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Introduction
6.1 Introduction
or just about as long as there has been graphics hardware, there has been programmable graphics 
hardware. Over the years, building flexibility into graphics hardware designs has been a necessary 
way of life for hardware developers. Graphics APIs continue to evolve, and since a hardware design 

can take two years or more from start to finish, the only way to guarantee a hardware product that can 
support the then-current graphics APIs at its release is to build in some degree of programmability from the 
very beginning.

Until recently, the realm of programming graphics hardware belonged to just a few people, mainly 
researchers and graphics hardware driver developers. Research into programmable graphics hardware has 
been taking place for many years, but the point of this research has not been to produce viable hardware and 
software for application developers and end users. The graphics hardware driver developers have focused on 
the immediate task of providing support for the important graphics APIs of the time: PHIGS, PEX, Iris GL, 
OpenGL, Direct3D, and so on. Until recently, none of these APIs exposed the programmability of the 
underlying hardware, so application developers have been forced into using the fixed functionality provided 
by a traditional graphics APIs.

Hardware companies have not exposed the programmable underpinnings of their products because there is a 
high cost of educating and supporting customers to use low-level, device-specific interfaces and because 
these interfaces typically change quite radically with each new generation of graphics hardware. Application 
developers who use such a device-specific interface to a piece of graphics hardware face the daunting task of 
updating their software for each new generation of hardware that comes along. And forget about supporting 
the application on hardware from multiple vendors!

As we move into the 21st century, some of these fundamental tenets about graphics hardware are being 
challenged. Application developers are pushing the envelope as never before, and demanding a variety of 
new features in hardware in order to create more and more sophisticated on-screen effects. As a result, new 
graphics hardware designs are more programmable than ever before. Standard graphics APIs have been 
challenged to keep up with the pace of hardware innovation. For OpenGL, the result has been a spate of 
extensions to the core API as hardware vendors struggle to support a range of interesting new features that 
their customers are demanding. 

F
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Introduction
So we are standing today at a crossroads for the graphics industry. A paradigm shift is occurring that is 
taking us from the world of rigid, fixed-functionality graphics hardware and graphics APIs to a brave new 
world where the visual processing unit, or VPU (i.e., graphics hardware) is as flexible and as important as 
the central processing unit, or CPU. The VPU will be optimized for processing dynamic media such as 3D 
graphics and video. Highly parallel processing of floating point data will be the primary task for VPUs, and 
the flexibility of the VPU will mean that it can also be used to process data other than a stream of traditional 
graphics commands. Applications can take advantage of the capabilities of both the CPU and the VPU, 
utilizing the strengths of each to optimally perform the task at hand.

This paper talks about how we are attempting to expose the programmability of graphics hardware to the 
leading cross-platform 3D graphics API: OpenGL. This effort is part of the vision called OpenGL 2.0, and it 
brings a lot of new and exciting features to OpenGL while retaining compatibility so that existing 
applications will continue to run. For the purpose of this paper and this course, we will concentrate on 
presenting the OpenGL Shading Language, a high-level shading language built into OpenGL that allows 
applications to take total control over per-vertex and per-fragment calculations.

This paper describes several shaders that were presented at SIGGRAPH 2002. The shaders presented were 
compiled and demonstrated on the 3Dlabs Wildcat VP870 graphics hardware. At the time of this writing, the 
features of the OpenGL Shading Language are solidifying and implementation efforts are well underway. A 
number of software vendors are beginning to use the OpenGL Shading Language to write their own shaders. 
You are invited to keep checking the 3Dlabs web site at http://www.3dlabs.com/support/developer/ogl2 for 
the latest information about the OpenGL 2.0 effort..
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Additions to OpenGL
6.2 Additions to OpenGL
The effort to define OpenGL began in the early 1990's and the first version of the OpenGL specification was 
approved in 1992. Since that time, great strides have been made in both system architecture and graphics 
hardware architecture. Today, graphics hardware is changing rapidly from the model of a fixed function state 
machine (as originally targeted by OpenGL) to that of a highly flexible and programmable machine. It is 
becoming much more difficult for hardware developers to support new features demanded by application 
developers than to just expose the underlying programmability and let application developers do things 
themselves.

The OpenGL Shading Language
The OpenGL 2.0 effort adds two programmable processors to the fixed geometry processing pipeline 
previously defined by OpenGL. These two processors are called the vertex processor and the fragment 
processor. The vertex processor is capable of executing a program called a vertex shader on each and every 
vertex that is presented to it. The fragment processor is capable of executing a program called a fragment 
shader on each and every fragment that results from primitive rasterization.

The high level language that is defined as part of the OpenGL 2.0 effort is called the OpenGL Shading 
Language. Some of the significant features of this language are:

• It is integrated intimately with OpenGL 1.4
• It allows incremental replacement of the OpenGL 1.4 fixed functionality
• It is a high level language, accessible to all applications
• It is based on C and C++ and includes support for scalar, vector and matrix types
• It virtualizes most of the graphics hardware pipeline resources
• The same language is used for both vertex and fragment shaders
• OpenGL state is directly accessible from the language
• It has a rich feature set, including numerous built-in functions for common operations
• It is hardware independent and implementable on a variety of graphics hardware architectures
• It is (will be) a standard part of OpenGL

The OpenGL 2.0 environment
The diagram below is a simplified version of the logical diagram for OpenGL 2.0. It is based on the logical 
diagram called The OpenGL Machine published with the OpenGL Reference Manual (blue book). It 
illustrates some of the primary differences between OpenGL 2.0 and OpenGL 1.4. It should not be 
interpreted as an implementation diagram, it is a logical diagram that illustrates the state blocks, processing 
modules, and data paths in OpenGL 2.0. 

The OpenGL 2.0 state machine is very similar to that of OpenGL 1.4, but several areas of fixed functionality 
have been augmented by programmable processors. This diagram shows only the programmable units and 
not the fixed functionality that they replace.
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The newly defined programmable units are shown as blue (shaded) stars. State blocks that remain the same 
as in OpenGL 1.4 are shown in white rectangles. To simplify the diagram, some of the OpenGL 1.4 
functionality that remains the same in OpenGL 2.0 is grouped together in a single white rectangle (e.g., clip, 
project, viewport, cull).  Memory that is under control of the application is shown on the left, and memory 
that is controlled by OpenGL is shown in orange (shaded) boxes. The arrows represent the primary flow of 
data. For immediate mode geometry commands, vertex data starts out in application memory and is sent 
down what is referred to as the geometry pipeline, generating pixels that are ultimately written into frame 
buffer memory. The application sends pixel data to the unpack processor and after rasterization, it is written 
to either the frame buffer or texture memory. The fragment processor can read texture memory during 
subsequent rendering operations. The application can read back pixels from the frame buffer, optionally 
passing them through the fragment processor for processing, and then packing them in application memory 
under the control of the pack processor.

Vertex Processor
The vertex processor is a programmable unit that processes vertex data in the OpenGL pipeline. When the 
vertex processor is active, the following fixed functionality of OpenGL is disabled:

• Vertex transformation
• Normal transformation and normalization
• Texture coordinate generation
• Texture coordinate transformation
• Lighting
• Color material application
• Clamping of colors
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Even when the vertex processor is active, the following OpenGL functions are still performed by the fixed 
functionality within OpenGL. Most of these operations work on several vertices at a time and involve 
topological knowledge:

• Perspective divide and viewport mapping
• Primitive assembly
• Frustum and user clipping
• Backface culling
• Two-sided lighting selection
• Polymode processing
• Polygon offset

Vertex shaders that intend to perform computations similar to the fixed functionality of OpenGL 1.4 are 
responsible for writing the code for all of the functionality in the first list above. For instance, it is not 
possible to use the existing fixed functionality to perform the vertex and normal transformation but have a 
specialized lighting function. The shader must be written to perform all three functions. Existing OpenGL 
state is available to a vertex shader in the form of predefined variables (e.g., gl_ModelViewMatrix). Any 
OpenGL state used by the shader is automatically tracked and made available to the shader. This automatic 
state tracking mechanism allows applications to use existing OpenGL state commands for state management 
and have the current values of such state automatically available for use in the vertex shader.

The vertex processor operates on one vertex at a time. This programmable unit does not have the capability 
of reading from texture memory or the frame buffer. The design of this unit is focused on the functionality 
needed to transform and light a single vertex. The vertex shader must compute the homogeneous position of 
the coordinate, and it may also compute color, texture coordinates, and other arbitrary values to be passed to 
the fragment processor. The output of the vertex processor is sent through subsequent stages of processing 
that are defined exactly the same as they are for OpenGL 1.4: primitive assembly, user clipping, frustum 
clipping, perspective projection, viewport mapping, polygon offset, polygon mode, shade mode, and culling.

After all this processing, vertex data arrives at the rasterization stage. OpenGL defines rasterization as 
consisting of two parts. The first part of rasterization is to determine which squares of an integer grid in 
window coordinates the primitive occupies. This portion of the rasterization process remains unchanged for 
OpenGL 2.0. The second part of rasterization, assigning color, depth, and stencil values to each square, is 
almost completely replaced in OpenGL 2.0 as described in the next section.

Fragment Processor
The fragment processor (defined in the OpenGL 2.0 Shading Language white paper) is designed to operate 
on the fragments produced by the rasterization stage. In OpenGL, a fragment is defined as a grid square (i.e., 
an x/y position) and its assigned color, depth, and texture coordinates. In OpenGL 1.4, there are very strict 
rules for how the fragment's associated data can be modified. Additional rules have been added through 
extensions, exposing the greater flexibility of current hardware. In OpenGL 2.0, a programmable unit (the 
fragment processor) is defined to allow applications to use a high-level programming language to express 
how the fragment's associated data is computed. Mechanisms for creating, compiling, linking, using, and 
deleting programs for this processor are the same as for the vertex processor. 
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When the fragment processor is active, the following fixed functionality relating to geometry processing is 
replaced:

• Interpolation of vertex data across the primitive
• Texture access
• Texture application
• Fog
• Color sum

and the following fixed functionality relating to pixel processing is also replaced:

• Pixel zoom
• Scale and bias
• Color table lookup
• Convolution
• Color matrix

Even when the fragment processor is active, the following OpenGL functions are still performed by the 
fixed functionality within OpenGL:

• Shading model
• Coverage
• Pixel ownership test
• Scissor
• Stipple
• Alpha test
• Depth test
• Stencil test
• Alpha blending
• Logical ops
• Dithering
• Plane masking
• Pixel packing/unpacking 

Related OpenGL state is also automatically tracked if used by the fragment shader. With the exception of a 
few built-in functions, the language used to program the fragment processor is nearly identical to the 
language used to program the vertex processor. A fragment shader can change a fragment's depth, color, and 
stencil value, but not its x/y position. To support parallelism at the fragment processing level, fragment 
shaders are written in a way that expresses the computation required for a single fragment, and access to 
neighboring fragments is not allowed. A fragment shader is free to read multiple values from a single 
texture, or multiple values from multiple textures. It is not allowed to directly write either texture memory or 
frame buffer memory, but it can directly read frame buffer memory at the current pixel location. 

The OpenGL 1.4 parameters for texture maps are carried forward to OpenGL 2.0 and continue to define the 
behavior of the filtering operation, borders, and wrapping. These operations are applied when a texture is 
accessed. The fragment shader is free to use the resulting texel however it chooses. It is possible for a 
fragment shader to read multiple values from a texture and perform a custom filtering operation. It is also 
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possible to use a 1D texture to perform a lookup table operation. In both cases the texture should have its 
texture parameters set so that nearest neighbor filtering is applied on the texture access operations.

For each fragment, the fragment shader can compute color, depth, stencil, or one or more arbitrary data 
values. A fragment shader must compute at least one of these values. The color, depth, and stencil values 
will remain as computed by the previous stages in the OpenGL pipeline if the fragment shader does not 
modify them.

The results of the fragment shader are then sent on for further processing. The remainder of the OpenGL 
pipeline remains as defined in OpenGL 1.4. Fragments are submitted to coverage application, pixel 
ownership testing, scissor testing, alpha testing, stencil testing, depth testing, blending, dithering, logical 
operations, and masking before ultimately being written into the frame buffer..

“GL2” Extensions
One of the strengths of OpenGL has been that it has not evolved too quickly or in an incompatible way. Each 
successive version of OpenGL is effectively a superset of the previous version. Because of this, programs 
written long ago will work on OpenGL implementations of today.

The process for adding new features to OpenGL has been to create an extension specification for a new 
feature, implement the extension, get others to implement it, and get software developers to use it in their 
applications. All new function calls, types, and enumerants defined by the extension are differentiated from 
core OpenGL through the use of a suffix that is added to function names, types, and enumerants, as well as 
to the name of the extension itself.

The list of extensions supported by an OpenGL implementation can be determined by calling glGetString 
with a value of GL_EXTENSIONS. This causes a string to be returned that lists the names of all of the 
extensions that are supported by the implementation. An extension that is unique to a particular vendor is 
identified by a suffix that is also unique to that vendor. For instance, extensions that are unique to 3Dlabs use 
a suffix of “3DL”. If two or more vendors agree on a common extension specification, it can be named using 
the suffix “EXT”. This can be used as a signal to applications that the extension is supported by multiple 
vendors. Using an “EXT” extension rather than a vendor unique extension usually means that the 
application will be more portable. “EXT” and vendor unique extensions do not need to undergo any review 
process before they are made available for applications to use.

Once an extension has proved its worth, the body that governs the evolution of OpenGL, the Architecture 
Review Board (ARB), may vote to change the suffix of the extension to “ARB”. The “ARB” suffix indicates 
that the ARB has reviewed the extension and approves of the way it has been specified. The “ARB” suffix 
also indicates that anyone implementing the functionality should implement the “ARB” extension rather 
than any other similar extension. It is often the case that “ARB” extensions are the ones that are given the 
highest consideration for inclusion into the core OpenGL specification each time the specification is revised. 
The “ARB” suffix indicates the highest level of portability that can be achieved by an extension prior to it 
becoming part of the core OpenGL standard. When an ARB extension is added to the core standard, it is 
often the case that the only change made to the functionality is to drop the “ARB” suffix from function 
names and enumerants.

The ARB decided to create a new class of extensions as an aid to the implementation and adoption of 
features that are part of the OpenGL 2.0 vision. This class of extension has the suffix “GL2”. The intention 
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is that functionality from the OpenGL 2.0 white papers would be specified and implemented initially as 
extensions with “GL2” suffixes. This would indicate to application developers that the extension contains 
capabilities that the ARB thinks are ultimately destined for inclusion in the OpenGL standard. The “GL2” 
suffix can be used to define extensions that have not yet been implemented or field tested. The intention is to 
enable both rapid implementation and early adoption. It is expected that “GL2” extensions may include 
limitations to cope with current hardware, but that these limitations will be removed once the functionality 
becomes part of core OpenGL. Unlike “ARB” extensions, “GL2” extensions might be revised as issues are 
found either in specification or in implementation. “GL2” extensions are intended to be a relatively quick 
way for vendors to come to agreement on extensions that expose new hardware capabilities, as well as a way 
for software developers to get access to those capabilities in a relatively portable manner.

The API calls that are described in subsequent sections have been defined in “GL2” extension specifications 
proposed by 3Dlabs and implemented on the 3Dlabs Wildcat VP graphics hardware. At the time of this 
writing, these “GL2” extensions are being considered by the ARB’s GL2 working group.

Creating and compiling shaders
A shader is created using:

GLhandle glCreateShaderObjectGL2 (GLenum shaderType)

The shader object is empty when it is created. The shaderType argument specifies the type of shader object 
to be created, and should be one of GL_VERTEX_SHADER_GL2 or GL_FRAGMENT_SHADER_GL2. If 
the shader object is created successfully, a non-zero handle that can be used to reference it is returned.

Source code for the shader is specified with the commands:

void glLoadShaderGL2 (GLhandle shaderID, 
     GLuint nseg,
     const GLchar **seg,
     const GLuint *length)

void glAppendShaderGL2 (GLhandle shaderID, 
                        const GLchar *seg,
                        GLuint length)

The glLoadShaderGL2 command sets the source code for the specified shader object to the text strings in the 
seg array. If the object previously had source code loaded into it, it is completely replaced. The seg argument 
is an array of pointers to one or more optionally null-terminated character strings that make up the program. 
The number of strings in the array is given in nseg. The length argument is an array of length nseg that 
specifies the length (number of characters) in each string (the null-termination character is not counted as 
part of the length). Each value in the length array can be set to -1 to indicate that the corresponding string is 
null-terminated. If length is 0, all strings in the seg array are assumed to be null-terminated. 

The glAppendShaderGL2 command adds the specified string onto the end of the existing source code for the 
shader. The shaderID argument selects the shader to be modified. The seg argument is a pointer to an 
optionally null-terminated character string that is to be added to the end of the specified shader object. The 
length argument has the same meaning as it does for the glLoadShaderGL2 command.

The multiple strings interface provides:
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• A way to organize common pieces of source code.
• A way to share prefix strings (analogous to header files) between programs as an aid to compatibility 

between the output of the vertex shader to the input of a fragment shader.
• A way of supplying external #define values to control the compilation process.
• A way for including user defined or third party library functions.
• Allows for each string to be treated as a compilation unit so functions can be made private, hence may 

provide better support for 'programming in the large' or libraries.

A shader is compiled with the command:

GLboolean glCompileShaderGL2 (GLhandle shaderID)

This function returns TRUE if the shader was compiled without errors and is ready for use, and FALSE 
otherwise. A read-only string containing information about the compilation can be obtained with the 
command:

const GLchar *glGetInfoLogGL2 (GLhandle shaderID, GLuint *length)

If a shader compiled successfully the info log will either be an empty string or it will contain information 
about the compilation.  The info log is typically only useful during application development and an 
application should not expect different OpenGL implementations to produce identical descriptions of error.

Once a shader object is no longer needed, it can be deleted using one of the object deletion commands:

void glDeleteObjectGL2 (GLhandle objectID)
void glDeleteObjectsGL2 (GLsizei numObjs, GLhandle *objectIDs)

Linking and using shaders
In order to use shaders, they must be attached to a program object and linked. A program object is created 
with the command:

GLhandle glCreateProgramObjectGL2 ()

The program object is empty when it is created. If the program object is created successfully, a non-zero 
handle that can be used to reference it is returned. Program objects can be deleted just like shader objects by 
using the glDeleteObjectGL2 and glDeleteObjectsGL2 calls.

Shader objects are attached to a program object with the command:

GLboolean glAttachShaderObjectGL2 (GLhandle programID, GLhandle shaderID)

This function returns TRUE if programID represents a valid program object and shaderID represents a valid 
shader object and the attach operation is successful, and FALSE otherwise. It is permissible to attach shader 
objects to program objects before source code has been loaded into the shader object, or before the shader 
object has been compiled. It is permissible to attach multiple shader objects of the same type to a single 
program object, and it is permissible to attach a shader object to more than one program object. The generic 
detach object function is used to detach a shader object from a program object.

void glDetachObjectGL2 (GLhandle programID, GLhandle shaderID)
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In order to use the shaders contained in a program object, the program object must be linked and the 
program object must be made part of the current rendering state. This is accomplished with the following 
commands:

GLboolean glLinkProgramGL2 (GLhandle programID)
GLboolean glUseProgramObjectGL2 (GLhandle programID)

The link command attempts to create a valid executable program for the programmable environment of 
OpenGL 2.0, and it returns TRUE if successful, FALSE otherwise. Information about the link operation can 
be obtained by calling glGetInfoLogGL2 with the ID of the program object. If the program object was 
linked successfully the info log will either be an empty string or it will contain information about the link 
operation.  If a valid executable is created, the program object can be made part of the current rendering state 
by calling glUseProgramObjectGL2.

The link command attempts to create a valid program for each of the programmable processors in OpenGL 
2.0 from the attached shaders. All of the attached shader objects of a particular type are linked together to 
form the executable program for the corresponding OpenGL 2.0 processor.  For instance, all of the shader 
objects of type GL_VERTEX_SHADER_GL2 are linked together to form a single executable for the vertex 
processor. If the program object does not contain any shader objects of a particular type, the processor 
corresponding to that shader type will be inactive and the corresponding fixed functionality of OpenGL will 
be used instead. (For instance, if a shader of type GL_VERTEX_SHADER_GL2 is provided, but no shader 
of type GL_FRAGMENT_SHADER_GL2 is provided, the vertex processor will be active but the fragment 
processor will not. Fixed functionality will be used to process fragments in this case.)

If the link operation is successful, the program object contains executable code that is made part of the 
rendering state when glUseProgramObjectGL2 is called. glUseProgramObjectGL2 will install the 
executable code as part of current rendering state and return TRUE if the specified program object contains 
valid executable code. It will return FALSE and leave the current rendering state unmodified if the specified 
program object does not contain valid executable code. If glUseProgramObjectGL2 is called with a handle 
of 0, all of the OpenGL 2.0 processors are disabled and the OpenGL 1.4 fixed functionality will be used 
instead.

The program object that is currently in use can be obtained by calling 

GLhandle glGetHandleGL2(enum pname)

with the parameter name GL_PROGRAM_OBJECT_GL2. While a program object is in use, applications 
are free to modify attached shader objects, compile attached shader objects, attach additional shader objects, 
and detach shader objects.

Specifying vertex attributes
One way vertex data is passed to OpenGL is by calling glBegin, followed by some sequence of 
glColor/glNormal/glVertex/etc. A call to glEnd terminates this method of specifying vertex data.

These calls continue to work in the OpenGL 2.0 environment. As before, a call to glVertex indicates that the 
data for an individual vertex is complete and should be processed. However, if a valid vertex shader has been 
installed by calling glUseProgramObjectGL2, the vertex data will be processed by that vertex shader instead 
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of by the usual fixed functionality of OpenGL. A vertex shader can access the standard types of vertex data 
passed to OpenGL using the following built-in variables:

attribute vec4gl_Vertex;
attribute vec4gl_Color;
attribute vec3gl_Normal;
attribute vec4gl_MultiTexCoord0;// glTexCoord also updates this.
attribute vec4gl_MultiTexCoord1;
attribute vec4gl_MultiTexCoord2;
attribute vec4gl_MultiTexCoord3;
attribute vec4gl_MultiTexCoord4;
attribute vec4gl_MultiTexCoord5;
attribute vec4gl_MultiTexCoord6;
attribute vec4gl_MultiTexCoord7;
attribute vec4gl_SecColor;
attribute vec3gl_FrontMaterial[5];
attribute vec3gl_BackMaterial[5];

OpenGL’s vertex-at-a-time interface is simple and powerful, but on today’s systems it is definitely not the 
highest performance way of rendering. Whenever possible, applications should use the vertex array interface 
instead. This interface allows you to store vertex data in arrays and set pointers to those arrays. Instead of 
drawing a vertex at a time, you can draw a whole set of primitives at a time. It is even possible that vertex 
arrays are stored in graphics memory to allow for maximum performance (see the OpenGL 2.0 white paper 
Minimizing Data Movement and Memory Management).

The vertex array interface also works the same way in OpenGL 2.0 as it did previously. When a vertex array 
is rendered, the vertex data is processed one vertex at a time, just like the vertex-at-a-time interface. If a 
vertex shader is active, each vertex will be processed by the vertex shader rather than by the fixed 
functionality of OpenGL.

However, the brave new world of programmability means that applications no longer need to be limited to 
the 22 standard attributes defined by OpenGL. There are many additional per-vertex attributes that 
applications might like to pass into a vertex shader. It is easy to imagine that applications will want to 
specify per-vertex data such as tangents, temperature, pressure, and who knows what else. How do we allow 
applications to pass “non-traditional” attributes to OpenGL and operate on them in vertex shaders?

Then answer is to imagine that the hardware has a small number of generic locations for passing in vertex 
attributes. The number of locations supported by the implementation can be obtained by querying the 
implementation-dependent constant GL_MAX_VERTEX_ATTRIBS_ARB. Each location is numbered and 
has room to store up to four components. An implementation that supports 16 attribute locations will have 
them numbered from 0 to 15. An application can pass a vertex attribute into any of the numbered slots using 
one of the following functions:

void glVertexAttrib{1234}{sfd}ARB(uint index, T coords);
void glVertexAttrib4NubARB(uint index, T coords)
void glVertexAttrib{123}{sfd}vARB(uint index, T coords);
void glVertexAttrib4{bsifd ubusui}vARB(uint index, T coords);
void glVertexAttrib4N{bsifd ubusui}vARB(uint index, T coords);
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which load the given value(s) into the attribute slot indicated by index.  The attributes follow the OpenGL 
rules for the substitution of default values for missing components. The above notation is a shorthand way of 
expressing a number of different entry points. The {1234} notation indicates that there is a separate version 
of the function for expressing data with 1, 2, 3, or 4 components. The {sfd} notation indicates that there is a 
separate version of the function for expressing data as a short, a float, or a double. The {bsifd ubusui} 
notation indicates that there is a separate version of the function for expressing data as a byte, short, integer, 
float, double, unsigned byte, unsigned short, or unsigned int. The T indicates the data type for the data and it 
corresponds to the selection of short, float, or double in the {sfd} notation and byte, short, integer, float, 
double, unsigned byte, unsigned short, or unsigned int for the {bsifd ubusui} notation. The v indicates that 
the function is a pointer to a “vector” (array) of data. Commands containing “N” indicate that values are to 
be normalized, so signed integers are converted into the range -1.0…1.0 and unsigned integers are converted 
into the range 0.0…1.0. So for example, the actual function that you would use to supply a three-component 
float as a vector would be defined as:

void glVertexAttrib3fvARB(GLuint location, GLfloat *value)

This solves the question of how user-defined vertex data is passed into OpenGL, but how do we access that 
data from within a vertex shader? We don’t want to refer to these numbered locations in our shader since this 
is not very descriptive and is prone to errors. Instead, we bind a numbered location to a variable name that 
we will use in our vertex shader by using the following function:

void glBindAttributeLocationGL2 (GLhandle program,
     GLuint location,
     const ubyte *name,
     int length)

Using these functions, we can create a vertex shader that contains a variable named “temperature” that is 
used directly in the lighting calculations. We can decide that we want to pass per-vertex temperature values 
in attribute location 11, and set up the proper binding with the following line of code:

glBindAttributeLocation(myProgram, 11, “temperature”, -1);

Subsequently, we can call glVertexAttribute to pass a temperature value at every vertex in the following 
manner:

glVertexAttrib1f(11, temperature);

The glVertexAttrib* calls are all designed for use between glBegin and glEnd. As such, they offer 
replacements for the standard OpenGL calls such as glColor, glNormal, etc. But as we have already pointed 
out, this is not the best way to do things if graphics performance is a concern.

The vertex array interface has also been extended to include the notion of user-defined data. New array types 
GL_USER_ATTRIBUTE_ARRAY0 through GL_USER_ATTRIBUTE_ARRAYn-1 are defined, where n is 
the number of attribute locations supported by the implementation. These arrays can be used to pass user-
defined data to the vertex array interface. In our example, the temperature values could be stored in the 
GL_USER_ATTRIBUTE_ARRAY11 array, and passed to OpenGL by calling glDrawArrays. The 
glBindAttributeLocationGL2 function defined above would be used in the same way to bind vertex attribute 
location 11 to the variable named “temperature” in our vertex shader.
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Specifying other attributes
As described in the previous section, attribute variables are used to provide per-vertex data to the vertex 
shader. Data that is constant across the primitive being rendering can be specified by using uniform 
variables. Uniform variables declared within a shader can be loaded directly by the application. This gives 
applications the ability to provide any type of arbitrary data to a shader. Applications can modify these 
values as often as every primitive in order to modify the behavior of the shader (although performance may 
suffer if this is done). Typically, uniforms are used to supply state that stays constant for several primitives.

The OpenGL Shading Language also defines a number of built-in variables that track OpenGL state. 
Applications can continue using OpenGL to manage state through existing OpenGL calls, and use these 
built-in uniform variables in custom shaders. Of course, if you want something that isn’t already supported 
directly by OpenGL, it is a simple matter to define your own uniform variable and supply the value to your 
shader.

When a program object is made current, user-defined uniform variables have undefined values, and built-in 
uniform variables that track GL state are initialized to the current value of that GL state. Subsequent calls 
that modify a GL state value will cause the built-in uniform variable that tracks that state value to be updated 
as well. The following commands are used to load uniform parameters into the program object that is 
currently in use.

void glLoadUniform{1234}f (GLint uniformLoc, T value)
void glLoadUniform{1234}fv (GLint uniformLoc, T value)
void glLoadUniformInt(GLint uniformLoc, int value)
void glLoadUniformBool(GLint uniformLoc, int value)
void glLoadUniformArray{1234}fv (GLint uniformLoc,

GLint start, GLuint count, T value)
void glLoadUniformMatrix{234}fv (GLint uniformLoc, T value)
void glLoadUniformMatrixArray{234}fv (GLint uniformLoc, GLint start,

 GLuint count, T value)

Application code for creating/compiling shaders
Now that we’ve covered the basics, let’s look at some sample application code that will set things up for 
rendering with a custom vertex shader and a custom fragment shader. It is convenient to store OpenGL 
shaders in their own files for easier maintenance. The first thing we’ll do is call a function to read each 
shader from a file and store it as a string:

//
// Read the source code
//
if (!readShader(fileName, EVertexShader, vertexShaderString, vSize))

return 0;

if (!readShader(fileName, EFragmentShader, fragmentShaderString, fSize))
return 0;

This results in a string called vertexShaderString containing our entire vertex shader, and a string called 
fragmentShaderString containing our entire fragment shader. Next, we need to create three OpenGL objects: 
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a shader object that will be used to store and compile our vertex shader, a second shader object that will be 
used to store and compile our fragment shader, and a program object to which our shaders will be attached.

//
// Create shader and program objects. Note, you should
// really check if the handles returned are not null.
//
programObject        = glCreateProgramObjectGL2();
vertexShaderObject   = glCreateShaderObjectGL2(GL_VERTEX_SHADER);
fragmentShaderObject = glCreateShaderObjectGL2(GL_FRAGMENT_SHADER);

The strings that hold our two shaders can now be passed on to our two newly-created shader objects. There 
are two functions for doing this, and both our shaders are defined by a single string, so either one can be 
used. 

//
// Hand the source to OpenGL. Use either load or append,
// it doesn't matter.
//
length = strlen(vertexShaderString);
glLoadShaderGL2(vertexShaderObject, 1, &vertexShaderString, &length);
length = strlen(fragmentShaderString);
glAppendShaderGL2(fragmentShaderObject, fragmentShaderString, length);

The shaders are now ready to be compiled. For each shader, we call glCompileShaderGL2 and then call 
glGetInfoLogGL2 in order to see what transpired. glCompileShaderGL2 will return TRUE if it succeeded 
and FALSE otherwise. Regardless of whether the compilation suceeded or failed, we print out what was 
contained in the info log for the shader. If the compilation was unsuccessful, this log will have information 
about the compilation errors. If the compilation was successful, this log may still have useful information 
that would help us improve the shader in some way. You would typically only check the info log during 
application development, or if you’re running a shader for the first time on a new platform. We’re going to 
bail out if the compilation of either shader fails.

//
// Compile the vertex and fragment shader, and print out
// the compiler log file.
//
compiled = glCompileShaderGL2(vertexShaderObject);
pInfoLog = glGetInfoLogGL2(vertexShaderObject);
printf("%s\n\n", pInfoLog);

compiled &= glCompileShaderGL2(fragmentShaderObject);
pInfoLog = glGetInfoLogGL2(fragmentShaderObject);
printf("%s\n\n", pInfoLog);

if (!compiled)
return 0;

At this point the shaders have been compiled successfully, and we’re almost ready to try them out. The 
shader objects are attached to our program object so that they can be linked.
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//
// Populate the program object with the two compiled shaders
//
glAttachShaderObjectGL2(programObject, vertexShaderObject);
glAttachShaderObjectGL2(programObject, fragmentShaderObject);

Our two shaders are linked together to form an executable by calling glLinkProgram. Again, we look at the 
info log of the program object regardless of whether the link succeeded or failed. There may be useful 
information for us if we’ve never tried this shader before. If we make it to the end of this code, we have a 
valid program object that can be made part of current state simply by calling glUseProgramObjectGL2.

//
// Link the whole thing together and print out the linker log file
//
linked = glLinkProgramGL2(programObject);
pInfoLog = glGetInfoLogGL2(programObject);
printf("%s\n\n", pInfoLog);

if (compiled && linked)
return programObject;

else
return 0;

Application code for installing and using a shader
Each shader is going to be a little bit different. Each vertex shader may use a different set of attributes, 
different uniforms, attributes may be bound to different locations, etc. In the 3Dlabs’ ogl2demo program, we 
just have an “install” function for each set of shaders that we want to install and use. The following example 
code is used to make the wood shader from section 6.7 part of current state. In this case, “installing” consists 
of calling glUseProgramObjectGL2 on the program object that was previously created to contain the wood 
shader and then loading the uniform variables with the values that will be used for this instantiation of the 
wood shader.

int installBrickShader(int change)
{
    //
    // The brick shader example from the OpenGL 2.0 Shading Language
    // White Paper.
    //
    float mt = 0.02f;
    float bc[3] = { 1.0f, 0.3f, 0.2f }; 
    float mc[3] = { 0.85f, 0.86f, 0.84f };
    float bmw = 0.22f;
    float bmh = 0.15f;
    float mwf = 0.94f;
    float mhf = 0.90f;
    float lightPosition[3] = { 0.0f, 0.0f, 4.0f }; 

    if (makeShaderActive("brick", change))
    {
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        //
        // Find out the locations of the uniforms in our shaders,
        // and load values for them. Note, safer is to do this:
        //
        // location = glGetUniformLocation(ProgramObject, "name")
        // Check for any OpenGL errors. If there are none,
        // glLoadUniform(location, value);
        // Check errors again.
        //
        glLoadUniform3fGL2(glGetUniformLocationGL2(programObject,
                                "brickColor", -1), bc[0], bc[1], bc[2]);
        glLoadUniform3fvGL2(glGetUniformLocationGL2(programObject,
                                "mortarColor", -1),&mc[0]);
        glLoadUniform1fvGL2(glGetUniformLocationGL2(programObject,
                                "brickMortarWidth", -1), &bmw);
        glLoadUniform1fvGL2(glGetUniformLocationGL2(programObject,
                                "brickMortarHeight", -1), &bmh);
        glLoadUniform1fGL2(glGetUniformLocationGL2(programObject,
                                "mwf", -1), mwf);
        glLoadUniform1fGL2(glGetUniformLocationGL2(programObject,
                                "mhf", -1), mhf);
        glLoadUniform3fvGL2(glGetUniformLocationGL2(programObject,
                                "LightPosition", -1), &lightPosition[0]);

        return 1;
    }
    else
        return 0;
}
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6.3 Overview of the OpenGL Shading Language
We’ve talked all about how to create, load, compile, link, use, and get data into an OpenGL shader. But we 
haven’t yet talked about the programming language for writing those shaders. For the rest of this paper, we’ll 
be looking at example shaders and seeing how things work in the OpenGL 2.0 environment.

The OpenGL Shading Language has its roots in C and has features similar to RenderMan and other shading 
languages. It has a rich set of types, including vectors and matrices. An extensive set of built-in functions 
operates just as easily on vectors as on scalars. The language includes support for loops, subroutine calls, 
and conditional expressions. It is assumed that hardware vendors will be able to use compiler technology to 
translate this high level language into machine code that will execute to within a few percent of the 
performance of hand-written machine code.

A thorough description of the OpenGL Shading Language can be found in the OpenGL Shading Language 
Specification, available at the 3Dlabs web site (http://www.3dlabs.com/support/developer/ogl2). In this 
paper, we focus more on programming examples, but here is a brief summary of this language.

• The language is high level and the same language is used for both vertex and fragment shaders.
• It is based on C and C++ and uses many of the same syntax and semantic rules.
• It naturally supports vector operations as these are inherent to many graphics algorithms. 
• There are no obvious limits on a shader's size or complexity.

Data types
The OpenGL Shading Language supports the following data types:

These data types are modeled after the data types in the C programming language. Unlike C, there are no 
user defined structures or pointers.

Constructors
The constructor syntax from C++ is used to make variables of the correct type before assignment or during 
an expression. A constructed value is created by setting its components to a sequence of comma-separated 
values enclosed in parentheses. Data type conversion is performed as necessary. If there is a single value 
within parentheses, this single value is used to initialize the constructed value. If there are multiple values, 
they will be assigned in order, from left to right, to the components of the constructed value. Once a 
constructed item has values assigned to each of its components, any extra values in the list will be ignored.

void for functions that do not return a value
bool a conditional type, taking on values of true or false
int a signed integer
float a single floating point scalar
vec2 a two component floating point vector
vec3 a three component floating point vector
vec4 a four component floating point vector
mat2 a 2×2 floating point matrix for vertex and fragment languages only
mat3 a 3×3 floating point matrix for vertex and fragment languages only
mat4 a 4×4 floating point matrix for vertex and fragment languages only
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All the variable types can have one (and only one) qualifier before the type keyword.  If no qualifier is 
present then the variable is just like any variable defined in C and can be read and written as expected. 

Type qualifiers
The OpenGL Shading Language defines the following data type qualifiers:

Named constants can be declared using the const qualifier. Any variables qualified with the keyword const 
are read-only variables for that shader. Declaring variables as constant allows more descriptive shaders than 
using hard-wired numerical constants.  The const qualifier can be used with any of the fundamental data 
types. It is an error to write to a const variable outside of the declaration and they must be initialized as part 
of the declaration.  An example is:

const vec3zAxis = vec3 (0, 0, 1);

The keyword attribute is used to qualify variables that are passed to a vertex shader from OpenGL on a per-
vertex basis. It is an error to declare an attribute variable in any type of shader other than a vertex shader. 
Attribute variables are read-only as far as the vertex shader is concerned.  Values for attribute variables are 
passed to a vertex shader through the OpenGL vertex API or as part of a vertex array. They convey vertex 
attributes to the vertex shader and are expected to change on every vertex shader run. The attribute qualifier 
can be used only with the data types float, vec2, vec3, vec4, mat2, mat3, and mat4.

A declaration looks like:

attribute vec4 position;
attribute vec3 normal;
attribute vec2 texCoord;

All the standard OpenGL vertex attributes (color, normal, texture coordinate, etc.) have built-in variable 
names to allow easy integration between user programs and OpenGL vertex functions. The built-in attribute 
names are listed later in this section.

It is expected that graphics hardware will have a small number of fixed locations for passing vertex 
attributes. Therefore, the OpenGL Shading language defines each attribute variable as having space for up to 
four floating-point values (i.e., a vec4). There is an implementation dependent limit on the number of 
attribute variables that can be used and if this is exceeded it will cause a link error. (Declared attribute 
variables that are not used do not count against this limit.) A float attribute counts the same amount against 
this limit as a vec4, so applications may want to consider packing groups of four unrelated float attributes 
together into a vec4 to better utilize the capabilities of the underlying hardware. A mat4 attribute will use up 

< default > local read/write memory
const for variables, a compile time constant; it cannot be written to
const for function parameters, a read only parameter
attribute linkage between a vertex shader and OpenGL for per-vertex data
uniform linkage between a shader and OpenGL for per-primitive data
varying linkage between a vertex shader and a fragment shader for 

interpolated data
output for function parameters for pass by reference
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the equivalent of 4 vec4 attribute variable locations, a mat3 will use up the equivalent of 3 attribute variable 
locations, and a mat2 will use up 1 attribute variable location

The keyword uniform is used to qualify variables that remain constant for the entire primitive being 
processed. Typically, variables qualified as being uniform will be constant over a number of 
primitives/vertices/fragments.  Uniform variables are read-only as far as the shader is concerned and are 
initialized directly by an application via API commands, or indirectly because of state tracking. The uniform 
qualifier can be used with any of the fundamental data types.

An example declaration is: 

uniform vec4lightPosition;

There is an implementation dependent limit on the amount of uniform storage that can be used for each type 
of shader and if this is exceeded will cause a compile time error. (Uniform variables that are declared but not 
used do not count against this limit.) The number of user-defined uniform variables and the number of built-
in uniform variables that are used within a shader are added together to determine whether available uniform 
storage has been exceeded. If two shaders that are linked together refer to a uniform variable of the same 
name, they will read the same value.

Varying variables provide the interface between a vertex shader and a fragment shader. These variable are 
write-only for the vertex shader and read-only for the fragment shader. You can think of these variables as 
allocating the hardware interpolators that will be used when rendering a primitive. At link time, the varying 
variables actually used in the vertex shader are compared to the varying variables actually used in the 
fragment shader. If the two do not match, a link error will result. The built-in varying variable gl_Position 
holds the homogeneous vertex position and must be written to by the vertex shader otherwise a compiler 
error will be generated.

An example declaration looks like:

varying vec3 normal;

Attribute variables, uniform variables, and varying variables all share the same name space so they must 
have unique names. To avoid namespace confusion within a shader, all attribute, uniform, and varying 
variables must be declared at a global scope (outside any functions).

Vector components
The names of the components of a vector are denoted by a single letter.  As a notational convenience, several 
letters are associated with each component based on common usage of position, color or texture coordinate 
vectors. A generic vector component notation is also provided. The individual components of a vector can 
be selected by following the variable name with a '.' and the component name.

The component names supported are:

{x, y, z, w} useful when accessing vectors that represent points or normals
{r, g, b, a} useful when accessing vectors that represent colors
{s, t, p, q} useful when accessing vectors that represent texture coordinates
{0, 1, 2, 3} useful when accessing vectors that contain generic or unnamed values
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The component names x, r, s and 0 are, for example, synonyms for the same (first) component in a vector.

Matrix Components
The individual components of a matrix can be accessed by following the variable with a '.' and the 
component two digit row column number: 00, 01, 02, 03, 10, …, 33.  00 is the top left corner of the matrix. 
The first digit represents the row to be accessed, and the second digit represents the column to be accessed. 
Attempting to access a component outside the bounds of a matrix (e.g., component 33 of a mat3) will 
generate a compiler error.  An entire row or column of a matrix can be accessed by using the “_” in place of 
a specific row or column number. Thus, ._0 will access column 0 and .0_ will access row 0, etc. 

mat3 m;
m.00 = 1;// set the first element to 1.
m.0_ = vec3 (1, 2, 3);// sets the first row to 1, 2, 3

Arrays
Uniform or varying variables can be aggregated into arrays (normal read/write variables cannot to 
discourage overuse of temporary storage and because it is difficult for a compiler in determining register 
reuse) using the C [] operator.  The size must be specified.  Some examples are:

uniform vec4lightPosition[4];
varying vec3material[8];

There is no mechanism (or need) to be able to initialize these arrays in the shaders as the initialization is 
done by API commands.

Array elements are accessed as in C:

diffuseColor += lightIntensity[3] * NdotL;

The array index starts from zero and the index is an integer constant or an integer variable. An array can be 
passed by reference to a function by just using the array name without any index.

Basic language constructs
White space and indenting are only mandatory to the extent that they separate tokens in the language, 
otherwise they are ignored.

Comments may be denoted using either the C /* */ syntax or the C++ // comment syntax.

Expressions in the shading language include the following:

• constants: floating point (e.g. 2.0, 3, -3.24, 3.6e6) and named constants (from the const declaration).
• vector and matrix constructors, for example vec3 (0, 1, 0).
• variable references, array subscripting, and vector/matrix component selection.
• the binary operators +, -, *, /, and %.
• the unary - (negation) operator, as well as pre- and post- increment and decrement (--) and (++).
• the relational operators (>, >=, <, <=), the equality operators (==, !=) and logical operators (&&, || and 

!).  All these operations result as bool. Logical operators operate on type bool and auto-convert their 
operands to be bool.

• the comma operator ( , ) as in C
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• built in-function calls
• user defined function calls

Operator precedence rules are as in C and parentheses can be used to change precedence.

Assignments are made using '=' as in C and the variable must be of the same type as finally produced by the 
expression, i.e. no implied casting is done.  Expressions on the left of an assignment are evaluated before 
expressions on the right of the assignment.  The +=, -=, *=,  /=, and %= assignment operators in C are also 
supported.

Control Flow
The fundamental control flow features of the OpenGL Shading Language are:

• block structured statement grouping
• conditionals
• looping constructs
• function calls

These constructs are all modeled on their counterparts in the C programming language.

A statement is an expression or declaration terminated by a semicolon.  

Braces are used to group declarations and statements together into a compound statement or block so that 
they are syntactically equivalent to a single statement. Any variables declared within a brace-delimited 
group of statements are only visible within that block. In other words, the variable scoping rules are the same 
as in C.

The conditional expression is supported and is written using the ternary operator "?:".  In the expression:

expression ? true-expression : false-expression

expression is evaluated first.  If it is true or non-zero then true-expression is evaluated and that is the value of 
the conditional expression.  Otherwise, false-expression is evaluated and that is the value. Constructors 
should be used to obtain compatible types. If the types of true-expression and false-expression differ, a 
compiler error will be generated. 

Conditionals in the shading language are the same as in C:

if (expression)
true-statement

or

if (expression)
true-statement

else
false-statement

The expression is evaluated, and if it is true (that is, if expression is true or a non-zero value), true-statement 
is executed.  If it is false (expression is false or zero) and there is an else part then false-statement is executed 
instead.
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The relational operators  ==, !=, <, <=, > and >= may be used in the expression and be combined using the 
logical operators &&, || and !.  If the conditional is operating on a vector or a matrix then all the components 
of the vector or matrix must be true for true-statement to be executed.

Conditionals can be nested.

For, while, and do loops are allowed as in C:

for (init-expression; condition-expression; loop-expression)
statement;

while (condition-expression)
statement;

do
statement;

while (condition-expression)

Constructs for early loop termination are also the same as in C:

break;
continue;

Integer and boolean expressions are preferred for condition-expression, as this will ensure all the vertices or 
fragments in a primitive have the same execution path whereas with a float as a control variable this cannot 
be guaranteed.

The break statement can be used to break out of the loop early.  In the for loop, the continue statement can be 
used to skip the remainder of the statement and execute loop-expression and condition-expression again.

Loops can be nested.

A valid shader contains exactly one function named main. This function takes no arguments and returns no 
value. Therefore, the skeleton of all valid shaders will look like this:

void main(void)
{
...
}

The reserved word kill can be used within a fragment shader to cease processing and exit without producing 
an output value.

User defined functions
Shaders can be partitioned into functions as an aid to writing clearer programs and reusing common 
operations.  An implementation can inline the calls or do true subroutines.  Recursion is not allowed.

A function is defined similar to C:

// prototype
returnType functionName (type0 arg0, type1 arg1, …, typen argn);
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// definition
returnType functionName (type0 arg0, type1 arg1, …, typen argn)
{
    // do some computation
    return returnValue;
}

All functions must be defined before they are called or have prototypes.

Arguments are always passed by reference and are read-only unless the output keyword is used to qualify an 
argument.  For example:

float myfunc (float f,// you cannot assign to f
output float g)// you can assign to g

Aliasing of arguments is not allowed.

A constant may be passed in as an argument even though a reference to a constant doesn't really exist.  A 
constant will generate a compile error if qualified by the output keyword. The scope rules for variables 
declared within the body of the function are the same as in C.  

Functions that return no value use void to signify this.  Functions that accept no input arguments need not 
use void; as in C++, since prototypes are required, there is no ambiguity when an empty argument list "()" is 
declared.

Functions can be overloaded as in C++.  This allows the same function name to be used for multiple 
functions, as long as the argument list types differ.  This is used heavily in the built-in functions.  When 
overloaded functions (or indeed any functions) are resolved, an exact match for the function's signature is 
looked for.  Other than auto-promotion of int to float, as needed, no promotion or demotion of the return type 
or input argument types is done.  All expected combination of inputs and outputs must be defined as separate 
functions. 

Built-in functions
The OpenGL Shading Language defines an assortment of built-in convenience functions for scalar and 
vector operations. 

The built-in functions basically fall into three categories:

• They expose some necessary hardware functionality in a convenient way such as accessing a texture 
map.  There is no way in the language for these functions to be emulated by the user.

• They represent a trivial operation (clamp, mix, etc.) which are very simple for the user to write, but 
they are very common and may have direct hardware support.  It is a very hard problem for the 
compiler to map expressions to 'complex' assembler instructions.

• They represent an operation which we hope to accelerate at some point.  The trigonometry functions 
fall into this category.

Many of the functions are similar to the same named ones in C, but they support vector input as well as the 
more traditional scalar input.  For operations on vectors, the output will have the same type as the input and 
the function will have been applied component-by-component. The OpenGL Shading Language includes the 
following built-in functions:
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Trigonometry functions:

• Radians
• Degrees
• Sine
• Cosine
• Tangent
• Arcsine
• Arccosine
• Arctangent

Exponential functions:

• Power
• Exponential
• Log
• Square Root
• Inverse Square Root

Common functions:

• Absolute Value
• Sign
• Floor
• Ceiling
• Fraction
• Modulo
• Min
• Max
• Clamp
• Mix
• Step
• Smoothstep

Geometric functions:

• Length
• Distance
• Normalize
• Face Forward
• Reflect
• Dot Product
• Cross Product

Matrix functions:

• Matrix Multiply
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Fragment processing functions are only available in shaders intended for use on the fragment processor:

• Texture Access
• Derivative
• Level-of-Detail
• Noise

Built-in variables
The following attribute names are built into the OpenGL Shading Language and can be used from within a 
vertex shader to access the current values of attributes defined by OpenGL:

attribute vec4  gl_Color;
attribute vec3  gl_Normal;
attribute vec4  gl_Vertex;
attribute vec4  gl_MultiTexCoord0;
attribute vec4  gl_MultiTexCoord1;
attribute vec4  gl_MultiTexCoord2;
attribute vec4  gl_MultiTexCoord3;
attribute vec4  gl_MultiTexCoord4;
attribute vec4  gl_MultiTexCoord5;
attribute vec4  gl_MultiTexCoord6;
attribute vec4  gl_MultiTexCoord7;
attribute vec4  gl_SecColor;
attribute vec3  gl_FrontMaterial[5];
attribute vec3  gl_BackMaterial[5];

As an aid to accessing the various components of the material arrays, the following built-in constants are 
also built into the OpenGL Shading Language:

constant  int   gl_kEmmisiveColor    = 0;
constant  int   gl_kAmbientColor     = 1;
constant  int   gl_kDiffuseColor     = 2;
constant  int   gl_kSpecularColor    = 3;
constant  int   gl_kDiffuseAlpha     = 4; // .x
constant  int   gl_kSpecularExponent = 4; // .y

As an aid to accessing OpenGL vertex processing state, the following uniform variables are built into the 
OpenGL Shading Language and are accessible from within a vertex shader:

uniform mat4  gl_ModelViewMatrix;
uniform mat4  gl_ModelViewProjectionMatrix;
uniform mat3  gl_NormalMatrix;
uniform mat4  gl_TextureMatrix[8];
uniform vec3  gl_SceneAmbient;
uniform mat4  gl_TexGen[8];
uniform float gl_NormalScale;
uniform vec3  gl_Light0[8];
uniform vec3  gl_Light1[8];
uniform vec3  gl_Light2[8];
uniform vec3  gl_Light3[8];
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uniform vec3  gl_Light4[8];
uniform vec3  gl_Light5[8];
uniform vec3  gl_Light6[8];
uniform vec3  gl_Light7[8];

// Additional lights would follow here if an implementation exports
// more than the minimum of 8.

As an aid to accessing the various components of the light arrays from within a vertex shader, the following 
built-in constants are also built into the OpenGL Shading Language:

// Define the layout of the vec3 light parameters in the Light arrays.  
// Note the two scalar spotlight values are stored in a vec3 for 
// convenience. 
const int gl_kAmbientIntensity   = 0;
const int gl_kDiffuseIntensity   = 1;
const int gl_kSpecularIntensity  = 2;
const int gl_kPosition           = 3;
const int gl_kHalfVector         = 4;
const int gl_kAttenuation        = 5;
const int gl_kSpotlightDirection = 6;
const int gl_kSpotlight          = 7;// x = CutoffAngle, y = Exponent

As an aid to accessing OpenGL fragment processing state, the following uniform variables are built into the 
OpenGL Shading Language and are accessible from within a fragment shader:

uniform vec4  gl_TextureEnvColor[8];
uniform float gl_FogDensity;
uniform float gl_FogStart;
uniform float gl_FogEnd;
uniform float gl_FogScale;// = 1 / (gl_FogEnd - gl_FogStart)
uniform vec3  gl_FogColor;

// Variables used in the pixel processing and imaging operations.
uniform vec4  gl_ColorScaleFactors;  // RED/GREEN/BLUE/ALPHA_SCALE
uniform vec4  gl_ColorBiasFactors;   // RED/GREEN/BLUE/ALPHA_BIAS
uniform float gl_DepthScaleFactor;   // DEPTH_SCALE
uniform float gl_DepthBiasFactor;    // DEPTH_SCALE
uniform float gl_IndexShift;         // equals 2^INDEX_SHIFT
uniform float gl_IndexOffset;        // INDEX_OFFSET
uniform mat4  gl_ColorMatrix;        // set up to track state
uniform vec4  gl_PostColorMatrixScaleFactors;
uniform vec4  gl_PostColorMatrixBiasFactors;

The vertex shader has access to the following built-in varying variables which direct clipping and 
rasterization activities:

varying vec4  gl_Position;// must be written to
varying float gl_PointSize;
varying vec4  gl_ClipVertex;
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The fragment shader has access to the following built-in varying variables, which holds the x, y, z, and 1/w 
values for the fragment being processed:

varying vec4 gl_FragCoord;

The fragment shader has access to the following built-in variables:

bool  gl_FrontFacing;
vec4  gl_FragColor;
float gl_FragDepth;
float gl_FragStencil;
vec4  gl_FragData0-n       // n is implementation-dependent

// Frame Buffer
vec4  gl_FBColor;
float gl_FBDepth;
float gl_FBStencil;
vec4  gl_FBDatan;

The following built-in varying variables can be written to from within a vertex shader and can be read from 
within a fragment shader:

varying vec4  gl_FrontColor;
varying vec4  gl_BackColor;
varying vec4  gl_TexCoord0;
varying vec4  gl_TexCoord1;
varying vec4  gl_TexCoord2;
varying vec4  gl_TexCoord3;
varying vec4  gl_TexCoord4;
varying vec4  gl_TexCoord5;
varying vec4  gl_TexCoord6;
varying vec4  gl_TexCoord7;
varying vec4  gl_FrontSecColor;
varying vec4  gl_BackSecColor;
varying float gl_EyeZ;
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6.4 Brick Shader
Now that we have the basics of the OpenGL Shading Language in hand, let’s look at a simple example. In 
this example, we’ll be applying a brick pattern to an object. The brick pattern will be calculated entirely 
within a fragment shader. Because the texture pattern is generated algorithmically, this type of shader is 
sometimes referred to as a procedural shader.

For this example, the vertex shader will do a simple lighting calculation using a single light source that is 
specified by the application. The vertex shader will also compute both an eye space, object space, and clip 
space positions for each vertex.  The eye space position will be used within the vertex shader to do the 
lighting calculation, since the light position will be specified in eye coordinates.  The clip position is the 
transformed vertex position that will be passed on through the rendering pipeline to allow for operations 
such as clipping, culling, viewport mapping and ultimately, rasterization. 

The object space position will be passed on to the fragment shader for use in generating the procedural 
texture. With procedural textures, it is important to have a repeatable function, so that each location on the 
object has its texture computed the same way in every frame, no matter how the object is rotated or where 
the viewpoint is. Using the object space position as the input for our procedural texture function allows us to 
redraw the object in the same way each frame, and makes it look like the object was carved out of a solid 
texture.

Within the fragment shader, we’ll use the object space position at each fragment to determine how to color 
the fragment. With this value, and the values that are supplied by the application for brick color, brick 
height, brick width, mortar color, mortar thickness, and so on, we’ll be able to algorithmically compute the 
brick texture pattern to be used at each fragment. Once the base color is computed, the light intensity value 
that was computed by the vertex shader and interpolated across the primitive will be applied.

Application Setup
The input to the vertex shader will be a single light position stored as a uniform variable and a normal and a 
position for each vertex that are supplied through the usual OpenGL mechanisms. There is no need to supply 
color or texture coordinates since these will be computed algorithmically in the fragment shader.

The uniform variables for the fragment shader are mortarThickness, brickColor, mortarColor, 
brickMortarWidth, brickMortarHeight, mwf (mortar width fraction), and mhf (mortar height fraction). The 
application code for setting up the brick shader is shown at the very end of section 6.2.

Once the shaders have been installed and the uniform variables have been provided, the application is 
expected to send a normal and the vertex position for each vertex that is to be drawn. The current values for 
the model-view matrix, the model-view-projection matrix, and the normal matrix will all be accessed from 
within the vertex shader. Because the brick pattern is entirely procedurally generated, the fragment shader 
does not access any of OpenGL’s current state.

Vertex shader
The code below is the vertex shader that is needed for our brick shader. This shader demonstrates some of 
the capabilities of the OpenGL Shading Language:

varying float LightIntensity;
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varying vec3  Position;
uniform vec3  LightPosition;

const float specularContribution = 0.7;
const float diffuseContribution  = (1 - specularContribution);

void main(void)
{
    vec4 pos        = gl_ModelViewMatrix * gl_Vertex;
    Position        = vec3(gl_Vertex);
    vec3 tnorm      = normalize(gl_NormalMatrix * gl_Normal);
    vec3 lightVec   = normalize(LightPosition - vec3(pos));
    vec3 reflectVec = reflect(lightVec, tnorm);
    vec3 viewVec    = normalize(vec3(pos));

    float spec = clamp(dot(reflectVec, viewVec), 0, 1);
    spec = spec * spec;
    spec = spec * spec;
    spec = spec * spec;
    spec = spec * spec;

    LightIntensity = diffuseContribution * dot(lightVec, tnorm) +
                     specularContribution * spec;
    
    gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

The purpose of this shader is to produce three values that will be interpolated across each primitive and 
ultimately used by the fragment shader that will be described in the next section. These three values are light 
intensity, vertex position in object space, and the transformed vertex position. These values are represented 
in our vertex shader by the varying variables LightIntensity and Position (which are defined as varying 
variables in the first two lines of the shader), and gl_Position (which is built in to the OpenGL Shading 
Language and must be computed by every vertex shader).

Once we enter the main function, the first thing we do is compute the position of the vertex in eye 
coordinates. This is done by declaring a local variable pos and initializing it by multiplying the current 
OpenGL model-view matrix and the incoming vertex value.

Next we use a constructor to convert the incoming vertex value to a vec3 and store it in our varying variable 
Position. The underlying hardware will have a fixed number of interpolators for us to use, so there’s no 
sense interpolating the w coordinate if we’re not going to need it in the fragment shader. As you can see, 
there’s nothing to prevent a vertex shader from reading an input value (gl_Vertex) more than once.

After this, we need to compute the values needed for the light intensity calculation. The incoming normal 
(gl_Normal) is transformed by the OpenGL normal transformation matrix and then normalized by calling 
the built-in function normalize(). The light direction is computed by subtracting the eye coordinate position 
(pos) from the uniform variable that holds our light position in eye coordinates. This vector is also 
normalized. The reflection vector is computed by calling the built-in function reflect(), and the return value 
from this function is also normalized. Finally, the viewing direction vector is computed by normalizing the 
eye coordinate position (without the w coordinate).
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A specular value is then computed by using the built-in function dot() to compute the dot product of the 
reflection vector and the view vector. At the time of this writing, the built-in power function (pow()) has not 
been implemented, so we simply multiply the specular value by itself four times in order to achieve the same 
effect as pow(spec, 16). Finally, the light intensity is computed by taking 30% of the diffuse value and 70% 
of the specular value.

Vertex shaders must compute a value for gl_Position and that is taken care of in the last line of code. The 
current model-view-projection matrix is obtained from OpenGL state and is used to multiply the incoming 
vertex value. The resulting transformed coordinate is stored in gl_Position as required by the OpenGL 
Shading Language. This vertex value will subsequently be combined with others to construct a primitive, 
and the resulting primitive will then be clipped, culled, and sent on for rasterization.

Fragment shader
The fragment shader below works with the vertex shader in the previous section to render objects with a 
brick pattern. 

uniform vec3brickColor;
uniform vec3mortarColor;

uniform floatbrickMortarWidth;
uniform floatbrickMortarHeight;
uniform floatmwf;
uniform floatmhf;

varying vec3  Position;
varying float LightIntensity;

void main (void)
{
    vec3ct;
    floatss, tt, w, h;

    ss = Position.x / brickMortarWidth;
    tt = Position.z / brickMortarHeight;

    if (fract (tt * 0.5) > 0.5)
        ss += 0.5;

    ss = fract (ss);
    tt = fract (tt);

    w = step (mwf, ss) - step (1 - mwf, ss);
    h = step (mhf, tt) - step (1 - mhf, tt);

    ct = clamp(mix(mortarColor, brickColor, w*h)*LightIntensity, 0, 1);

    gl_FragColor = vec4 (ct, 1.0);
}
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This shader starts off by defining a few more uniform variables than did the vertex shader. The brick pattern 
that will be rendered on our geometry is parameterized in order to make it easier to modify. The parameters 
that are constant across an entire primitive can be stored as uniform variables and initialized (and later 
modified) by the application. This makes it easy to expose these controls to the end user for modification 
through user interface elements such as sliders.

We want our brick pattern to be applied in a consistent way to our geometry in order to have the object look 
the same no matter where it is placed in the scene or how it is rotated. The key to determining the placement 
of the brick pattern is the value that is passed in the varying variable Position. This variable was computed at 
each vertex by the vertex shader in the previous section, and it is interpolated across the primitive and made 
available to the fragment shader at each fragment location. Our fragment shader can use this information to 
determine where the fragment location is in relation to the algorithmically defined brick pattern.

The first step is to divide the object’s x position by the brick+mortar width and the z position by the 
brick+mortar height. This gives us a “brick row number” (tt) and a “brick number” within that row (ss). 
Keep in mind that these are signed, floating point values, so it is perfectly reasonable to have negative row 
and brick numbers as a result of this computation.

The purpose of the next line is to offset every other row of bricks by half a brickwidth. The “brick row 
number” (tt) is multiplied by 0.5 and the result is compared against 0.5. Half the time (or every other row) 
this comparison will be true, and the “brick number” value is in incremented by 0.5 to offset the entire row. 

Next, the built-in math function fract() is  used to obtain the fractional parts of our width and height values. 
We then compute two values that tell us whether we are in the brick or in the mortar in the horizontal 
direction (w) and in the vertical direction (h). The built-in function step() is used to produce a value of 1 if 
the brick color is to be used, and 0 if the mortar color is to be used. If the surface of our brick is 
parameterized to go from 0.0-1.0 in both width and height, then we can imagine that our brick pattern is the 
brick color from 0.0-mwf in the width direction and 0.0-mhf in the height direction. The values of mwf and 
mhf can be computed by the application to give a uniform mortar width in both directions based on the ratio 
of brick+mortar width to brick+mortar height, or they can be chosen aribitrarily to give a mortar appearance 
that “looks right.”

Finally, we compute the color of the fragment and store it in a temporary variable. The built-in function 
mix() is used to choose the brick color or the mortar color, depending on the value of w*h. Since w and h can 
only have values of 0.0 (mortar) or 1.0 (brick), we will chose the brick color only if both values are 1.0, 
otherwise we will choose the mortar color. The resulting value is then multiplied by the light intensity, and 
that result is clamped to the range [0.0, 1.0] and stored in a temprorary variable (ct). This temporary variable 
is a vec3, so we create our final color value by using a constructor to add a 1.0 as the fourth element of a 
vec4 and assign the result to our built-in variable gl_FragColor.

One possible improvement to this shader is to notice that we never actually used the y component of our 
varying variable position. This value was interpolated but never used. Since hardware implementations will 
have a fixed number of interpolators available, we would be making better use of our scarce resources by 
passing the x and z components as a varying vec2 variable. This would make the code more cryptic, but it 
may be worth doing if your program requires a large number of varying variables for other things.

When comparing this shader to the vertex shader in the previous example, we notice one of the key features 
of the OpenGL shading language, namely that the language used to write these two shaders is almost 
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identical. Both shaders have a main function, some uniform variables, some local variables, expressions are 
the same, built-in functions are called in the same way, constructors are used in the same way, and so on. The 
main difference between the two shaders is their input and output. Vertex shaders get input from the 
application in the form of vertex data, and they output all of the data needed to specify a single vertex in the 
form of varying variables that are write-only for the vertex shader. After rasterization, the fragment 
processor receives as input the interpolated data at each fragment in the form of read-only varying variables. 
After processing this data, a fragment shader produces an output value that is can be sent to the back end of 
the OpenGL rendering pipeline to ultimately be rendered in the frame buffer..

Screen shots
The screen shots below show the results of our brick shaders. The first case shows diffuse lighting only and 
was achieved simply by setting specularContribution to 0 and diffuseContribution to 1. The second image 
shows the result of running the shaders as shown in the listings above. 
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6.5 Bump Mapping and Environment Mapping
A variety of interesting effects can be applied to a surface using a technique called bump mapping. Bump 
mapping involves modulating the surface normal before lighting is applied. The modulation can be done 
algorithmically to apply a regular pattern, it can be done by adding noise to the components of a normal, or 
it can be done by looking up a perturbation value in a texture map. This technique does not truly alter the 
surface being shaded, it merely “tricks” the lighting calculations. Therefore, the “bumping” will not show up 
on the silhouette edges of an object. Imagine modeling the moon as a sphere, and shading it with a bump 
map so that it appears to have craters. The silhouette of the sphere will always be perfectly round, even if the 
“craters” (bumps) go right up to the silhouette edge. In real life, you would expect the craters on the 
silhouette edges to prevent the silhouette from looking perfectly round. For this reason, it is a good idea to 
use bump mapping to only apply “small” effects to a surface (at least relative to the size of the surface). 
Wrinkles on an orange, embossed logos, and pitted bricks are all good examples of things that can be 
successfully bump mapped.

A technique that is used to model reflections in a complex environment without resorting to ray-tracing is 
called environment mapping. In this technique, one or more texture maps are used to simulate the reflections 
in the environment that is being rendered. It is best used when rendering objects that have mirror-like 
qualities. One way to perform environment mapping is by using a single equirectangular texture map. This 
type of texture can be obtained from a real-world environment using photography techniques, or it can be 
created to represent a synthetic environment. An example is shown below. (Image courtesy Jerome 
Dewhurst, jerome@photographica.co.uk, http://www.photographica.co.uk.)

Whatever means is used to obtain an image, the result is a single image that spans 360o horizontally and 
180o vertically. The image is also distorted as you move up or down from the center of the image. This 
distortion is done deliberately so that you will see a reasonable representation of the environment if you 
“shrink-wrap” this texture around the object that you’re rendering.
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The key to this type of environment mapping is to produce a pair of angles that are used to index into the 
texture. An altitude angle is computed by determining the angle between the reflection direction and the XZ 
plane. This altitude angle will vary from 180o (reflection is straight up) to –180o (reflection is straight 
down). The sine of this angle will vary from 1.0 to –1.0, and we’ll be able to use this fact to get a texture 
coordinate in the range of [0,1].

An azimuth angle is determined by projecting the reflection direction onto the XZ plane. The azimuth angle 
will vary from 0o to 360o, and this will give us the key to get a second texture coordinate in the range of 
[0,1]. 

The following OpenGL 2.0 shaders combine bump mapping and environment mapping in order to render an 
object. The altitude and azimuth angles are computed to determine s and t values for indexing into our 
environment textures. Round “bumps” on the surface are defined procedurally by using the incoming texture 
coordinate values. If the fragment is within one of these “bumps”, the computed s and t values are modified 
in a non-linear fashion to give the look of a reflection off a rounded bump on the surface.

Application Setup
The application needs to do very little to set up this shader. There is no lighting performed, hence no lighting 
state is needed. In this example, the environment map will be set up in texture unit 4. For convenience, the X 
and Y unit vectors that will be used in the dot products within the fragment shader are passed as uniform 
variables.

int installEnvMapShader(int change)
{
    float xunitvec[3] = { 1.0f, 0.0f, 0.0f }; 
    float yunitvec[3] = { 0.0f, 1.0f, 0.0f }; 

    glActiveTextureARB(GL_TEXTURE4_ARB);
    glEnable(GL_TEXTURE_2D);
    glBindTexture(GL_TEXTURE_2D, EnvMapName);

    if (makeShaderActive("envmap", change))
    {
        glLoadUniform3fvGL2(glGetUniformLocationGL2(ProgramObject,
                               "Xunitvec", -1), &xunitvec[0]);
        glLoadUniform3fvGL2(glGetUniformLocationGL2(ProgramObject, 
                               "Yunitvec", -1), &yunitvec[0]);
        return 1;
    }
    else
        return 0;
}

Once the shaders have been installed and the uniform variables have been provided, the application is 
expected to send a normal, a 2D texture coordinate, and the vertex position for each vertex that is to be 
drawn. The current values for the model-view matrix, the model-view-projection matrix, and the normal 
matrix will all be accessed from within the vertex shader. Because the bump pattern is entirely procedurally 
generated, the fragment shader does not access any of OpenGL’s current state.
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Vertex Shader
The code below comprises the vertex shader that is used to produce the bumpy/shiny effect. 

varying vec3 Normal;
varying vec3 EyeDir;

void main(void) 
{
    gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
    gl_TexCoord0 = gl_MultiTexCoord0;
    Normal = normalize(gl_NormalMatrix * gl_Normal);
    EyeDir = normalize(vec3(gl_ModelViewMatrix * gl_Vertex));
}

The goal of this vertex shader is to produce two values that will be interpolated across each primitive: a 
surface normal and an eye direction. These two values will allow us to compute an accurate reflection 
direction at each fragment, and from the reflection direction, we will be able to compute the necessary 
altitude and azimuth angles as well as the distortion caused by our procedural bump pattern.

The transformed position of the vertex is computed in the first line of the program in the usual way. Since we 
will need the texture coordinate in the fragment shader to produce our procedural bumps, we must copy the 
value of the standard vertex attribute gl_MultiTexCoord0 into the built-in varying variable gl_TexCoord0. 
We could have defined our own varying to use instead, but this is just as good. We transform and normalize 
the incoming normal and then we compute the eye direction based on the current model-view matrix and the 
incoming vertex value. This eye direction vector is normalized as well.

Fragment Shader
The following code contains the fragment shader that is used to do environment mapping with a 
procedurally generated bump pattern:

uniform vec3 Xunitvec;
uniform vec3 Yunitvec;

varying vec3 Normal;
varying vec3 EyeDir;

const float Density = 6.0;
const float Coeff1 = 5.0;
float Size = 0.15;

void main (void)
{
    // Compute reflection vector. Should really normalize
    // EyeDir and Normal, but this is OK for some objects.
    
    vec3 reflectDir = reflect(EyeDir, Normal);

    // Compute cosine of altitude and azimuth angles

    vec2 index;
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    index.1 = dot(normalize(reflectDir), Yunitvec);
    reflectDir.y = 0.0;
    index.0 = dot(normalize(reflectDir), Xunitvec);

    // Compute bump locations

    vec2 c = Density * vec2(gl_TexCoord0);
    vec2 offset = fract(c) - vec2(0.5);
  
    float d = offset.x * offset.x + offset.y * offset.y;
    if (d >= Size)
        offset = vec2(0.0);

    // Translate index values to (0.5, 0.5) and make offset non-linear

    index = (index + 1.0) * 0.5 - Coeff1 * offset * offset * offset;
    
    // Do a lookup into the environment map.

    vec3 envColor = texture3(4, index);

    gl_FragColor = vec4(envColor, 1.0);
}

The varying variables Normal and EyeDir are the values generated by the vertex shader and then 
interpolated across the primitive. To get truly precise results, these values should be normalized again in the 
fragment shader. Skipping the normalization gives us a little better performance, and the quality is 
acceptable for certain objects.

The application has set up the uniform variables Xunitvec and Yunitvec with the proper values for 
computing our altitude and azimuth angles. First, we compute our altitude angle by normalizing the 
reflectionDir vector and performing a dot product with the Yunitvec. Becuase both vectors are unit vectors, 
this gives us a cosine value for the desired angle that ranges from -1.0 to 1.0. Setting the y component of our 
reflection vector to 0.0 causes it to be projected onto the X-Z plane. We normalize this new vector to get the 
cosine of our azimuth angle. Again, this value will range from -1.0 to 1.0.

After this, we use the incoming texture coordinate values as the basis for computing a procedural bump 
pattern. Our Density value tells us how many bumps there are on the surface. By multiplying with our 
incoming texture coordinate, we can use this value to spread the bumps out further or make them closer 
together. Next, we determine an offset by taking the fractional part of our modified texture coordinate and 
subtracting 0.5 from each component. To determine whether or not we’re inside a “bump”, we compute the 
distance between the offset and the center of our “bump” (x2 + y2). If this distance value is greater than the 
value we’ve set to represent the bump diameter (Size), we’ll just set the offset to 0.0.

At this point, we combine our azimuth/altitude values with our bump offset to create an index into our 
texture map. We add 1.0 to the index values and multiply by 0.5 to get index values that range from 0.0 to 
1.0.  From this computed index we subtract a somewhat arbitrary function of the offset value that was 
chosen to give us some non-linearity in the reflection off the bumps. This doesn’t produce the correct 
reflection from rounded bumps, but it’s a pretty good fake.
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With our index values set, all we need to do is look up the value in the texture map, create a vec4 by adding 
an alpha value of 1.0, and send the final fragment color on for further processing.

It should be pointed out that a couple of other shortcuts were taken to keep this shader short. First, when we 
add the offset function, we don’t do any clamping. This is fine for the s (azimuth) texture coordinate, since 
we just wrap around to the other side, and the texture has been set up to enable wrapping. It’s also fine 
outside the bumps, because the offset value is 0.0. But within the bumps, it is possible to wrap the t (altitude) 
texture coordinate within the bumps. This produces a reflection of the ground near the tops of the bumps on 
the top of the object, and a reflection of sky on the bottoms of some bumps near the bottom of the object, this 
could be eliminated by clamping the index values to the range [0,1] after the offset value has been added.

Also, the value for the azimuth angle is not computed correctly. The cosine of the reflection direction is 0.0 
when the reflection direction is equal to the eye direction. As the reflection direction changes to 90o, the 
cosine value increases to 1.0. As the reflection direction passes 90o, the cosine value decreases down to 0.0. 
Instead of treating this properly we just use the cosine value directly. The result is that as the reflection 
direction approaches 90o, we use texture values nearer and nearer the edge of the texture. Then, as the angle 
surpasses 90o, instead of wrapping to the other side of the texture, we use values near the same edge, 
gradually getting further from the edge.  Furthermore, since the texture covers 360o in the horizontal 
direction, we really should multiply the s coordinate by 0.5 (e.g., on the front of the object, we should only 
see the middle 180o of the texture, not the whole 360o). 

This could also be treeated properly with a bit more code. I’ve written another shader that does environment 
mapping only (no procedural bumps). In this shader, I adjust the azimuth value based on the sign of the z-
component of the reflection direction. I multiply the computed value by 0.5, and I do things exactly the same 
way if the z component of the reflection direction is greater than 0.0. If it’s less than 0.0, I multiply my 
computed value by -0.5 and add 1.0. This gives me values in the range of 0.75 to 1.25. I use these values 
directly as my texture coordinates, since the values greater than 1.0 will wrap around to the other side of the 
texture.

Screen Shots
The first image below shows the teapot rendered with the shaders described above. The second image shows 
a torus rendered with a second set of shaders that combines a diffusely lit base color with the same 
environment map.
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6.6 BRDF Shader
In order to model more physically realistic surfaces, we must go beyond the simplistic lighting/reflection 
model that is built into OpenGL. For some time, computer graphics researchers have been rendering images 
with a more realistic reflection model called the bidirectional reflectance distribution function, or BRDF. 
Instruments have been developed to measure the BRDF of real materials. These BRDF measurements can 
be sampled to produce texture maps that can be used to reconstruct the BRDF function at run time. A variety 
of different sampling and reconstruction methods have been devised for rendering BRDF materials.

This section describes the OpenGL Shading Language BRDF shaders that use the Polynomial Texture 
Mapping (PTM) technique developed by Hewlett-Packard. The shaders presented are courtesy of Brad 
Ritter, Hewlett-Packard. The BRDF data is from Cornell University. It was obtained by measuring 
reflections from several types of automotive paints that were supplied by Ford Motor Co.

One of the reasons this type of rendering is important is to achieve realistic rendering of materials whose 
reflection characteristics vary as a function of view angle and light direction. Such is the case with these 
automotive paints. To a car designer, it is extremely important to be able to visualize the final “look” of the 
car even when it is painted with a material whose reflection characteristics vary as a function of view angle 
and light direction. One of the paint samples tested by Cornell, Mystic Lacquer, has the peculiar property 
that the color of its specular highlight color changes as a function of viewing angle. This material cannot be 
adequately rendered using only conventional texture mapping techniques.

PTMs are essentially light-dependent texture maps.  PTMs can be used to reconstruct the color of a surface 
under varying lighting conditions. When a surface is rendered using a PTM, it takes on different illumination 
characteristics depending on the direction of the light source.  Like bump mapping, this helps viewers by 
providing perceptual clues about the surface geometry. But PTMs are able to go beyond bump maps in that 
they are capable of capturing surface variations due to self-shadowing and interreflections. PTMs are 
generated from real materials and are intended to preserve the visual characteristics of the actual materials. 
Polynomial texture mapping is an image-based technique that does not require bump maps or the modeling 
of complex geometry.

The image below shows two triangles from a PTM demo developed by Hewlett-Packard. The triangle on the 
upper right has been rendered using a polynomial texture map, and the triangle on the lower right has been 
rendered using a conventional 2D texture map. The objects that were used to construct the texture maps 
were a metallic bezel with the Hewlett-Packard logo on it, and a brushed metal notebook cover with an 
embossed 3Dlabs logo. As you move the simulated light source in the demo, the conventional texture looks 
flat and unrealistic, while the PTM texture faithfully reproduces the highlights and surface shadowing that 
occurs on the real life objects. In the image that I’ve captured, the light source is a bit in front and above the 
two triangles. The PTM shows realistic reflections, but the conventional texture can only reproduce the 
lighting effect from a single lighting angle (in this case, as if the light were directly in front of the object).
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The PTM technique developed by HP requires as input a set of images of the desired object, with the object 
illuminated by a light source of a different known direction for each image, all captured from the same 
viewpoint. For each texel of the PTM, these source images are sampled and a least-squares biquadric curve 
fit is performed to obtain a polynomial that approximates the lighting function for that texel. This part of the 
process is partly science and partly art (a bit of manual intervention can improve the end results). The 
biquadric equation generated in this manner will allow run-time reconstruction of the lighting function for 
the source material. The coefficients stored in the PTM are A, B, C, D, E, and F as shown in the equation 
below:

One use of PTM’s is for representing materials with surface properties that vary spatially across the surface. 
Things like brushed metal, woven fabric, wood, and stone are all materials that reflect light differently 
depending on the viewing angle and light source direction. They may also have interreflections and self-
shadowing. The PTM technique is able to capture these details and reproduce them at runtime. There are two 
variants for PTMs: luminance (LRGB) and RGB. An LRGB PTM uses the biquadric polynomials to 
determine the brightness of each rendered pixel.  Because each texel in an LRGB PTM has its own bi-
quadric polynomial function, the luminance or brightness characteristics of each texel can be unique. An 
RGB PTM uses a separate biquadric polynomial for each of the three colors, red, green and blue.  On today’s 
hardware, RGB PTM’s are drawn in three passes, one each for the red, green, and blue component of the 
final image. This allows objects rendered with an RGB PTM to vary in color as the light position shifts. 
Thus, color-shifting materials such as holograms can be accurately reconstructed with an RGB PTM.

Au2 Bv2 Cuv Du Ev F+ + + + +
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The key to creating a PTM for these types of spatially varying materials is to capture images of them as lit 
from a variety of light source directions. Engineers at Hewlett-Packard have developed an instrument to do 
just that – a dome with multiple light sources and a camera mounted at the top. This device can 
automatically capture 50 images of the source material from a single fixed camera position as illuminuted by 
light sources in different positions.

The image data collected with this device is the basis for creating a PTM for the real world texture of a 
material. These types of PTMs have four degrees of freedom. Two of these will be used to represent the 
spatially varying characteristics of the material.  These two degrees of  freedom are controlled using the 2-
dimensional texture coordinates.  The remaining two degrees of freedom are used to represent the light 
direction.  These are the two independent variables in the biquadric polynomial.

A BRDF PTM is slightly different than a spatially varying PTM. BRDF PTMs are used to model 
homogeneous materials, that is, they do not vary spatially. BRDF PTMs use two degrees of freedom to 
represent the light direction and the remaining two degrees of freedom are used to represent the view 
direction.  The parameterized light direction (Lu,Lv) is used for the independent variables of the bi-quadric 
polynomial and the parameterized view direction (Vu,Vv) is  used as the 2D texture coordinate.

There is no single parameterization that works well for all BRDF materials. A further refinement to enhance 
quality for BRDF PTMs for the materials we are trying to reproduce (automobile paints) is to re-
parameterize the light and view vectors as half angle and difference vectors, (Hu,Hv) and (Du,Dv).  In the 
BRDF PTM shader discussed below,  (Hu,Hv) is used as the independent variables of the bi-quadric 
polynomial and (Du,Dv) is used as the 2D texture coordinate.  A large part of the function of the vertex 
shader is to calculate (Hu,Hv) and (Du,Dv).

BRDF PTMs can be created as either LRGB or RGB PTMs.  The example below shows how an RGB BRDF 
PTM is rendered with OpenGL Shading Language Shaders.   In addition to the topics already covered, this 
technique is also an example of multipass rendering.

Application Setup
To render BRDF surfaces using the following shaders, the application needs to set up a few uniform 
variables. The vertex shader must be provided with values for uniform variables that describe the eye 
direction (i.e., an infinite viewer) and the position of a single light source (i.e., a local light source).  The 
fragment shader requires the application to provide values for scaling and biasing the six polynomial 
coefficients. (These values have been prescaled when the PTM was created in order to preserve precision, 
and so must be rescaled using the scale and bias factors that are specific to that PTM.)

The application is expected to provide four attributes for every vertex. Two of them are standard OpenGL 
attributes and need not be defined by our vertex program: gl_Vertex (position) and gl_Normal (normal). The 
other two attributes are a tangent vector and a binormal vector which will be computed by the application. 
These two attributes should be provided to OpenGL using either the glVertexAttribute* function or by using 
a vertex array of type GL_USER_ATTRIBUTE_ARRAYn. The location to be used for these user-defined 
attributes can be bound to the appropriate attribute in our vertex shader by calling 
glBindAttributeLocationGL2. For instance, if we choose to pass the tangent values in at vertex attribute 
location 3 and the binormal values in at vertex attribute location 4, we would set up the binding using these 
lines of code:
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glBindAttributeLocationGL2(myProgramID, 3, “tangent”, -1);
glBindAttributeLocationGL2(myProgramID, 4, “binormal”, -1);

If the variable tangent is defined to be an array of three floats, and binormal is also defined as an array of 
three floats, these user-defined vertex attributes can be passed in using the following calls:

void glVertexAttribfvARB(3, tangent);
void glVertexAttribfvARB(4, binormal);

Alternatively, these values could be passed to OpenGL using user-defined vertex arrays.

Prior to rendering, the application should also set up seven texture maps: three 2D texture maps will hold the 
A, B, and C coefficients for red, green, and blue compenents of the PTM; three 2D texture maps will hold 
the D, E, and F coefficients for red, green, and blue components of the PTM; and a 1D texture will hold a 
lighting function.  

This last texture is set up by the application whenever the lighting state is changed. It will be bound to 
texture unit 3 and just left alone. The light factor texture is solving 4 problems:

• Front facing / back facing discrimination.  This texture is indexed with (L dot N) which is positive for 
front facing vertices and  negative for back facing vertices.  As a first level of  complexity the light 
texture can solve the front facing / back facing problem by being 1.0 for positive index values and 0.0 
for back facing values.

• We'd like to be able to light BRDF PTM shaded objects with colored lights.  As a second level of 
complexity, the light texture (which has three channels, R, G and B) will use a light color instead of 
1.0 for positive index values.

• An abrupt transition from front facing to back facing will look awkward and unrealistic on rendered 
images.  As a third level of complexity we apply a gradual transition in the light texture values from 
0.0 to 1.0.  In the case of the PTM demo from Hewlett-Packard,  a sine or cosine curve is used to 
determine these gradual texture values.

• There is no concept of ambient light for PTM rendering.  It can look very unrealistic to render back 
facing pixels as (0,0,0). Instead of using 0.0 values for negative indices, values such as 0.1 are used.  

For each object to be rendered, the application will draw the geometry three times. The first time it will mask 
off the green and blue channels of the frame buffer, bind the ABC coefficient texture for the red component 
of the PTM to texture unit 0 , bind the DEF texture for the red component of the PTM to texture unit 0, and 
draw the geometry. This will cause the red component of the frame buffer to be rendered. The process is 
repeated to render the green and blue components of the final image.

Vertex Shader
The BRDF PTM vertex shader is shown below. The purpose of this shader is to produce five varying values:

• gl_Position, as required by every vertex shader
• gl_TexCoord0, which will be used to access our texture maps to get the two sets of polynomial 

coefficients
• LdotT, a float that contains the cosine of the angle between the light direction and the tangent vector
• LdotB, a float that contains the cosine of the angle between  the light direction and the binormal vector
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• LdotN, a float that contains the cosine of the angle between the incoming surface normal and the light  
direction.

// VP_PTM_3DLABS_HuHvDuDv_PosInf

uniform vec3 LightPos; 
uniform vec3 EyeDir;

attribute vec3 Tangent;
attribute vec3 Binormal;

varying float LdotT; 
varying float LdotB; 
varying float LdotN; 

void main(void)
{
    vec3 lightTemp;
    vec3 halfAngleTemp;
    vec3 tPrime;
    vec3 bPrime;

    // Transform vertex
    gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
    lightTemp = normalize(LightPos - vec3(gl_Vertex));

    // Calculate the Half Angle vector
    halfAngleTemp = normalize(EyeDir + lightTemp);

    // Multiply the Half Angle vector by NOISE_FACTOR
    // to avoid noisy BRDF data
    halfAngleTemp = halfAngleTemp * 0.9;

    // Calculate T' and B'
    //    T' = |T - (T.H)H|
    tPrime = Tangent – (halfAngleTemp * dot(Tangent, halfAngleTemp));
    tPrime = normalize(tPrime);

    //    B' = H x T'
    bPrime = cross(halfAngleTemp, tPrime);

    // Hu = Dot(Light, T')
    // Hv = Dot(Light, B')
    LdotT = dot(lightTemp, tPrime);
    LdotB = dot(lightTemp, bPrime);

    // Du = Dot(HalfAngle, T)
    // Dv = Dot(HalfAngle, B)
    // Remap [-1.0..1.0] to [0.0..1.0]
    gl_TexCoord0.s = dot(Tangent,  halfAngleTemp) * 0.5 + 0.5;
    gl_TexCoord0.t = dot(Binormal, halfAngleTemp) * 0.5 + 0.5;
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    gl_TexCoord0.q = 1.0;

    // "S" Text Coord3: Dot(Light, Normal);
    LdotN = dot(lightTemp, gl_Normal) * 0.5 + 0.5;
}

The light source position and eye direction are passed in as uniform variables by the application. In addition 
to the standard OpenGL vertex and normal vertex attributes, the application is expected to pass in a tangent 
and a binormal per vertex as described in the previous section. These two user-defined attributes are defined 
with appropriate names in our vertex shader.

The first line of the vertex shader transforms the incoming vertex value by the current model-view-
projection matrix. The next line computes the light source direction for our positional light source by 
subtracting the vertex position from the light position. Since LightPos is defined as a vec3 and the built-in 
attribute gl_Vertex is defined as a vec4, we must use the vec3 constructor to obtain the first 3 elements of 
gl_Vertex prior to doing the vector subtraction operation. The result of the vector subtraction is then 
normalized and stored as our light direction.

The next line of code computes the half angle by adding together the eye direction vector and the light 
direction vector and normalizing the result. BRDF data often has noisy data values for extremely large 
incidence angles (i.e., close to 180o), so in the next line of code, we avoid the noisy data in a somewhat 
unscientific manner by applying a scale factor to the half angle. This will effectively cause these values to be 
ignored.

The next few lines of code compute the 2D parameterization of our half angle and difference vector. The 
goal here is to compute values for u (LdotT) and v (LdotB) that can be plugged into the biquadric equation in 
our vertex shader. The technique used here is called Gram-Schmidt orthonormalization and it is described 
more fully in a paper by Jan Kautz and Michael D. McCool called  Interactive Rendering with Arbitrary 
BRDF's using Separable Approximations. (This paper is currently available on the web at 
http://www.cgl.uwaterloo.ca/Projects/rendering/Papers.) .  H (half angle), T' and B' are the orthogonal axis 
of a coordinate system.  T' and B' maintain a general alignment with the original T (tangent) and B 
(binormal) vectors. Where T and B lie in the plane of the triangle being rendered, T' and B' are in a plane 
perpendicular to the half angle vector.

Our vertex shader code first computes values for Hu and Hv and places them in the varying variables LdotT 
and LdotB. These will be plugged into our biquadric equation in the fragment shader as the u and v values. 
Following this, the values for the built-in varying gl_TexCoord0 are computed. These values hold our 
parameterized difference vector and will be used to look up the required polynomial coefficients from the 
texture maps.

Finally, we compute a value that will be used to apply the lighting effect. This value is simply the cosine of 
the angle between the surface normal and the light direction.

Fragment Shader
The fragment shader for our BRDF PTM surface rendering is shown below:

// PP_PTM_3DLABS_RGB
const int ABCtexture   = 0;
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const int DEFtexture   = 1;
const int lighttexture = 3;

uniform vec3 ABCscale, ABCbias;
uniform vec3 DEFscale, DEFbias;

varying float LdotT; // passes the computed L*Tangent value
varying float LdotB; // passes the computed L*Binormal value
varying float LdotN; // passes the computed L*Normal value

void main(void)
{
    vec3    ABCcoef, DEFcoef;
    vec3    ptvec;
    float   ptval;

    // Read coefficient values and apply scale and bias factors
    ABCcoef = (texture3(ABCtexture, gl_TexCoord0, 0.0) - ABCbias) * ABCscale;
    DEFcoef = (texture3(DEFtexture, gl_TexCoord0, 0.0) - DEFbias) * DEFscale;

    // Compute polynomial
    ptval = ABCcoef.0 * LdotT * LdotT +
            ABCcoef.1 * LdotB * LdotB +
            ABCcoef.2 * LdotT * LdotB +
            DEFcoef.0 * LdotT +
            DEFcoef.1 * LdotB +
            DEFcoef.2;

    // Turn result into a vec3
    ptvec = vec3 (ptval);

    // Multiply result * light factor
    ptvec *= texture3(lighttexture, LdotN);

    vec3 fragc = clamp(ptvec, vec3 (0.0), vec3 (1.0));
    
    // Clamp result and assign it to gl_FragColor
    gl_FragColor = vec4 (fragc, 1.0);
}

This shader is relatively straightforward if you’ve digested the information in the previous three sections. 
The values in the s and t components of gl_TexCoord0 hold a 2D parameterization of the difference vector. 
This is used to index into both of our coefficient textures and retrieve the values for the A, B, C, D, E, and F 
coefficients. Since the BRDF PTMs are stored as mipmap textures, we use the version of the texture access 
function that allows us to specify an LOD bias. However, in this case we’re passing an LOD bias of 0.0, so 
the computed LOD bias will just be used directly. Using vector operations, the six coefficients are scaled and 
biased by values passed from the application via uniform variables.

These scaled, biased coefficient values are then used together with our parameterized half angle  (LdotT and 
LdotB) in the biquadric polynomial to compute a single floating point value. This value is then replicated to 
form a vec3. The lighting factor  is computed by accessing the 1D light texture using the cosine of the angle 
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between the light and the surface normal. This lighting factor is multiplied by our polynomial vector, the 
result is clamped to the range [0,1], and an alpha value of 1.0 is provided to produce the final fragment color.

We actually now have the same computed color stored in each of the red, green, and blue components of the 
fragment color. But depending on which pass we’re on, two of the components will be masked out as the 
fragment is written to the frame buffer and only one will actually be drawn. Doing things in this manner 
makes it possible for us to use the same fragment shader in each pass.

Screen Shots
The image below shows our BRDF PTM shaders rendering a torus with the BRDF PTM created for the 
Mystique Lacquer automotive paint. This paint has the peculiar property that its color varies depending on 
the viewing position. The basic color of this paint is black, but in the orientation captured for the still image 
below, the specular highlight shows up as mostly white with a reddish-brown tinge on one side of the 
highlight and a bluish tinge on the other. As the object is moved around, or as the light is moved around, our 
BRDF PTM shaders will properly render the shifting highlight color.
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6.7 Wood Shader
Our “theory” of wood is as follows:

• The wood is composed of light and dark areas alternating in concentric cylinders surrounding a central 
axis

• Noise is added to warp the cylinders to create a more natural-looking pattern
• The center of the “tree” is taken to be the y-axis
• Throughout the wood there is a high-frequency grain pattern to give the appearance of wood that has 

been sawn, exposing the open grain nature of the wood

Althought the OpenGL Shading Language has a built-in noise function, for this example we are going to use 
a 3D texture as the source for our noise. There are two main reasons for this: it is faster and it uses fewer 
instructions (at least on current hardware). 

Application Setup
The wood shaders don’t require too much from the application. The application is expected to pass in a 
vertex position and a normal per vertex using the usual OpenGL entry points. In addition, the vertex shader 
takes a light position and a scale factor that are passed in as uniform variables. The fragment shader takes a 
grain size, a color for the dark wood, and a color spread value that are also passed in as uniform variables.

The uniform variables needed for the wood shaders are initialized with the following C code:

int installWoodShader(int change)
{
    //
    // Creates some 3D wood grain with diffuse lighting
    //
    float lightPos[3] = {0.0f, 0.0f, 4.0f}; 
    float darkwood[3] = {0.4f, 0.2f, 0.07f};
    float lightwood[3]  = {0.6f, 0.3f, 0.1f};
    float scale = 2.0f;
    float ringfreq = 4.0f;
    float lightgrains = 1.0f;
    float darkgrains = 0.0f;
    float grainthreshold = 0.5f;
    float noisescale[3] = {0.5f, 0.1f, 0.1f};
    float noisiness = 3.0;
    float grainscale = 27.0;

    if (!Noise3DTexName)
    {
        glGenTextures(1, &Noise3DTexName);
        make3DNoiseTexture();
        init3DNoiseTexture(Noise3DTexName, Noise3DTexSize, Noise3DTexPtr);
    }

    glActiveTextureARB(GL_TEXTURE6_ARB);
    glBindTexture(GL_TEXTURE_3D_EXT, Noise3DTexName);
    glEnable(GL_TEXTURE_3D);
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    if (makeShaderActive("wood", change))
    {
        glLoadUniform1fvGL2(glGetUniformLocationGL2(ProgramObject,
                    "Scale", -1), &scale);
        glLoadUniform3fvGL2(glGetUniformLocationGL2(ProgramObject,
                    "LightPos", -1), &lightPos[0]);
        glLoadUniform3fvGL2(glGetUniformLocationGL2(ProgramObject,
                    "DarkWood", -1), &darkwood[0]);
        glLoadUniform3fvGL2(glGetUniformLocationGL2(ProgramObject,
                    "LightWood", -1), &lightwood[0]);
        glLoadUniform1fvGL2(glGetUniformLocationGL2(ProgramObject,
                    "RingFreq", -1), &ringfreq);
        glLoadUniform1fvGL2(glGetUniformLocationGL2(ProgramObject,
                    "LightGrains", -1), &lightgrains);
        glLoadUniform1fvGL2(glGetUniformLocationGL2(ProgramObject,
                    "DarkGrains", -1), &darkgrains);
        glLoadUniform1fvGL2(glGetUniformLocationGL2(ProgramObject,
                    "GrainThreshold", -1), &grainthreshold);
        glLoadUniform3fvGL2(glGetUniformLocationGL2(ProgramObject,
                    "NoiseScale", -1), &noisescale[0]);
        glLoadUniform1fvGL2(glGetUniformLocationGL2(ProgramObject,
                    "Noisiness", -1), &noisiness);
        glLoadUniform1fvGL2(glGetUniformLocationGL2(ProgramObject,
                    "GrainScale", -1), &grainscale);
        return 1;
    }
    else
        return 0;
}

Vertex Shader
The wood vertex shader is actually pretty simple. To compute the reflected light intensity, we need to 
transform the vertex into eye coordinates as shown in the first line of code. Then we apply a scale factor to 
the incoming vertex value. This is done to scale the object so that the grain pattern will appear at a visually 
pleasing size in the final rendering. The scale factor can be changed for each object rendered, to make the 
object bigger or smaller relative to our “tree”. An object that has a bounding box of (–1, –1, –1), (1, 1, 1) will 
need a different scale factor than an object with a bounding box of (0,0,0), (100,100,100) if the procedural 
texture is expected to look the same on both objects. Position will be interpolated across the primitive and 
used in our fragment shader as the starting point for the position-dependent procedural texture calculations.

The incoming normal is transformed by the current OpenGL normal matrix and then normalized. This 
vector, the light position, and the view direction are used to compute the light intensity from a single white 
light source. The light intensity is scaled by a factor of 1.5 in order to light the scene more fully. (The 
fragment shader will ultimately be responsible for clamping the final colors to the range [0,1].) Finally, the 
transformed vertex position is computed and stored in gl_Position as required by the OpenGL Shading 
Language.

varying float lightIntensity;
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varying vec3 Position;
uniform vec3 LightPos;
uniform float Scale;

void main(void)
{
    vec4 pos = gl_ModelViewMatrix * gl_Vertex;
    Position = vec3(gl_Vertex) * Scale;
    vec3 tnorm = normalize(gl_NormalMatrix * gl_Normal);
    lightIntensity = abs(dot(normalize(LightPos - vec3(pos)), tnorm) * 1.5);
    gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

Fragment Shader
The fragment shader for our procedurally generated wood is as follows:

varying float lightIntensity; 
varying vec3 Position;

uniform vec3  LightWood;
uniform vec3  DarkWood;
uniform float RingNoise;
uniform float RingFreq;
uniform float LightGrains;
uniform float DarkGrains;
uniform float GrainThreshold;
uniform vec3  NoiseScale;
uniform float Noisiness;
uniform float GrainScale;

void main (void)
{
    vec3 location;
    vec3 noisevec;
    vec3 color;
    float dist;
    float r;
 
    noisevec = texture3(6, Position * NoiseScale) * Noisiness;

    location = vec3 (Position + noisevec);

    dist = sqrt(location.x * location.x + location.z * location.z) * RingFreq;

    r = fract(dist + noisevec.0 + noisevec.1 + noisevec.2) * 2.0;

    if (r > 1.0)
        r = 2.0 - r;
 
    color = mix(LightWood, DarkWood, r);
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    r = fract((Position.x + Position.z) * GrainScale + 0.5);
    noisevec.2 *= r;
    if (r < GrainThreshold)
        color += LightWood * LightGrains * noisevec.2;
    else
        color -= LightWood * DarkGrains * noisevec.2;

    color = clamp(color * lightIntensity, 0.0, 1.0); 

    gl_FragColor = vec4(color, 1.0);
}

As you can see, we’ve parameterized quite a bit of this shader through the use of uniform variables in order 
to make it easy to manipulate through the application’s user interface. As in many procedural shaders, the 
object position is used as the basis for computing the procedural texture. In this case, the object position is 
multiplied by NoiseScale (a vec3 that allows us to scale the noise independently in the x, y, and z directions) 
and the computed value is used as the index into our 3D noise texture. The value that is retrieved from the 
3D texture has low-frequency noise in the red channel, noise of twice the frequency (i.e., one octave higher) 
in the green channel, noise of twice that frequency (i.e., another octave higher) in the blue channel, and noise 
of twice that frequency in the alpha channel. The noise values obtained from the texture are scaled by the 
value Noisiness, which allows us to increase or decrease the contribution of the noise.

Our “tree” is assumed to be a series of concentric rings of alternating light wood and dark wood. In order to 
give some interest to our grain pattern, we’ll add the noise vector to our object position. This has the effect 
of adding our low frequency (first octave) noise to the x coordinate of the position, our second octave noise 
to the y coordinate, and the third octave noise to the z coordinate. The result will be rings that are still 
relatively circular but have some variation in width and distance from the center of the tree.

To compute where we are in relation to the center of the tree, we square the x and z components and take the 
square root of the result. This gives us the distance from the center of the tree. The distance is multiplied by 
RingFreq, a scale factor that can be used to give the wood pattern more rings or fewer rings. 

Following this, we attempt to create a function that goes from 0.0 up to 1.0 and then back down to 0.0. Three 
octaves of noise are added to the distance value to give more interest to the wood grain pattern. We could 
compute different noise values here, but the ones we’ve already obtained will do just fine. Taking the 
fractional part of the resulting value gives us a function that will range from 0.0 to 1.0. Multiplying this 
value by 2.0 gives us a function that ranges from 0.0 to 2.0. And finally, by subtracting 1.0 from values that 
are greater than 1.0, we get our desired function that varies from 0.0 to 1.0 and back to 0.0.

This “sawtooth” function will be used to compute the basic color for the fragment using the built-in mix 
function. The mix function will do a linear blend of LightWood and DarkWood based on our computed 
value r.

At this point, we would have a pretty nice result for our wood function, but we attempt to make it a little 
better by adding a subtle effect to simulate the look of open-grain wood that has been sawn. (You may not be 
able to see this effect on the screen shots below.)

Our desire is to produce streaks that are roughly parallel to the y-axis.  This is done by adding the x and z 
coordinates, multiplying by the GrainScale factor (another uniform variable that can be adjusted to change 
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the frequency of this effect), adding 0.5, and taking the fractional part of the result. Again, this gives us a 
function that varies from 0.0 to 1.0, but for the default values for GrainScale (27.0) and RingFreq (4.0), this 
function for r will go from 0.0 to 1.0 much more often than our previous function for r.

We could just make our “grains” go from light to dark in a linear fashion, but we’ll try to do something a 
little more subtle. The value of r is multiplied by our third octave noise value to produce a value that 
increases in a non-linear fashion. Finally, we compare our value of r to the GrainThreshold value (default is 
0.5). If the value of r is less than GrainThreshold, we modify our current color by adding to it a value 
computed by multiplying the LightWood color, the LightGrains color, and our modified noise value. 
Conversely, if the value of r is greater than GrainThreshold, we modify our current color by subtracting from 
it a value computed by multiplying the DarkWood color, the DarkGrains color, and our modified noise 
value. (By default, the value of LightGrains is 1.0 and the value of DarkGrains is 0.0, so we don’t actually 
see any change if r is greater than GrainThreshold.)

You can play around with this effect and see if it really does help the appearance. It seemed to me that it 
added to the effect of the wood texture for the default settings I’ve chosen, but there probably is a way to 
achieve a better effect in a simpler way. Please send me the shader when you do so!

With our final color computed, all that remains is to multiply the color by the interpolated diffuse lighting 
factor, clamp the color components to the range [0,1], and add an alpha value of 1.0 to produce our final 
fragment value.

Screen shots
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Further information
6.9 Further information
Our intention is to continue providing developers with the latest and greatest information about the OpenGL 
2.0 effort at the 3Dlabs web site, http://www.3dlabs.com. Look for an “OpenGL 2.0” link on our home page. 
On the OpenGL 2.0 page, you will find the latest versions of the OpenGL 2.0 white papers, slides from 
recent OpenGL 2.0 presentations, extension specifications, and sample code and shaders. Interested readers 
should peruse all the white papers, since they go into detail about the many facets of the OpenGL 2.0 effort. 
This white paper will be updated around the time of SIGGRAPH 2002 in order to fix errors and include 
updated code and screen shots
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