · · · (85)

However, note that even if the “detection boundaries” T (for ve numbers) and T−(for −ve numbers) are
moved slightly into the “separation zone”, as illustrated in Figure 5,
the sign-detection outcome does not change .

For the ease of computation, we therefore set

T

Me

4
10 0.4 and (86)

T−

Me

6
10 0.6 (87)

§ 4.4.1 Specification of sign-detection algorithm via Maple-style pseudo-code

Algorithm Eval__Sign ( Z, ze )

# Input(s) : Given an integer Z represented by the residue touple/vector Z z1, · · · ,zK
# and one extra value, viz., ze Z mod me) where me 4

/∗ Output(s) : the Sign of Z, defined as

SignZ


0 if Z 0
1 if Z > 0
−1 otherwise

(88)

The algorithm also returns two more values in addition to the sign
(i) the value of the reconstruction coefficient RC for the input and
(ii) Approx_overflow_estimate which is a flag defined as follows:

Approx_overflow_estimate

{
1 if overflow is detected for sure
0 otherwise

(89)

further computation is needed to determine whether there is an overflow in the 2nd case above

Pre-computation : Everything needed for the “RPPR” algorithm, and in addition
Fmax, F−max, decision boundaries T and T−, etc. ∗/

25



Con
fide

nti
al

# Step 1 : Look up pre-stored estimates fr,r 1..K
for i from 1 to K do # for each channel i

if zr 0 then
f̂r 0;
nzr 1;

else
f̂r zr-th element in the look-up-table for mr ;
nzr 0;

end if;
od;

# Step 2 : Sum all the fr values with only wT total digits

Ŝlow

K∑
r1
f̂r ; nz

K∑
r1
nzr ; and Ŝhigh Ŝlow nz;

if (nz K) then # all components = 0⇒ Z 0
Return(0, 0, 0) ;

fi ;

# Step 3: unscale and separate integer and fractional parts

Îlow

⌊
Ŝlow
Cs

⌋
; F̂low Ŝlow− Îlow ; and Îhigh

⌊
Ŝhigh
Cs

⌋
; F̂high Ŝhigh− Îhigh ;

# important substitutions
F̂ F̂low ; and Î Îlow ;

# Step 4: determine the temporary sign

Approx_overflow_estimate := 0 ;

if (F̂ < T ) then
Temp_Sign := 1;

else if (F̂ > T−) then
Temp_Sign := −1;

else
Approx_overflow_estimate := 1;
if (F̂ < 1/2) then

Temp_Sign := 1;
else

Temp_Sign := −1;
end if;

end if;

# Step 5: determine RC

if (Îhigh Îlow) then

RC Î
else

if (ZT mod 4
{
Î ·M mod 4 Z mod 4

}
mod 4) then
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RC Î;
else

RC Î 1;
fi;

fi;

if (RC Î) then
Sign := Temp_Sign ;

else
Sign := −1 × Temp_Sign ;

fi ;

Return( Sign, RC , Approx_overflow_estimate) 2

End__Algorithm

§ 4.4.2 Overflow Detection

Since we are dealing with sign-detection of integers, an underflow of “magnitude” simply results in the value
“0”; no other action needs to be taken in case of magnitude underflow.

However, a magnitude overflow, must be detected and flagged. let A and B be the operands and let ⊗ denote
some operation, then “overflow of magnitude” includes both cases

case 1 A⊗B > Posedge = Fmax and (90)

case 2 A⊗B < Negedge −M−F−max (91)

or dividing both sides by M
A⊗B
M

>
Fmax
M

and (92)

A⊗B
M

<
F−max
M

(93)

However, recall that the decision boundaries T and T− are shifted by a small amount into the “separation
region”. As a result, whenever input values in the range [Fmax,T ] or in the range [T−,F−max] are encountered,
they will be wrongly classified as being within the correct range even though they are actually outside the
designated range. The only solution to this problem is to separately evaluate the sign of either Z−Fmax
or Z−F−max to explicitly check for overflow.

§ 4.4.2.A Specification of overflow detection algorithm via Maple-style pseudo-code

Algorithm Eval__overflow (Z, ze, Sign, approx_overflow)

# Note that every invocation of this algorithm must be immediately preceded by
# an invocation of the Eval__sign algorithm
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/∗ Precomputations : same as those for algorithm Eval__sign
Inputs : Z, ze, Sign of Z, approx_overflow for Z
The last two values are obtained as a result of the execution of the
Eval__sign algorithm immediately preceding the invocation of this algorithm.

Output(s) : overflow flag defined as

overflow

{
1 if overflow is detected for sure
0 no overflow

(94)

∗/

# Step 1 : handle the trivial cases first
if (Sign == 0) then

Return(0);
fi;

if (approx_overflow == 1) then
Return(1);

fi;

# Step 2 : Determine the argument “TZ” for auxiliary sign-detection.
# note that the residue touple TZ corresponding to the integer TZ is directly determined
# via component-wise subtractions in the Residue Domain

if (Sign == 1) then

TZ Z 	 Fmax ; # 	 denotes component-wise subtraction in the residue domain

tze
(
ze−Fmax mod 4

)
mod 4 ; # disambiguation-bootstrapping

else if (Sign == −1) then

TZ Z	F−max ;

tze
(
ze−Fmax mod 4

)
mod 4 ; # keep track of all values modulo 4

end if;

# Step 3 : determine the sign of TZ, (which is denoted by the variable Stz herein

Stz , tmp_rc, approx_overflow_tz := Eval__sign(TZ, tze) ;

if (Sign == 1) then

if ( Stz == 1) then
overflow := 1 ;

else
Overflow := 0 ;

end if;

else if (Sign == −1) then

if ( Stz == −1) then
Overflow := 1;

else
Overflow := 0;
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end if;

end if;

Return(overflow); 2

End__Algorithm

Once these building blocks are specified, the overall SODIS algorithm is specified next.

§ 4.4.2.B Specification of sign and overflow detection algorithm via Maple-style pseudo-code

Algorithm Sign__and__Overflow__Detection__by__Interval__Separation (Z, ze)

# this algorithm is abbreviated as “ SODIS ”
# Inputs : Z, ze
# Outputs : Sign(Z), overflow, RCz

Sign, RCz
, approx_overflow := Eval__sign (Z, ze) ;

overflow := Eval__overflow (Z, ze, Sign, approx_overflow) ;

Return(Sign, overflow, RCz
) ; 2

End__Algorithm

Those familiar with the art shall realize that using the algorithms presented in this section, a comparison of
of two numbers say A and B can be realized extremely fast, without ever leaving the residue domain in a
straightforward manner by detecting the sign of (A−B).

§ 4.5 The Quotient First Scaling ( QFS ) algorithm for dividing by a constant

Assume that a double-length (i.e., 2n-bit) dividend X is to be divided by an n-bit divisor D, which is a
constant, i.e., it is known ahead of time. The double length value X is variable/dynamic. It is either an
external input or more typically it the result of a squaring or a multiplication of two n-bit integers. It is
assumed that the extra-bit of information, i.e., the value of (X modme) is available. Given positive integers
X and D, a division entails computing the quotient Q and a remainder R such that

X Q×D R where 0≤R<D so that Q

⌊
X

D

⌋
(95)

To derive the Division algorithm, start with the alternative form of the Chinese Remainder Theorem (CRT)
which expresses the target integer via an exact integer equality of the form illustrated in Equations (B-8.*).
Express the double-length Dividend X as

X XT −M· RCx

(
K∑
r1
Mr ·ρr

)
−M· RCx

(96)
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where the exact value of Reconstruction Coefficient RCx
is determined using the “RPPR” algorithm

explained in Section 4.2 above. In other words, there is no unknown in the above exact integer equality
expressing the value of the dividend X .

To implement Division, evaluate the quotient Q as follows:

Q

⌊
X

D

⌋ ⌊ K∑
r1

Mr ·ρr
D

− RCx
·M

D

⌋ ⌊{
K∑
r1
Qr

Rr
D

}
−QRC

RRC

D

⌋
(97)

⌊{
K∑
r1
Qr fr

}
−QRC fRC

⌋
where (98)

Qr , QRC

⌊
Mr ·ρr
D

⌋
,

⌊
RCx
·M

D

⌋
precomputed quotient values, and (99)

Rr , RRC Mr ·ρr−Qr ·D , RCx
·M−QRC ·D precomputed remainders, and (100)

fr , fRC

Rr
D

,
RRC

D
remainders expressed as fractions of the divisor D (101)

The exact integer-quotient can be written as

Q

(
K∑
r1
Qr

)
−QRC

⌊(
K∑
r1
fr

)
−fRC

⌋
QI Qf where (102)

QI

(
K∑
r1
Qr

)
−QRC the contribution of Integer-part, (hence the subscript “I”), and (103)

Qf

⌊(
K∑
r1
fr

)
−fRC

⌋
the contribution of fractional-part (hence the subscript “f”) (104)

Since exact values of Qr and QRC are pre-computed and looked-up, the value of QI in
Eqn (103) above is exact. However, since we use approximate precomputed values of the fractions truncated
to drastically small precision, the value of Qf calculated via Eqn (104) above is approximate. As a result, the
value of Q that is calculated is also approximate. We indicate approximate estimates by a hat on top, which
yields the relations :

Q̂ QI Q̂f where (105)

Q̂f

⌊(
K∑
r1
f̂r

)
− f̂RC

⌋
(106)

Our selection of moduli (explained in detail in Section 4.1 above) leads to the fact that the number of of
memory-locations required for an exhaustive look-up turns out to be a small degree (quadratic) polynomial
of n lgM. This amount of memory can be easily integrated in h/w modules in today’s technology for
word-lengths up to about 217 ≈ 0.1-Million bits (which should cover all word-lengths of interest today as
well as in the foreseeable future).

Note that the Reconstruction Coefficient RCx
can also assume only a small number of values (no more

than (K−1) where K is the number of moduli as per Eqns (B–4, B–5) and (B–9) Hence, quotient values QRC

and the fractions fRC
RRC
D can also be pre-computed and stored for all possible values the Reconstruction
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Coefficient RCx
can assume.

§ 4.5.1 Further novel optimizations

⊙
1 Store the pre-computed Quotient values directly as residue touples

Note that the quotient values themselves could be very large (about the same word-length as the divisor D).
However, we need not store these long-strings of quotient values, since in many applications (such as modular
exponentiation) the quotient is only an intermediate variable required to calculate the remainder.
Obviously the extra bit of information conveyed by (Qrs modme) is also pre-computed and stored together
with the touple representing the exact integer quotient

Qir

⌊
r ·Mi

D

⌋
for i 1, · · · ,K and r 1, · · · ,mr−1 (107)

The total memory required to store either the full-length long-integer value or storing the residues w.r.t. the
component moduli as a touple is about the same. By opting to store only the residue-touples, we eliminate the
delay required to convert integer quotient values into residues, without impacting the memory requirements
significantly.⊙

2 Only fractional remainders truncated to drastically reduced precision OlgK ≈Olg lgM
need to be pre-computed and stored (exactly similar to the “RPPR” algorithm).⊙

3 simple scaling converts all fractional storage/computations into integer values.

Thus, the QFS algorithm needs 2 distinct Quotient_Tables.

§ 4.5.2 Quotient-Tables explained via a small numerical example

I believe that the tables can be best illustrated by a concrete-small example. Assume that the divisor
D 209 11×19 (i.e. D is representable as an 8-bit number). The dividends of interest are therefore up-to
16-bit long numbers. In this case the moduli turn out to be [2, 3, 5, 7, 11, 13, 17]. Even if the first two moduli
(viz., 2 and 3) are dropped, the product still exceeds the desired range 0,216. Therefore we select

M {5,7,11,13,17}⇒K 5, M 85085 and the extra-modulus me 2 (108)

To realize division by this divisor D 209, the first table required is shown in Table 5.
This table is referred to as “Quotient_Table_1” (or also as the “Quotient_Touples_Table” ). It stores all
possible values of Quotients required to evaluate the first term (the sum) in Eqn (103). The entries (rows)
corresponding to each component-modulus mr constitute a sub-table of all possible values ρr can assume for
that value of mr. For the sake of clarity, we have used a “double-line” to separate one sub-table from the next.

To illustrate the pre-computations, we explain the last sub-table, in Quotient_Table_1 corresponding to the
component-modulus “m5 17”, wherein, M17

M
17 5005.

This sub-table has 16 rows. The first row corresponds to ρ5 1 the second row corresponds to ρ5 2 and so on.
Now, we explain each entry in the penultimate row in Table 1 above (this row corresponds to ρ5 15). The
value in the 3rd column titled “Quotient ....” lists the quotient, i.e.,

⌊
M17×15

D
5005·15

209

⌋
359. The next entry

(within the angled-brackets 〈〉) simply lists the value of Q5_15 modme 359 mod 2 1. The 4th column
stores the residue-touple 4,2,7,8,2 representing the quotient 359.
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modulus ρr Quotient Remainder Rr
mr 1,2, · · · Qr bMr·ρr

D c moduli mj ,j 1 · · ·K Mr ·ρr−Qr ·D
↓ mr−1 and [5, 7, 11, 13, 17] Scaled Fractional Rem

↓ 〈Qr mod 2 〉 Qr mod mj , j 1 · · ·K = truncRr
D ×10wf ↓

1 81 〈1〉 [1, 4, 4, 3, 13] 42
5 2 162 〈0〉 [2, 1, 8, 6, 9] 84

3 244 〈0〉 [4, 6, 2, 10, 6] 26
4 325 〈1〉 [0, 3, 6, 0, 2] 68

...
· · ·

...
1 23 〈1〉 [3, 2, 1, 10, 6] 94
2 47 〈1〉 [2, 5, 3, 8, 13] 89

17
...

15 359 〈1〉 [4, 2, 7, 8, 2] 21
16 383 〈1〉 [3, 5, 9, 6, 9] 15

Table 5: Quotient_Table_1 for RNS- ARDSP with moduli M 5,7,11,13,17 and divisor D 209. In this case,
two digits suffice to store the scaled fractional-remainders in the last column.

The last column in Table 1 stores the fixed point fractional remainder values scaled by the multiplying
factor bwf 102 to convert them into integers. For instance, in the penultimate row: the actual remainder is
5005×15−359×209 44, corresponding fractional remainder is
44
209 ≈ 0.21052.... which when truncated to two decimal places yields 0.21
Accordingly, trunc( 44

209 ×102) = 21 and this is the value stored in the last column.

We would like to point out that the actual full-wordlength-long integer values of quotients Qr (that are listed
in column 3 in the table) need not be (and hence are not) stored in a real (h/w or s/w)
implementation of the algorithm (the full decimal Qr values were included in column 3 in Table 1 above,
merely for the sake of illustration). In an actual implementation, only the extra-information, i.e., 〈Qr mod 2〉
values (shown inside the angled-braces 〈 〉 in column3) and the residue-domain touples representing Qr (as
shown in column 4 in the table) are stored. For example, in the penultimate row, actual quotient value “359”
need not be stored, only 〈359 mod 2〉 〈1〉 would be stored, together with the touple of residues of 359 w.r.t.
the component moduli
= 359 mod 5, · · · ,359 mod 17 4,2,7,8,2 as shown in column 4 therein.

Next we explain Table 6, which shows Quotient_Table_2 (also referred to as the “Quotient_Rc_Table” )

This table covers all possible values of the Reconstruction Coefficient RCx
in Eqns (96)–(98). Like Table

5, the values in column 2 (i.e., the full-wordlength-long integer values of quotient Qc) are not stored in actual
implementation, (they are included in the table only for the sake of illustration). In actual implementations,
only the residues of Qc with respect to (w.r.t.) 2 (shown inside angled braces 〈 〉 in column 2) and the touple
of residues of Qc w.r.t. the component-moduli are stored as illustrated in the third column of the Table. The
last column stores the fixed point fractional remainder values scaled by the factor 10wf to convert them into
integers.

Another nontrivial distinction of Quotient_Table_2 from all previous tables is the fact that the fractional
values in the last column are always rounded-up (the mathematical expression uses the “ceiling” function).
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RC Quotient moduli mj ,j 1 · · ·K Remainder Rc M·RC−Qc ·D
1,2, · · ·K Qc b

M ·RC
D c [5, 7, 11, 13, 17] Scaled Fractional Remainder

↓ 〈Qc mod 2〉 Qc mod mj , j 1 · · ·K ceilRc
D ×10wf ↓

1 407 〈1〉 [2, 1, 0, 4, 16] 11
2 814 〈0〉 [4, 2, 0, 8, 15] 22
3 1221 〈1〉 [1, 3, 0, 12, 14] 32
4 1628 〈0〉 [3, 4, 0, 3, 13] 43
5 2035 〈1〉 [0, 5, 0, 7, 12] 53

Table 6: Quotient_Table_2 for RNS- ARDSP with moduli [5,7,11, 13, 17] and divisor D 209.

Note that the last term in Equations (96) and (98), has a negative sign. As a result, when rounding the
fractional remainders, we must “over-estimate” them, so that when this value is subtracted to obtain the final
quotient estimate, we never over-estimate. In other words, the use of “ceiling” function is necessary to ensure
that we are always “under-estimating” the total quotient.

§ 4.5.3 Specification (pseudo-code) of the QFS Algorithm

Like the RPPR-algorithm, we illustrate the division algorithm with 2 examples:
(i) first with small sized operands (dividend X 3249, divisor D 209) so that the reader can replicate the
calculations by hand/calculator if needed.
(ii) The 2nd numerical example is a realistic long-wordlength case.
Instead of separating the pseudo-code and numerical illustration, we have waved in the numerical illustration
of each step of the algorithm for the running (small) example at hand by including the numerical calculations
into the pseudo code as comment blocks.

Algorithm Quotient___First___Scaling__Estimate (X, 〈X mod me〉)
# Inputs : Dividend X as a residue-touple X x1, · · · ,xK and 〈X modme〉, where me ∈ {2,4}
# Pre-computations : Moduli, extra_modulus me, all constantsM,Mr,wr,r 1,2, · · · ,K etc.

create (Reconstruction_Tables) ; create (Quotient_Tables) ;

# Step 1 : use the RPPR-algorithm to find the Reconstruction-(Remainders & Coefficient) for X

( 1.1 ) ρ1, · · · ,ρK , RCx
RPPRX,me,〈X mod me〉

( 1.2 ) nonzero_rrems := 0;
( 1.3 ) for i from 1 to Nmoduli do

if ρi 6 0 then nonzero_rrems := nonzero_rrems + 1; fi;
od;

( 1.4 ) if ( RCx
6 0) then nonzero_rcx := 1;

else
nonzero_rcx := 0;

fi;

# In the numerical example: ρ 10,2,2,5,2; RCx
:= 2; nonzero_rrems := 5; nonzero_rcx := 1;

# Step 2 : Using the ρi and the the RCx
values as “indexes”, look-up in parallel the touples Tiρi,
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# scaled remainders Rri, QRcx, RRcx, and the corresponding extra_info values (all added in | |)

( 2.1 ) Ti Quo_Tab_1[i, ρi, 3]; Rri Quo_Tab_1[i, ρi, 4]; i 1, · · · ,K
( 2.2 ) QRcx Quo_Tab_2[ RCx

, 3]; RRcx Quo_Tab_2[rcx, 4];
( 2.3 ) extra_info_Ti Quo_Tab_1[i, ρi, 2]; extra_info_QRcx Quo_Tab_2[ RCx

, 2];

/∗ In the example: T1 4,1,8,5,1, T2 2,6,7,10,11, T3 4,4,8,9,6, T4 0,3,4,4,1,
T5 2,1,8,6,9 and QRcx 4,2,0,8,15. (Rr1,Rr2, Rr3,Rr4, Rr5,Rrcx) := (47 63, 1, 78, 84, 22)
Note that there is no “extra-information” associated with the fractional-remainder values ∗/

# Step 3 : Execute accumulations in parallel in all the RNS and extra channel(s)

( 3.1 ) QI

(
K

+
i 1

Ti

)
− QRcx ; ( 3.2 ) Q̂f

 K∑
j1

Rrj

−RRcx ;

/∗ ± denotes a component-wise addition/subtraction of touples in parallel in all the RNS channels.

“
∑

” denotes addition of scalars in the extra channel(s) In the example:

QI 4,1,8,5,1 + 2,6,7,10,11 + 4,4,8,9,6 + 0,3,4,4,1 + 2,1,8,6,9 − 4,2,0,8,15
8 mod 5, · · · ,13 mod 17 3,6,2,0,13 and Q̂f 47 63 1 78 84−22 251 ∗/

# Step 4 : Set Q̂f_unscaled := Unscaled Q̂f . Also evaluate bounds on Q̂f , and check if Q̂f is exact.

( 4.1 ) Q̂f_unscaled :=

(Q̂f

)
bw

; ( 4.2 ) Q̂f_high

(Q̂f nonzero_rrems + nonzero_rcx
)

bw

;
# here, b is the base and w is the precision⇒ only left-shift followed by truncation suffices
( 4.3 ) Q̂f_low Q̂f_unscaled

( 4.4 ) if Q̂f_low Q̂f_high then # In the example :
Q_is_exact := 1 ; # Q̂f_low b

251
102 c 2; and

else # Q̂f_high b
25151

102 c 2; ⇒
Q_is_exact := 0 ; # in the example, Q_is_exact := 1;

fi;

# Step 5 : evaluate Q̂: convert Q̂f_unscaled into a residue-touple and add it to QI

( 5.1 ) Q̂f_touple vector
(
K, i→ Q̂f_unscaled mod mi

)
;

( 5.2 ) Q̂ QI + Q̂f_touple # In the example : Q̂ 3,6,2,0,13 + 2,2,2,2,2 0,1,4,2,15

# Step 6 : Also generate Q̂ mod me; the “disambiguation-bootstrapping” step

( 6.1 ) extra_info_Q̂

[(
K∑
i1

extra_info_Ti

)
− extra_info_QRcx

]
modme;

( 6.2 ) extra_info_Q̂ extra_info_Q̂ Q̂f_unscaled mod me

34



Con
fide

nti
al

# in the example : extra_info_Q̂ 1 0 0 0 0−0 mod 2 2 mod 2 1

( 7 ) Output : Return(Q̂ , Q̂ mod me ,Q_is_exact) ; 2

End__Algorithm

/∗ In the example : Using the CRT, it can be verified that Q̂ 0,1,4,2,15≡ 15 and Q̂ mod me X 1.
It is also easy to independently check that b3249

209 c 15, verifying the returned value of flag Q_is_exact ∗/ We would
like to clarify some important issues regarding the QFS algorithm.⊙

1 From the residue touple Q̂, returned by the algorithm, the remainder can be directly estimated as a
residue-touple; and the extra info value (R̂ modme) can also be evaluated using the fundamental division
relation (Eqn (95) above):

R̂ X − Q̂ × D (109)

R̂ mod me X mod me− Q̂ mod me×D mod me mod me (110)⊙
2 Note that the input X is made available to the algorithm only as a residue touple, not as a fully

reconstructed decimal or binary integer. In addition, one extra bit conveyed by (X modme) is also required
by the algorithm. Given these inputs, the algorithm generates Q̂ as well as Q̂ modme (and therefore
R̂ and R̂ modme as per Eqns (109) and (110)), thereby demonstrating that
the outputs are delivered consistently in the same format as the inputs.⊙

3 The integer estimate Q̂ corresponding to the residue-touple Q̂ can take only one of the two values
a If the variable/flag “Q_is_exact” is set to the value “1”, then Q̂ Q, i.e., the estimate equals the exact

integer quotient. In practice (numerical experiments) this happens in an overwhelmingly large number of
cases.
b otherwise, the flag Q_is_exact 0, indicating that the algorithm could not determine whether or not Q̂ is

exact. (because of the drastically reduced precision used to store the pre-computed fractions) In this case
Q̂ could be exact, i.e., Q̂ Q

or Q̂ Q−1, i.e., Q̂ can under-estimate Q by a ulp.
Further disambiguation between these two values is possible by calculating the estimated-remainder R̂ and
checking whether (R̂−D) is ve or −ve
Let the exact integer remainder be denoted by R. It is clear that the estimated integer-remainder R̂ can have
only two possible values:

a if Q̂ is exact, then R̂ R , i.e., R̂ is also exact; or (111)

b Q̂ Q−1 ⇒ R̂ X−Q−1D X−Q ·D D R D (112)

In other words, in the relatively infrequent case b , performing a sign-detection on (R̂−D) is guaranteed to
identify the correct Q and R in all cases. (if (R̂−D) is ve, then it is clear that Q̂ underestimated Q by a ulp;
otherwise Q̂ Q)
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§ 4.5.4 Estimation of the Delay of and the Memory required for the QFS Algorithm

§ 4.5.4.A Delay model and Latency estimation

We assume dedicated h/w implementation of all channels (including the extra channels). Within each channel
the look-up tables are also implemented in h/w (note that the tables need not be “writable”). All tables are
independently readable in parallel with a latency of Olgn. Likewise, since each component modulus is small
as well as the number of channels (K) is also small, we assume that a dedicated adder-tree is available in
each channel for the accumulations modulo the component-modulus for that channel. The latency of the
accumulations can be also shown to be logarithmic in the word-length, i.e., Olgn. Likewise, we assume that
a fast, multistage or barrel shifter is available per channel so that delay of “variable: shifts is also Olgn.

Figure 7 illustrates a timing diagram showing the sequence of successive time-blocks in which the various
steps of the QFS algorithm get executed. At the top of each block, we have also shown its latency as a
function of (the overall RNS word-length) n, under the assumptions stated above.

Since the maximum latency of any of the blocks is Olgn, the overall/total latency of the h/w implementation
is estimated to be Olgn.

§ 4.5.4.B Memory requirements

In addition to the reconstruction table, we also need the Quotient Tables. The total number of number of
entries in both parts of the Quotient table is OK2/2 OK−1 OK2. In this case, each table entry has K 1
components, wherein, each component is no bigger than Olg lgK bits.
Consequently the total storage (in bits) that is required is ≈OK3 lg lgKbits≈On3 lg lgn bits.

§ 4.6 Modular exponentiation entirely within the Residue Domain

Modular exponentiation refers to evaluating (XY mod D). In many instances, in addition toD, the exponent
Y is also known ahead of time (ex: in the RSA method,Y is the public or private-key). Our method does not
need Y to be a constant, but we assume that it is a primary/external input to the algorithm and hence available
in any desired format (in particular, we require the exponent Y as a binary integer, i.e., a string of w-bits).

Let Y yw−12w−1 yw−22w−2 · · · y222 y121 y0 (113)

· · ·yw−1 ∗2 yw−2 ∗2 yw−3 ∗2 · · · y0 (114)

To the best of our knowledge, one of the fastest methods to perform modular exponentiation expresses the
exponent Y as polynomial of radix 2, parenthesized as shown Eqn (114) above (known as the “Horner’s
method” of evaluating a polynomial). Since the coefficient of the leading-term in (113) must be non-zero,
(i.e. yw−1 = 1), the modular exponentiation starts with the initial value Ans := X2 modD. If yw−2 6 0 then
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the result is multiplied (modulo-D) by X and is then squared. This operation is repeatedly performed in a
loop as shown below:
# Initialization : Ans = X2 mod D; .............................................. mod_red_1
# Loop : for i from w−2 by −1 to 1 do

curbit := Yi;
if curbit = 1 then

Ans := Ans×X mod D ; .................................... mod_red_2
fi;
Ans := (Ans)2 modD; ............................................ mod_red_3

od;
if (y0 1) then Ans = Ans×X mod D; fi; ...................... mod_red_4

The obvious speedup mechanism is to deploy the QFS algorithm to realize each modular-reduction, aka,
remaindering operation. (the remaindering operations needed in modular-exponentiation are tagged with the
label “mod_red_n” inside a box at the end of the corresponding line in the maple-style pseudo-code above).

§ 4.6.1 Further optimization: Avoiding Sign-Detection at the end of QFS

Result 3 : Directly using the estimate Q̂ to evaluate R̂ as a residue-touple (as per Eqn (109) above),
corresponds to an estimated integer-remainder R̂ that is in the
same residue class (w.r.t. the Divisor D) as the correct remainder R

Proof : Immediately follows from the definition of the residue class:

Definition 1 : Integers p and q are in the same residue class w.r.t. D iff (p modD q modD)

Eqns (111) and (112) show that R̂∈ {R,R D}⇒, it is in the same residue-class as the exact integer remainder
R. 2

Next, we show that as long as the range of the RNS system is sufficiently large, it is possible to use incorrect
values for the remainder at intermediate steps of modular exponentiation, (as long as they are in the proper
residue class); and still generate the correct final result.

Result 4 : If the inputs X1 and X2 to the QFS algorithm are in the same residue class w.r.t. the
(constant/known) divisor D then the remainder estimates R̂1 and R̂2 evaluated using the quotient estimates
Q̂1 and Q̂2 returned by the QFS algorithm both satisfy the constraints

R̂1 can assume only one of the two values : R̂1 R or R̂1 R D (115)

R̂2 can assume only one of the two values : R̂2 R or R̂2 R D (116)

where R is the correct/exact integer remainder. (this holds even if the “Q_is_exact” flag is set to 0, indicating
that the algorithm could not determine whether or not the quotient estimate equals the exact quotient).

Result 5 : If the range of the RNS is sufficiently large, then there is no need for a sign-detection at
the end of the QFS algorithm in order to identify the correct remainder in intermediate steps during the
modular-exponentiation operation.

Proof : Assume that at the end of some intermediate step i, Q̂ Q−1 thereby causing

Ansi R̂i Ri D instead of the correct value Ansi R̂i Ri; (117)
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Then, as seen in the pseudo-code for modular exponentiation (which is illustrated in Section § 4.6.2) above,
the next operation is either a modular-square or a modular-multiplication :

Ansi1 Ansi
2 modD or Ansi1 Ansi×X modD⇒ (118)

Ansi1 Ri D
2 modD or Ansi1 Ri D×X modD (119)

instead of the correct values

Ansi1 R2
i modD or Ansi1 Ri×X modD

However, note that

R2
i is in the same residue class w.r.t. D as Ri D

2 and (120)

Ri D×X is in the same residue class w.r.t. D as Ri×X (121)

Therefore from claim 2 above, it follows that in either paths (modular-square or modular-product-by-X) the
answers obtained at the end of the next step satisfy the exact same constraints, specified by Equations (115)
and (116), independent of whether the answers (remainders) at the end of the previous step were exact or had
an extra D in them; which shows that performing a sign-detection on the Q̂ returned by the QFS algorithm
is not necessary. 2

Result 6 : A single precision RNS range ≥ 3D, and correspondingly
a double-precision range ≥ 9D2 is sufficient to obviate the need for a sign-detection

Proof : Since the correct remainder satisfies the constraints 0 ≤ R < D, it is clear that the erroneous
remainder value R D satisfies

0<D ≤R D < 2D (122)

As a result, the estimated remainder could be as high as about/almost 2D. We therefore set the
single-precision range-limit to be 3D so that the full double length values could be as large as 3D2 9D2.
Accordingly, we select K-smallest-consecutive prime numbers such that their product exceeds 9D2. With
this big a range, either modular-square or modular-multiplication using an inexact remainder does not cause
overflow, as per constraint (122) above 2

§ 4.6.2 The ME-FWRD algorithm: maple-style pseudo-code

# First we specify a procedure (“proc” in maple) which is a small wrapper around the QFS algorithm

QFS _rem_estimate := proc(X,X modme)
Q̂, Q̂_mod_me, Q_is_exact := Quotient___First___Scaling__Estimate (X, 〈X mod me〉)
R_is_exact := Q_is_exact; # if Q̂ is exact then so is R̂
R̂_mod_me := [X modme− Q̂_mod_me ×D modme] modme; # bootstrapping...
R̂ X − Q̂ × D;

Return(R̂, R̂_mod_me, R_is_exact);
end proc ;

Algorithm ModExp__Fully__Within__Residue__Domain (X,X modme,Y)

# Inputs : X as a residue-touple, the extra-info, and Y as a w-bit binary-number
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# We assume that the constraint X < M has been enforced before converting the primary input X into
# a residue-touple
# Pre-computations : moduli where M≥ 9D2, D_mod_me, D≡ residue-touple for D, · · ·
# and everything required by the QFS algorithm

# Initializations
Ans, Ans_mod_me, Ans_is_exact:= qfs_rem_estimate(X, 〈X mod me〉);

Ans:= Ans × Ans;
Ans_mod_me:= Ans_mod_me2 modme # bootstrapping...
Ans, Ans_mod_me, Ans_is_exact:= qfs_rem_estimate(Ans, Ans_mod_me) ;

for i from w−2 by −1 to 1 do # Loop
curbit := Yi;

if curbit = 1 then
Ans:= Ans × X; Ans_mod_me:= (Ans_mod_me × X_mod_me) modme;
Ans, Ans_mod_me, Ans_is_exact:= qfs_rem_estimate(Ans, Ans_mod_me) ;

fi;

Ans:= Ans × Ans; Ans_mod_me:= Ans_mod_me2 modme ;
Ans, Ans_mod_me, Ans_is_exact:= qfs_rem_estimate(Ans, Ans_mod_me) ;

od;

if (y0 1) then # Ans = Ans × X mod D

Ans:= Ans × X; Ans_mod_me:= (Ans_mod_me × X_mod_me) modme ;
Ans, Ans_mod_me, Ans_is_exact:= qfs_rem_estimate(Ans, Ans_mod_me) ;

fi;

# Outputs : remainder-touple, extra-info, exactness-flag

Return(Ans, Ans_mod_me, Ans_is_exact); 2

End__Algorithm

Correctness of the algorithm follows from the analytical results presented so far. Moreover the algorithm was
implemented in Maple and extensively tested on a large number of cases.

§ 4.6.3 Delay Estimation of the Proposed Modular-Exponentiation Algorithm

Pre-computation costs are not considered (they represent one-time fixed costs).
(i) The main/dominant delay is determined by the delay of the loop.
Assuming that the exponent Y is about as big as D,
the number of times the exponentiation loop is executed = lgY ≈On times.

(ii) Determination of the Quotient estimate is the most time-consuming operation in each iteration of the loop
and it requires Olgn delay (as explained in Section § 4.5.4-A).
As a result, each iteration of the loop requires (Olgn delay.

(iii) Therefore, the total delay is On lgn.

The memory requirements are exactly the same as those of the QFS algorithm : ≈On3 lg lgn bits as shown
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above (in Section § 4.5.4-B).

§ 4.6.4 Some Remarks about the ME-FWRD algorithm

⊙
1 In a remaindering operation, it is possible to under-estimate the quotient, but it is not acceptable to

over-estimate the quotient even by a ulp for the following reason:

if Q̂ is an over-estimate, then R̂ X− Q̂×D ≤ 0 and therefore gets evaluated as (123)

R̂≡M−|R̂| which is not in the same residue class w.r.t. D as the correct remainder R (124)⊙
2 The algorithm always works in full (double) precision mode. In the RNS, increased word length

simply requires some more channels. In a dedicated h/w implementation, all the channels can execute
concurrently, fully leveraging the parallelism inherent in the system. Hence, the incremental delay (as a
result of doubling the word-length) is minimal: Since doubling the word-length adds one-level to each
adder/accumulation-tree (within each RNS-channel),
the incremental delay is ≈O1.

§ 4.7 Convergence division via reciprocation to handle arbitrary, dynamic divisors

let X be a 2n bit dividend

X Xu ·2n Xl (125)

where Xu is the upper-half (more-significant n bits) and Xl is the lower-half. Let D be an n bit-long divisor.
Then, the quotient Q is

Q

⌊
X

D

⌋ ⌊
Xu ·2n Xl

D

⌋ ⌊
Xu ·2n

D

⌋ ⌊
Xl

D

⌋
δ wherein δ {0,1} (126)

Since Xl and D are both n bit long numbers Xl < 2D ⇒ (127)⌊
Xl

D

⌋ { 0 if Xl <D
1 otherwise

(128)

The remaining term is⌊
Xu ·2n

D

⌋
wherein

Xu ·2n

D

Xu

Df
where Df

D

2n ⇒ 1
2 ≤Df < 1 (129)

In the inequality above, the lower bound 1
2 follows from the fact that the leading bit of an n-bit long number

D is 1 (if not, the word-length of D would be smaller than n). Also note that the maximum value of the n-bit
integer D can be 2n−1, which yields the upper bound 1 on Df .

Let Df_inv
1
Df

⇒ 1<Df_inv ≤ 2 and let Df_inv 1 F where 0< F ≤ 1 (130)

Then,
Xu

Df
xu×Df_inv Xu1 F Xu XuF ⇒

⌊
Xu

Df

⌋
Xu bXuF c (131)

From the last equality it is clear that in order to correctly evaluate bXuDf_invc, the value of F (which is the
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fractional part of Df_inv) must be evaluated upto at least n bits of precision.

To evaluate Df_inv, let Y 1−Df ⇒ 0< Y ≤ 1
2 (132)

Note that the integer Yint 2nY 2n−D (133)

(134)

Substituting Df in terms of Y , yields

Df_inv
1
Df

1
1−Y

1 Y
1−Y 2

1 Y 1 Y 2

1−Y 4 · · · 1 Y 1 Y 2 · · ·1 Y 2t

1−Y 22t (135)

In the last set of equalities, since the numerator and the denominator of each successive expression are both
multiplied by the same

factor of the form
(
1 Y 2i

)
at step i, i 0,1, · · · (136)

the original value of the reciprocal does not change. Also note that each successive multiplication by a factor
of the above form doubles the number of leading ones in the denominator. As a result the denominator in the
successive expressions in Eqn (135) approaches the value 1 from below (it becomes 0.11111 · · · ).
It is well known [4] that
when the number of leading-ones in the denominator exceeds the word-length (i.e., n bits),
the error ε in the numerator also satisfies the bound |ε|< 2−n
and the iterations can be stopped. In other words, when t leads to the satisfaction of the constraint

1−Y 22t ≤ 1−2n ⇒ lgY 22t ≥ n ⇒ t≥ 1
2
(
lgn− lg lgY

)
(137)

the iterations can be stopped and the approximation

Df_inv
1 Y 1 Y 2 · · ·1 Y 2t

1−Y 22t ≈ 1 Y 1 Y 2 · · ·1 Y 2t

1 (138)

can be used. Thus, number of iterations in a convergence division is Olgn.
In contrast any digit-serial division fundamentally requires On steps.

It turns out that the above convergence method is equivalent to newton-style convergence iterations (for
details, please see any textbook on Computer Arithmetic [4, 5]). Newton’s method is quadratic which means
that the error

εn1 after the n 1th iteration ≈Oεn2 (139)

which in-turn implies that the number of accurate bits doubles after each iteration (which is why convergence-
division is the method of choice in high speed implementations).

From (138) it is clear that

Df_inv ≈ 1 Y 1 Y 2 · · ·1 Y 2t

Accordingly the products need to be accumulated, so as to yield a precision of 2n-bits at the end. Since a
product of two n bit numbers (which includes a square) can be upto 2n bits long, the lower half of the double
length product must be discarded retaining only the n most significant bits at every step. Each such retention
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of n most significant bits is tantamount to division by a constant, viz., 2n. Thus the QFS algorithm needs to
be invoked at every step in the convergence division method. In general the SODIS algorithm is also needed
at each step. Those familiar with the art will appreciate that using all the preceding algorithms unveiled
herein, an ultrafast convergence division via reciprocation can be realized without ever having to leave the
residue domain at any intermediate step.

§ 5 Application Scenarios

The difficulty of implementing some basic canonical operations such as base-extension, sign-detection,
scaling, and division has prevented the widespread adoption of the RNS. The algorithms and apparata
unveiled herein streamline and expedite all these fundamental operations, thereby removing all roadblocks
and unleashing the full potential of the RNS. Since a number representation is a fundamental attribute that
underlies all computing systems, expediting all arithmetic operations using the RNS can potentially affect all
scenarios that include computing systems. The scenarios that are most directly impacted are listed below.

1© At long wordlengths the proposed system yields substantially faster implementations. Therefore,
cryptographic processors are likely to adopt the RNS together with the algorithms unveiled in this
document. All other long wordlength applications (such as running Sieves for factoring large numbers
or listing the prime numbers within a given interval, etc) will substantially benefit from hardware as
well as software implementations of the proposed number system and the accompanying algorithms.

2© Digital Signal Processing is dominated by multiply and add operations. The proposed representation is
therefore likely to be adopted in DSP processors.
Scaling is particularly easy if the scaling factor is divisible by one or more of the component moduli.
My method of selecting moduli uses all prime numbers up to a certain threshold value. So there is
ample scope to select a scale factor that is divisible by one or more of the moduli. This is an added
advantage of the method of moduli selection that I have adopted.

3© Ultra-fast counters, constant-time or wordlength-independent up/down counters are significantly faster
as well as simpler to realize when the RNS system is used.
Consequently, the theory as well as designs of such counters should switch over to using the RNS and
the accompanying algorithms.

4© Memory and cache organization/access is another potentially significant application area. Conceptually,
memory needs be abstracted as though it were a “linear” storage because the indexing calculations in
conventional (binary/decimal) number representations are easier when the memory is logically orga-
nized linearly. Adopting the RNS allows a different conceptual organization of storage resources (ex:
under RNS, storage can be conceptualized as a collection of buckets)

5© Realization of hash functions is faster and easier when there is native/hardware support for modulo
operations that are required in the RNS. That in turn opens up other possibilities to further streamline
and expedite other algorithms and/or apparata (such as Bloom filters, for instance).

6© Coding Theory and practice have pretty much revolved around conventional number representations.
RN systems offer a rich mix of choices to further improve coding theory and practice.

7© Hardware implementations based on the RNS are inherently more parallel, since all channels can do
their processing independently, thereby increasing the “locality” of processing and drastically reducing
long interconnects. This in turn makes the circuits more compact and faster while simultaneously
requiring substantially lower amount of power (than equivalent circuits based on conventional number
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representations). Moreover, the independence of channels makes the hardware lot easier to test (VLSI
testing is a critically important issue). Finally, hardware realizations based on the RNS are more
reliable.

8© Even when the RNS is implemented in software, it can still improve the utilization of the multi-core
processors today. Channel(s) in the RNS could be dynamically mapped onto threads which could in
turn be dynamically allocated and executed on any of the multiple cores.

9© Random number generation based on RNS system is another area that appears to have a great potential.

10© Theoretical Issues: for instance the Remainder Theorem constitutes an “orthogonal” decomposition (in
a sense analogous to the Discrete Fourier Transform, i.e., the DFT). This is why multiplication (which
is a convolution) becomes so simple, all the cross-terms go away....
What kind of redundancy is there in RNS representation ?
The novelty of the methods unveiled herein lies in their use of both the integer as well as fractional
parts rather than sticking to only one. Can such methods be further extended and applied to other well
know hard problems ? are these methods related to “Interior Point Methods”?

5.1 Distinctions and novel aspects of this invention⊙
1 All of the algorithms make maximal use of those intermediate variables whose values can be

expressed as the most significant digits of a computation (the reader can verify that this is the case in
the “RPPR” , SODIS , as well as the QFS algorithm).
This enables the use of approximation methods.⊙

2 Accuracy of approximation is in turn related to the precision required. The algorithms therefore use
the minimal amount of precision necessary for the computation.
I leverage the rational domain interpretation (i.e., joint integer as well as fractional domain interpreta-
tions) of the Chinese Remainder Theorem in order to drastically reduce the precision of the fractional
values that need to be pre-computed and stored in look-up tables. It turns out that a drastic reduction
of precision from n-bits to dlgne bits still allows a highly accurate estimation of some canonical
intermediate variables, wherein the estimate can be off only by a ulp. In other words, the exact value
of the computation can be narrowed down to a pair of successive integers. This strategy is adopted in
all the methods (viz, RPPR, SODIS , as well as the QFS algorithms)
The novel “disambiguation” step then selects the right answer(by disambiguating between the two
choices) in all cases.
In other words, in a fundamental sense, I have identified the optimal mix of which and how much infor-
mation from the fractional domain needs be combined with which specific portion of the information
available from the integer-domain interpretation of the CRT in order to achieve ultrafast execution; and
developed new methods that fully exploit that optimal mix.⊙

3 My Moduli selection method simultaneously achieves three optimizations:
O1 : It maximizes the amount of pre-computation to the fullest extent; making it possible to deploy

exhaustive look-up tables that cover all possible input cases.

O2 : Simultaneously, it also minimizes the amount of memory required (otherwise an exhaustive
look-up would not be feasible at long bit-lengths).

O3 : It minimizes the size that each individual component-modulus mi can assume. The net effect is
that the RNS is realized via a moderately large number of channels, each of which has a very
small modulus.
In other words, the moduli-selection brings out the parallelism inherent in the RNS to the fullest
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extent.⊙
4 The said moduli selection therefore leads to two critical benefits

B+1 : Exhaustive pre-computation implies that there is very little left to be done at run-time, which
leads to ultrafast execution (a good example is the Quotient First Scaling ( QFS ) algorithm).

B+2 : Exploiting the parallelism to the fullest extent while also using the smallest amount of mem-
ory further speeds up execution and cuts down on area and power consumption of hardware
realizations.⊙

5 All of the prior works published hitherto had a narrower focus. For example, [7], [10] (and their
derivatives that have appeared since) are mainly concerned with “base-extension”. On the other hand,
Vi’s first paper [14] was aimed at “fault detection in flight control systems”; while the follow-on
journal paper [15] was focused on “sign-detection”. Likewise, Lu’s work [23, 24] was mainly focused
on a more efficient sign-detection and its application to division in the RNS.
In contrast, we have developed a unified framework that expedites all the difficult RNS operations
simultaneously.⊙

6 The algorithms can be implemented in software (wherein the computation within each channel is
done within a separate thread and the multiple threads get dynamically mapped onto different cores
in a multi-core processor) or in hardware. In either case they offer a wide spectrum of choices that
trade-off polynomially increasing amounts of pre-computations and look-up-table memory to achieve
higher speed. In other words the algorithms are flexible and allow the designer a wide array of choices
for deployment.

FIG. 9 is a flow chart representation of a process 900 of performing reconstruction using a residue number
system. At box 902, a set of moduli is selected. At box 904, a reconstruction coefficient is estimated based
on the selected set of moduli. At box 906, a reconstruction operation using the reconstruction coefficient is
performed. As previously discussed, in some designs, additional operations may also be performed using the
reconstruction operation.

In some designs, the operation of selecting the set of moduli is done so as to enable an exhaustive pre-
computation and look-up strategy that covers all possible inputs. In some designs, the determination of
reconstruction coefficient may be performed in hardware such that the determination is upper limited by
delay of O(log n) where n is an integer number representing wordlength.

FIG. 10 is a block diagram representation of a portion of an apparatus 1000 for performing reconstruction
using a residue number system. The module 1002 is provided for selecting a set of moduli. The module 1004
is provided for estimating a reconstruction coefficient based on the selected set of moduli. The module 1004
is provided for performing a reconstruction operation using the reconstruction coefficient.

FIG. 11 is a flow chart representation of a process 1100 of performing division using a residue number system.
At box 1102, a set of moduli is selected. At box 1104, a reconstruction coefficient is determined. At box
1106, a quotient is determined using an exhaustive pre-computation and a look-up strategy that covers all
possible inputs.

FIG. 12 is a block diagram representation of a portion of an apparatus 1200 for performing division using
a residue number system. The module 1202 is provide for selecting a set of moduli. The module 1204
is provided for determining a reconstruction coefficient. The module 1206 is provided for determining a
quotient using an exhaustive pre-computation and a look-up strategy that covers all possible inputs.

FIG. 13 is a flow chart representation of a process 1300 of computing a modular exponentiation using
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a residue number system. At box 1302, iterations are performed without converting to a regular integer
representation, by performing modulator multiplications and modular squaring. At box 1304, the modular
exponentiation is computed as a result of the iterations.

FIG. 14 is a block diagram representation of a portion of an apparatus 1400 for computing a modular
exponentiation using a residue number system. The module 1402 is provided for iterating, without converting
to a regular integer representation, by performing modular multiplications and modular squaring. The module
1404 is provided for computing the modular exponentiation as a result of the iterations.

It is noted that in one or more exemplary embodiments described herein, the functions and modules described
may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable
medium. Computer-readable media includes both computer storage media and communication media
including any medium that facilitates transfer of a computer program from one place to another. A storage
media may be any available media that can be accessed by a computer. By way of example, and not limitation,
such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage,
magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry
or store desired program code in the form of instructions or data structures and that can be accessed by
a computer. Also, any connection is properly termed a computer-readable medium. For example, if the
software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable,
twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave,
then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio,
and microwave are included in the definition of medium. Disk and disc, as used herein, includes compact
disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blue-ray disc where disks
usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the
above should also be included within the scope of computer-readable media.

As utilized in the subject disclosure, the terms ąřsystem,ąś ąřmodule,ąś ąřcomponent,ąś ąřinterface,ąś and the
like are likewise intended to refer to a computer-related entity, either hardware, a combination of hardware
and software, software, or software in execution. Components can include circuitry, e.g., processing unit(s)
or processor(s), that enables at least part of the functionality of the components or other component(s)
functionally connected (e.g., communicatively coupled) thereto. As an example, a component may be, but is
not limited to being, a process running on a processor, a processor, a machine-readable storage medium, an
object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an
application running on a computer and the computer can be a component. One or more components may
reside within a process and/or thread of execution and a component may be localized on one computer and/or
distributed between two or more computers.

The aforementioned systems have been described with respect to interaction between several components and
modules. It can be appreciated that such systems, modules and components can include those components
or specified sub-components, some of the specified components or sub-components, and/or additional
components, and according to various permutations and combinations of the foregoing. Sub-components
also can be implemented as components communicatively coupled to other components rather than included
within parent component(s). Additionally, it should be noted that one or more components may be combined
into a single component providing aggregate functionality or divided into several separate sub-components
and may be provided to communicatively couple to such sub-components in order to provide integrated
functionality. Any components described herein may also interact with one or more other components not
specifically described herein but generally known by those of skill in the art.

Moreover, aspects of the claimed subject matter may be implemented as a method, apparatus, or article
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of manufacture using standard programming and/or engineering techniques to produce software, firmware,
hardware, or any combination thereof to control a computer or computing components to implement various
aspects of the claimed subject matter. The term "article of manufacture" as used herein is intended to
encompass a computer program accessible from any computer-readable device, carrier, or media. For
example, computer readable media can include but are not limited to magnetic storage devices (e.g., hard
disk, floppy disk, magnetic strips, optical disks (e.g., compact disk (CD), digital versatile disk (DVD), smart
cards, and flash memory devices (e.g., card, stick, key drive. Additionally it should be appreciated that a
carrier wave can be employed to carry computer-readable electronic data such as those used in transmitting
and receiving voice mail or in accessing a network such as a cellular network. Of course, those skilled in the
art will recognize many modifications may be made to this configuration without departing from the scope or
spirit of what is described herein.

What has been described above includes examples of one or more embodiments. It is, of course, not possible
to describe every conceivable combination of components or methodologies for purposes of describing the
aforementioned embodiments, but one of ordinary skill in the art may recognize that many further combina-
tions and permutations of various embodiments are possible. Accordingly, the described embodiments are
intended to embrace all such alterations, modifications and variations that fall within the spirit and scope
of the appended claims. Furthermore, to the extent that the term ąřincludesąś is used in either the detailed
description or the claims, such term is intended to be inclusive in a manner similar to the term ąřcomprisingąś
as ąřcomprisingąś is interpreted when employed as a transitional word in a claim.
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§ 6 Claims

what is claimed is:

1. A method of performing reconstruction using a residue number system,
comprising;

selecting a set of moduli;
estimating a reconstruction coefficient based on the selected set of moduli; and
performing a reconstruction operation using the reconstruction coefficient.

2. The method of claim 1, wherein the selecting the set of moduli is done so as to enable an exhaustive
pre-computation and look-up strategy that covers all possible inputs.

3. The method of claim 1, wherein the reconstruction coefficient is determined
in a delay limit of Ologn.

4. The method of claim 1 wherein the estimating
comprises:

computing a plurality of reconstruction reminders; and
quantizing the plurality of reconstruction reminders.

5. The method of claim 4 wherein the quantization comprises:

expressing the reconstruction remainders as proper fractions;

pre-computing the proper fractions in a pre-determined radix b;

truncating the proper fractions to a precision of no more than
(
dlogb logbMe

)
radix-b

fractional digits;

scaling the truncated proper fractions by a scale factor so that multiplication by the scale
factor simply amounts to a left-shifting of base-b digits and yields an integer value; and

storing the resulting integer values in look-up tables, wherein each RNS channel i with
component-modulus mi requires one look-up table with (mi−1) entries.

6. The method of claim 5, wherein, channel look-up tables are read-only and are accessed completely
independently of one another

7. The method of claim 1 wherein all the operands are integers and all the arithmetic operations are
carried out with an ultra-low precision of no more than

(
dlogbKe dlogb logbMe

)
radix-b digits.
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8. The method of claim 1 wherein the estimate consists of a pair of consecutive integers, one of which is
the correct value of the reconstruction coefficient.

9. The method of claim 8, wherein, a disambiguation step is required to select the correct answer from
among the two choices, by using an independent extra bit of information which is maintained in the
form of one extra residue, i.e., remainder, with respect to an extra “disambiguator–modulus” me that
satisfies the condition: gcdM,me <me

10. The method of claim 9, wherein, a systematic “disambiguation–bootstrapping” process is required
(and is therefore adopted) to ensure that this extra remainder is always available for any value that the
method encounters.

11. A method of performing division using a residue number system,
comprising:

selecting a set of moduli;
determining a reconstruction coefficient; and
determining a quotient using an exhaustive pre-computation and a look-up strategy that
covers all possible inputs.

12. The method of claim 11, wherein, the disambiguation bootstrapping information regarding the deter-
mined quotient Q is also computed.

13. A method of computing a modular exponentiation in a residue number system,
comprising:

iterating, without converting to a regular integer representation, by performing modular
multiplications and modular squaring;
computing the modular exponentiation as a result of the iterations.

14. The method of claim 13, wherein there is no conversion between distinct moduli sets within a residue
domain at any intermediate step throughout the computing process.

15. An apparatus for performing reconstruction using a residue number system,
comprising:

means for selecting a set of moduli;
means for estimating a reconstruction coefficient based on the selected set of moduli; and
means for performing a reconstruction operation using the reconstruction coefficient.
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16. A computer program product comprising a non-volatile, computer-readable medium, storing computer-
executable instructions for performing reconstruction using a residue number system, the instructions
comprising code for:

selecting a set of moduli;
estimating a reconstruction coefficient based on the selected set of moduli; and
performing a reconstruction operation using the reconstruction coefficient.
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§ 7 BRIEF ABSTRACT

A method for performing reconstruction using a residue number system includes selecting a set of moduli.
A reconstruction coefficient is estimated based on the selected set of moduli. A reconstruction operation is
performed using the reconstruction coefficient.
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Figure 1: Summation of fraction estimates (obtained via look-up-tables) to estimate
the Reconstruction Coefficient RC

1



Con
fide

nti
alFigure 2: Flow chart for the “RPPR” algorithm hand drawn, appears on the next page

2



Con
fide

nti
alchannel  r

channel  K

channel 1

?
 = 

R c

R c

Σ
I

I( + 1 )

Look

Table
up

Look

Table
up

Look

Table
up

f r
Disambiguate

Step 4

Step 5

no

Upper
bound

bound
Lower

yes

ALU
mod  m r

or

ALU
mod  m1

ALU
mod  mK

entry

thz

entry

thz f 1

f K

entry

thzr

1

K

Step 1

in parallel in all channels

Steps 
2 and 3

Steps 2, 3, 4, and 5

are sequential

Figure 3: Schematic block diagram of a generic architecture to implement the RPPR algorithm. Below
each block, we have indicated the step(s) of the algorithm that that block executes. “Σ” is a (fast, tree-based)
multi-operand-adder. Extra h/w also includes a barrel shifter [40] to perform variable amounts of shifts.
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Figure 4: Conventional method of incorporating negative integers in the RNS. Note that in order to
achieve the highest possible representational efficiency; Fmaxand F−maxare mapped to consecutive integer
values, yielding Fmax 1 F−max, so that all the unsigned integer values in the range [0,M− 1] get utilized,
not a single value is wasted. An unfortunate by product of this quest for high representational efficiency is
that two consecutive integers corresponding to the last ve value and the first −ve value have opposite signs.
As a result, distinguishing between those two integers requires full precision calculations. Recognizing the
distinction between those two values is not feasible if the precomputed intermediate fractional values have
the drastically limited precision of only Olg lgM digits.
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Figure 5: My method deliberately introduces a sufficiently large “separation zone” between regions
corresponding to positive and negative values. In other words, I tradeoff representational efficiency in favor
of substantially lower computational latency. In general (especially at smaller word-lengths) this can require
increasing the total modulus M to a higher value Me (by adding one extra component modulus to the
original set of moduli if necessary). By properly adjusting the relative lengths of the 3 intervals (viz., the
intervals containing
(i) zero and the ve integers;
(ii) the separation-zone; and
(iii) the −ve integers),
it is possible to detect the sign correctly even when a drastically limited precision of only Olg lgMe digits is
used in the intermediate as well as the pre-computations.
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Figure 6: Flow chart for the Quotient First Scaling ( QFS ) algorithm (next two pages)
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Figure 7: Schematic timing diagram for the QFS algorithm. Below each time-block, we have indicated
the steps of the algorithm that are executed in that block/phase. At the top of each block we have indicated
the latency, derived from the assumptions stated in Sections § 4.2.6 and § 4.5.4-A.
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Figure 8: Flow chart for the modular exponentiation algorithm (next 3 sheets, hand drawn)
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